JP2005208516A - Faraday rotator device - Google Patents

Faraday rotator device Download PDF

Info

Publication number
JP2005208516A
JP2005208516A JP2004017467A JP2004017467A JP2005208516A JP 2005208516 A JP2005208516 A JP 2005208516A JP 2004017467 A JP2004017467 A JP 2004017467A JP 2004017467 A JP2004017467 A JP 2004017467A JP 2005208516 A JP2005208516 A JP 2005208516A
Authority
JP
Japan
Prior art keywords
magnetic field
electromagnet
temperature
magneto
faraday rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004017467A
Other languages
Japanese (ja)
Inventor
Masaharu Hoshikawa
雅春 星川
Akitoshi Mesaki
明年 目崎
Takashi Kato
隆司 加藤
Chiharu Nishida
千春 西田
Tsugio Tokumasu
次雄 徳増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2004017467A priority Critical patent/JP2005208516A/en
Priority to PCT/JP2005/000670 priority patent/WO2005071470A1/en
Publication of JP2005208516A publication Critical patent/JP2005208516A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control variation in attenuation quantity of a variable optical attenuator against variation in surrounding temperature to a low level by controlling a temperature characteristic of a Faraday rotation angle versus a supplied current against surrounding temperature to a low level. <P>SOLUTION: A permanent magnet is disposed so as to apply a fixed magnetic field vertical to an advancing direction of light passing through a magnetooptic crystal to the magnetooptic crystal, and an electromagnet is disposed so as to apply a variable magnetic field parallel to the advancing direction of the light to the magnetooptic crystal. Under a condition in which a current supplied to the electromagnet is constant, the ratio of residual field intensity of the permanent magnet to generated field intensity of the electromagnet is made to get smaller according as the temperature gets higher, and temperature deviation of the Faraday rotation angle against the current supplied to the electromagnet is canceled by temperature characteristics of the fixed magnetic field by the permanent magnet and the variable magnetic field by the electromagnet and a temperature characteristic of the magnetooptic crystal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、入射光のファラデー回転角を可変できるファラデー回転デバイスに関し、更に詳しく述べると、環境温度の変化に対するファラデー回転角のずれを打ち消すように、永久磁石と電磁石によって得られる合成磁界が温度特性を有するファラデー回転デバイスに関するものである。この技術は、例えば光通信の分野で光強度を調整する可変光減衰器などに有用である。   The present invention relates to a Faraday rotation device capable of changing the Faraday rotation angle of incident light. More specifically, the composite magnetic field obtained by a permanent magnet and an electromagnet has a temperature characteristic so as to cancel the deviation of the Faraday rotation angle with respect to a change in environmental temperature. The present invention relates to a Faraday rotation device having This technique is useful, for example, for a variable optical attenuator that adjusts the light intensity in the field of optical communication.

光通信システムあるいは光計測システムなどでは、偏光面を回転させるファラデー回転デバイスが組み込まれている。周知のように、ファラデー回転デバイスは、磁気光学結晶(ファラデー効果を有する磁性ガーネット単結晶)に外部磁界を印加し、それによって磁気光学結晶を透過する光線のファラデー回転角を制御するように構成されている。その一例として、磁気光学結晶に可変磁界を印加してファラデー回転角を可変制御するタイプがある。その場合には、通常、永久磁石による固定磁界と電磁石による可変磁界との合成磁界を印加する。   In an optical communication system or an optical measurement system, a Faraday rotation device that rotates a polarization plane is incorporated. As is well known, a Faraday rotation device is configured to apply an external magnetic field to a magneto-optic crystal (a magnetic garnet single crystal having a Faraday effect), thereby controlling the Faraday rotation angle of a light beam transmitted through the magneto-optic crystal. ing. As an example, there is a type in which a Faraday rotation angle is variably controlled by applying a variable magnetic field to the magneto-optical crystal. In that case, a combined magnetic field of a fixed magnetic field by a permanent magnet and a variable magnetic field by an electromagnet is usually applied.

ところで磁気光学結晶は、そのファラデー回転角に温度特性を有する。一般に温度特性の方向は、温度が高くなるとファラデー回転角が小さくなり、温度が低くなるとファラデー回転角は大きくなる方向である。それと逆の特性を持つ材料は、現在のところ見出されていない。そのためファラデー回転デバイスを用いる可変光減衰器では、この磁気光学結晶の温度特性が駆動電流対減衰量特性に影響を及ぼす。例えば、ファラデー回転角1deg 当たりの温度係数が0.001〔deg/℃/deg〕の磁気光学結晶を用いた場合でも、最大減衰量付近では10dB程度のずれが生じる。   Incidentally, the magneto-optical crystal has temperature characteristics at its Faraday rotation angle. Generally, the direction of the temperature characteristic is such that the Faraday rotation angle decreases as the temperature increases, and the Faraday rotation angle increases as the temperature decreases. No material with the opposite characteristics has been found so far. Therefore, in a variable optical attenuator using a Faraday rotation device, the temperature characteristic of the magneto-optic crystal affects the drive current versus attenuation characteristic. For example, even when a magneto-optical crystal having a temperature coefficient of 0.001 [deg / ° C./deg] per 1 Faraday rotation angle is used, a deviation of about 10 dB occurs in the vicinity of the maximum attenuation.

特許文献1では、光の進行方向と磁気光学結晶に印加される合成磁界とのなす角が一致する時に最大減衰量をとるような可変光減衰器が提案されている。しかし、この場合においても、原理的には0.7dB弱の温度変動が生じる。   Patent Document 1 proposes a variable optical attenuator that takes the maximum amount of attenuation when the angle between the traveling direction of light and the synthesized magnetic field applied to the magneto-optical crystal coincides. However, even in this case, a temperature fluctuation of a little less than 0.7 dB occurs in principle.

特許文献2には、磁気光学結晶を通る光の進行方向に平行に固定磁界を印加し、垂直に可変磁界を印加するような構成において、電磁石ヨークにNi−Fe合金あるいはFe−Co−Ni合金を用いることで温度補正する技術が開示されている。しかし、このようなヨーク材料は高価であり、実用化は難しい。   In Patent Document 2, a configuration in which a fixed magnetic field is applied parallel to the traveling direction of light passing through a magneto-optic crystal and a variable magnetic field is applied vertically is applied to an electromagnet yoke with a Ni—Fe alloy or a Fe—Co—Ni alloy. A technique for correcting the temperature by using the above is disclosed. However, such a yoke material is expensive and difficult to put into practical use.

また非特許文献1には、電気抵抗の温度特性を利用し、定電圧駆動する方法によって、温度変動を低減化する技術も開示されている。
特開平9−236784号公報 特開2002−341302号公報 「磁気光学型VOAの減衰量温度変動低減化」長枝、川幡(2002年電子情報通信学会総合大会、C−3−132)
Non-Patent Document 1 also discloses a technique for reducing temperature fluctuations by a constant voltage driving method using temperature characteristics of electrical resistance.
JP-A-9-236784 JP 2002-341302 A “Reduction of temperature variation in attenuation of magneto-optic VOA” Nagae, Kawamata (2002 IEICE General Conference, C-3-132)

本発明が解決しようとする課題は、環境温度に対して、供給電流対ファラデー回転角の温度特性が大きい点である。   The problem to be solved by the present invention is that the temperature characteristic of the supply current versus the Faraday rotation angle is large with respect to the environmental temperature.

本発明は、磁気光学結晶と、該磁気光学結晶を通る光の進行方向に対して実質的に垂直に固定磁界が印加されるように配置した永久磁石と、前記磁気光学結晶を通る光の進行方向に対して実質的に平行に可変磁界が印加されるように配置した電磁石を具備しているファラデー回転デバイスにおいて、電磁石への供給電流が一定である条件下で、電磁石の発生磁界強度に対し、永久磁石の残留磁界強度の比率が、高温になるほど小さくなるようにし、永久磁石による固定磁界と電磁石による可変磁界の温度特性と磁気光学結晶の温度特性によって、電磁石への供給電流に対するファラデー回転角の温度による角度ずれが打ち消されるようにしたファラデー回転デバイスである。   The present invention relates to a magneto-optical crystal, a permanent magnet arranged so that a fixed magnetic field is applied substantially perpendicular to the direction of travel of light passing through the magneto-optical crystal, and the travel of light through the magneto-optical crystal. In a Faraday rotating device having an electromagnet arranged so that a variable magnetic field is applied substantially parallel to the direction, the generated magnetic field strength of the electromagnet is controlled under the condition that the current supplied to the electromagnet is constant. The ratio of the permanent magnet's residual magnetic field strength decreases as the temperature increases, and the Faraday rotation angle relative to the supply current to the electromagnet depends on the temperature characteristics of the fixed magnetic field by the permanent magnet and the variable magnetic field by the electromagnet and the temperature characteristics of the magneto-optic crystal. This is a Faraday rotation device in which the angle deviation due to the temperature of the lens is canceled.

本発明では、特に、電磁石への供給電流が一定である条件下での電磁石の発生磁界強度の温度変動が、永久磁石の残留磁界強度の温度変動に比べて実質的に無視できるような組み合わせとすることが好ましい。その場合には永久磁石は、その残留磁界の温度特性が、−0.05〜−0.25%/℃程度を有するものからから選定する。   In the present invention, in particular, a combination in which the temperature fluctuation of the generated magnetic field strength of the electromagnet under a condition where the current supplied to the electromagnet is constant is substantially negligible compared to the temperature fluctuation of the residual magnetic field strength of the permanent magnet. It is preferable to do. In that case, the permanent magnet is selected from those having a temperature characteristic of the residual magnetic field of about -0.05 to -0.25% / ° C.

このようなファラデー回転デバイスを用い、磁気光学結晶の出射側に検光子を配置し、電磁石に電流を供給していない時に減衰量が最大となるように検光子方位が設定することで良好な温度特性を呈する可変光減衰器が得られる。また、磁気光学結晶の入射側に偏光子を、出射側に検光子をそれぞれ配置し、電磁石に電流を供給していない時に減衰量が最大となるように偏光子と検光子の結晶軸方位が実質的に直交するように設定してもよい。   Using such a Faraday rotation device, placing an analyzer on the exit side of the magneto-optic crystal, and setting the analyzer orientation so that the attenuation is maximized when no current is supplied to the electromagnet, it is possible to achieve a good temperature A variable optical attenuator exhibiting characteristics can be obtained. Also, a polarizer is placed on the entrance side of the magneto-optic crystal and an analyzer is placed on the exit side, so that the crystal axis orientation of the polarizer and analyzer is maximized so that the amount of attenuation is maximized when no current is supplied to the electromagnet. You may set so that it may be substantially orthogonal.

本発明に係るファラデー回転デバイスは、永久磁石による固定磁界と電磁石による可変磁界の温度特性と磁気光学結晶の温度特性によって、電磁石への供給電流に対するファラデー回転角の温度による角度ずれを打ち消す。具体的には、電磁石への供給電流が一定の条件下では、回転角が0度付近において、環境温度の変化に対する回転角度ずれを1度以下に抑えることが可能となる。また、可変光減衰器に適用することによって、減衰量の温度ばらつきを0.2dB以下に抑えることが可能となる。更に、安価な材料で構成でき、実用化が容易となる利点もある。   The Faraday rotation device according to the present invention cancels the angular deviation due to the temperature of the Faraday rotation angle with respect to the current supplied to the electromagnet, by the temperature characteristics of the fixed magnetic field by the permanent magnet and the variable magnetic field by the electromagnet and the temperature characteristics of the magneto-optic crystal. Specifically, under a condition where the current supplied to the electromagnet is constant, it is possible to suppress the rotation angle shift with respect to the change in the environmental temperature to 1 degree or less when the rotation angle is around 0 degrees. In addition, by applying to a variable optical attenuator, it is possible to suppress the temperature variation of the attenuation amount to 0.2 dB or less. Furthermore, there is an advantage that it can be made of an inexpensive material and can be easily put into practical use.

磁気光学結晶における温度特性及び光の進行方向を含めたファラデー回転角は、
θF (t)=θ(t0 )×(1−αΔt)×cos β=θ(t)×cos β
で表せる。但し、
β:光の進行方向と磁気光学結晶に印加する合成磁界のなす角
θ(t0 ):温度t0 における磁気光学結晶のファラデー回転角
α:磁気光学結晶の1deg 当たりの温度係数〔deg/℃/deg〕
Δt=t−t0
である。従って、β=90度でない限り、ファラデー回転角の温度特性は必ず発生する。θ(t)は温度tにおける磁気光学結晶のファラデー回転角(何度回転子か)ということで、ファラデー回転は室温を基準にして、高温側では回り難く低温側で回り易い。上式から、ファラデー回転角の温度特性を打ち消すには、cos βがθ(t)と逆の特性をもてばよいことが分かる。但し、βは一般に0〜90deg 程度の広い範囲をとるので全範囲で打ち消すことは不可能であり、必要な限られた範囲内で打ち消すようにすればよい。あるべき合成磁界の温度特性は、概念的には図1に示すように、高温ほどcos βが大きく(合成磁界ベクトルが倒れ)、低温ほどcos βが小さく(合成磁界ベクトルが立つ)なることである。
The Faraday rotation angle including the temperature characteristics and the traveling direction of light in the magneto-optical crystal is
θ F (t) = θ (t 0 ) × (1−αΔt) × cos β = θ (t) × cos β
It can be expressed as However,
β: angle formed by the traveling direction of light and the synthetic magnetic field applied to the magneto-optic crystal θ (t 0 ): Faraday rotation angle of the magneto-optic crystal at temperature t 0 α: temperature coefficient per deg of the magneto-optic crystal [deg / ° C. / deg]
Δt = t−t 0
It is. Therefore, unless F = 90 degrees, the temperature characteristic of the Faraday rotation angle always occurs. θ (t) is the Faraday rotation angle (how many rotors) of the magneto-optical crystal at the temperature t. Faraday rotation is difficult to rotate on the high temperature side and easy to rotate on the low temperature side with respect to the room temperature. From the above equation, it can be seen that cos β should have a characteristic opposite to θ (t) in order to cancel the temperature characteristic of the Faraday rotation angle. However, since β generally takes a wide range of about 0 to 90 °, it is impossible to cancel the entire range, and it is only necessary to cancel within the necessary limited range. Conceptually, as shown in FIG. 1, the temperature characteristics of the synthesized magnetic field are such that cos β is larger (the synthesized magnetic field vector is tilted) at higher temperatures and cos β is smaller (the synthesized magnetic field vector is standing) at lower temperatures. is there.

ところで、永久磁石の残留磁化の温度特性は一般に負である。つまり高温ほど残留磁界強度が弱くなる。それに対して電磁石は磁化飽和点に至らない領域で使用しており、発生磁界は駆動電流に依存しているため、電磁石により発生する磁界の温度特性(ヨーク材の温度特性)は殆ど無視できる。これらのことから、ファラデー回転デバイスとしては、磁気光学結晶と、該磁気光学結晶を通る光の進行方向に対して垂直に固定磁界が印加されるように配置した永久磁石と、磁気光学結晶を通る光の進行方向に対して平行に可変磁界が印加されるように配置した電磁石を具備している構成が適している。この構成は、固定磁界は比較的弱くてよいため、フェライト系磁石、ボンド磁石が使用可能であり、材料選択の幅が広がる。   By the way, the temperature characteristic of the residual magnetization of the permanent magnet is generally negative. That is, the higher the temperature, the lower the residual magnetic field strength. On the other hand, the electromagnet is used in a region that does not reach the magnetization saturation point, and the generated magnetic field depends on the drive current. Therefore, the temperature characteristics of the magnetic field generated by the electromagnet (temperature characteristics of the yoke material) can be almost ignored. Therefore, the Faraday rotation device passes through the magneto-optical crystal, the permanent magnet arranged so that a fixed magnetic field is applied perpendicular to the traveling direction of the light passing through the magneto-optical crystal, and the magneto-optical crystal. A configuration including an electromagnet arranged so that a variable magnetic field is applied in parallel to the traveling direction of light is suitable. In this configuration, since the fixed magnetic field may be relatively weak, a ferrite-based magnet and a bonded magnet can be used, and the range of material selection is widened.

ところで、ファラデー回転角の中心値が大きくなるほど、温度による角度ずれは大きくなる。回転角の中心値が大きいところ(例えば90度付近)で回転角度ずれをゼロにしようとした場合、ファラデー回転角の温度ずれを完全にキャンセルするような値の永久磁石材料を組み合わせる必要がある。しかし磁気光学結晶や永久磁石の特性には個体ばらつきがあり、また回転角度ずれが中心値に比例することを勘案すると、このような方式は不利である。他方、回転角がゼロの近傍では、この角度ずれは原理的に完全にゼロであり、回転中心値自体が小さいことから、この近傍でゼロに近い値をとることの方が容易である。そこで、回転角が0度付近でのずれを小さく抑えるようにする。   By the way, the larger the central value of the Faraday rotation angle, the greater the angular deviation due to temperature. When the rotation angle deviation is attempted to be zero when the central value of the rotation angle is large (for example, around 90 degrees), it is necessary to combine the permanent magnet materials with values that completely cancel the temperature deviation of the Faraday rotation angle. However, this method is disadvantageous in view of the fact that there are individual variations in the characteristics of magneto-optical crystals and permanent magnets, and that the rotational angle deviation is proportional to the center value. On the other hand, in the vicinity of the rotation angle of zero, this angular deviation is completely zero in principle, and the rotation center value itself is small, so it is easier to take a value close to zero in this vicinity. Therefore, the deviation when the rotation angle is around 0 degrees is suppressed to a small value.

磁気光学結晶のファラデー回転角の温度係数は、一般に、0.04〜0.08deg/℃(45度回転子での値)である。電磁石により発生する磁界の温度特性(ヨーク材の温度特性)は、安価で飽和磁束密度の高いケイ素鋼では殆どゼロであるので、それを用い、永久磁石の残留磁界の温度特性は、−0.05〜−0.25%/℃程度から選定する。   The temperature coefficient of the Faraday rotation angle of the magneto-optical crystal is generally 0.04 to 0.08 deg / ° C. (value at 45 degrees rotator). The temperature characteristic of the magnetic field generated by the electromagnet (temperature characteristic of the yoke material) is almost zero in silicon steel, which is inexpensive and has a high saturation magnetic flux density. Therefore, the temperature characteristic of the residual magnetic field of the permanent magnet is −0. Select from about 05 to -0.25% / ° C.

また磁気光学結晶の磁気異方性には温度特性があり、これは駆動電流に対して温度特性をもつ原因となるため、異方性のでる軸方位を考慮し、この影響の出ない結晶軸配置にすることが望ましい。   In addition, the magnetic anisotropy of a magneto-optic crystal has a temperature characteristic, which causes a temperature characteristic with respect to the drive current. It is desirable to arrange.

可変光減衰器を構成する場合には、磁気光学結晶の入射側に偏光子を、出射側に検光子を配置し、電磁石に電流を供給していない時に減衰量が最大となるように偏光子と検光子の結晶軸方位が実質的に直交するように設定する。   When configuring a variable optical attenuator, a polarizer is placed on the entrance side of the magneto-optic crystal and an analyzer is placed on the exit side, so that the amount of attenuation is maximized when no current is supplied to the electromagnet. And the crystal axis orientation of the analyzer are set so as to be substantially orthogonal.

図2は本発明に係るファラデー回転デバイスの一実施例を示す説明図である。このファラデー回転デバイスは、磁気光学結晶10を通る光の進行方向に対して平行に可変磁界を印加するように電磁石12を配置し、光の進行方向に対して垂直に固定磁界を印加するように永久磁石14を配置した構成である。電磁石12は、U形ヨーク16にコイル18を巻装する構造とし、ヨーク16には貫通孔20を形成して光の通過を妨げないようになっている。   FIG. 2 is an explanatory view showing an embodiment of a Faraday rotation device according to the present invention. In this Faraday rotation device, the electromagnet 12 is arranged so as to apply a variable magnetic field in parallel to the traveling direction of light passing through the magneto-optical crystal 10, and a fixed magnetic field is applied perpendicularly to the traveling direction of light. The permanent magnet 14 is arranged. The electromagnet 12 has a structure in which a coil 18 is wound around a U-shaped yoke 16, and a through hole 20 is formed in the yoke 16 so as not to hinder the passage of light.

本発明では、電磁石12のコイル16への供給電流が一定である条件下で、電磁石の発生磁界強度に対し、永久磁石14の残留磁界強度の比率が高温になるほど小さくなるようにし、永久磁石14による固定磁界と電磁石12による可変磁界の温度特性と磁気光学結晶10の温度特性によって、電磁石12への供給電流に対するファラデー回転角の温度による角度ずれが打ち消されるように構成する。   In the present invention, under the condition that the current supplied to the coil 16 of the electromagnet 12 is constant, the ratio of the residual magnetic field strength of the permanent magnet 14 to the generated magnetic field strength of the electromagnet becomes smaller as the temperature becomes higher. The temperature deviation of the Faraday rotation angle with respect to the supply current to the electromagnet 12 is canceled out by the temperature characteristics of the fixed magnetic field by the electromagnet 12, the variable magnetic field by the electromagnet 12, and the temperature characteristics of the magneto-optical crystal 10.

計算結果の例を図3に示す。永久磁石の温度特性は、回転角が0度付近での回転角ずれΔθが小さくなるように選択した。条件は以下の通りとする。Aは参考例、Bは本発明である。なお、温度が−5℃(低温)、25℃(室温)、+70℃(高温)での値を求めたが、図では曲線が重なって見難くなるため、−5℃(低温)と+70℃(高温)での特性のみを表している。以下の各グラフでも同様としている。
・磁気光学結晶のファラデー回転角の温度係数:0.045deg/℃(45度回転子での値)
・ヨークの磁界発生の温度特性:0%/℃
・永久磁石の残留磁界の温度特性
Aの例:−0.02%/℃(例えばSm−Co磁石)
Bの例:−0.098%/℃(例えばフェライト系磁石)
これらの結果から、コイル駆動電流一定条件下、回転角が0度付近において、環境温度の変化に対する回転角度ずれΔθを1度以下に抑えることが可能なことが分かる。特に、永久磁石の残留磁界の温度特性を適切な値に選定することによって、図3のBに示すように、回転角が0度から50度程度までの広い範囲にわたって環境温度の変化に対する回転角度ずれΔθを1度以下に抑えることが可能となる。
An example of the calculation result is shown in FIG. The temperature characteristics of the permanent magnet were selected so that the rotation angle deviation Δθ was small when the rotation angle was around 0 degrees. The conditions are as follows. A is a reference example and B is the present invention. Although the values at temperatures of −5 ° C. (low temperature), 25 ° C. (room temperature), and + 70 ° C. (high temperature) were obtained, the curves overlap in the figure and are difficult to see, so −5 ° C. (low temperature) and + 70 ° C. Only the characteristics at (high temperature) are shown. The same applies to the following graphs.
-Temperature coefficient of Faraday rotation angle of magneto-optic crystal: 0.045deg / ° C (value at 45 degree rotor)
・ Temperature characteristics of yoke magnetic field generation: 0% / ℃
-Temperature characteristics of the residual magnetic field of the permanent magnet Example A: -0.02% / ° C (for example, Sm-Co magnet)
Example of B: -0.098% / ° C (for example, ferrite magnet)
From these results, it can be seen that the rotation angle deviation Δθ with respect to the change of the environmental temperature can be suppressed to 1 degree or less when the rotation angle is around 0 degree under the constant coil drive current condition. In particular, by selecting an appropriate value for the temperature characteristic of the residual magnetic field of the permanent magnet, as shown in FIG. 3B, the rotation angle with respect to changes in the environmental temperature over a wide range from 0 degrees to 50 degrees. The shift Δθ can be suppressed to 1 degree or less.

ファラデー回転デバイスの最も好ましい構造を図4に示す。磁気光学結晶30の光路の前後に電磁石32a,32bを配置し、光路の左右(あるいは上下)に永久磁石34a,34bを配置する。ここで両電磁石32a,32bは、円筒状ヨーク36の外周にコイル38を巻装した構造をなし、該円筒状ヨーク36の中心孔40が光路となる。また永久磁石34a,34bは、厚み方向に着磁した板状磁石である。この構造では、U型ヨークを使用していないため、光の進行方向に対して垂直方向への部材の張り出しが無く、小型化・細径化することができる利点がある。   The most preferred structure of the Faraday rotation device is shown in FIG. Electromagnets 32a and 32b are arranged before and after the optical path of the magneto-optic crystal 30, and permanent magnets 34a and 34b are arranged on the left and right (or top and bottom) of the optical path. Here, both the electromagnets 32a and 32b have a structure in which a coil 38 is wound around the outer periphery of the cylindrical yoke 36, and the central hole 40 of the cylindrical yoke 36 serves as an optical path. The permanent magnets 34a and 34b are plate magnets magnetized in the thickness direction. In this structure, since the U-shaped yoke is not used, there is an advantage that there is no protrusion of the member in the direction perpendicular to the light traveling direction, and the size and diameter can be reduced.

コイル38に通電することにより、円筒状ヨーク36を磁束が通り、外部に磁界が発生する。両方の電磁石32a,32bのコイル18に同じ向きに通電することで、間に位置する磁気光学結晶30には、光の進行方向に対して平行方向に磁界が印加され、電流値を制御することにより磁界の強さを可変できる。2個の永久磁石34a,34bは同じ向きに着磁されており、それによって磁気光学結晶30には、光の進行方向に対して垂直方向に固定磁界が印加される。従って、磁気光学結晶30には、光の進行方向に対して垂直方向の固定磁界と光の進行方向に対して平行方向の可変磁界が同時に印加され、それらによる合成磁界方向と光の進行方向との余弦(cos)成分に応じて入射光にファラデー回転が生じる。   When the coil 38 is energized, the magnetic flux passes through the cylindrical yoke 36 and a magnetic field is generated outside. By energizing the coils 18 of both the electromagnets 32a and 32b in the same direction, a magnetic field is applied to the magneto-optic crystal 30 positioned therebetween in a direction parallel to the traveling direction of light, and the current value is controlled. Thus, the strength of the magnetic field can be varied. The two permanent magnets 34a and 34b are magnetized in the same direction, whereby a fixed magnetic field is applied to the magneto-optical crystal 30 in a direction perpendicular to the light traveling direction. Therefore, a fixed magnetic field perpendicular to the light traveling direction and a variable magnetic field parallel to the light traveling direction are simultaneously applied to the magneto-optic crystal 30, and the resultant magnetic field direction and the light traveling direction are Faraday rotation occurs in the incident light according to the cosine component.

この構造のファラデー回転デバイスについての測定結果を図5に示す。使用した材料は次の通りである。
(1)磁気光学結晶:Bi置換希土類鉄ガーネットLPE膜(波長1550nmに対して110度回転子に相当する結晶長)
(2)電磁石
・ヨーク材:飽和磁束密の高いケイ素鋼(温度特性がほぼ0%/℃)
・コイル:各々800ターン
(3)永久磁石:フェライト系磁石(残留磁化Brの温度特性が−0.12%/℃)
図5から分かるように、回転角が0度から約60度までの広い範囲で、回転角度ずれΔθを1度以下に抑えることができ、極めて良好な結果が得られた。特に、0度から4度の範囲では、温度による角度ずれは0.1度以下であった。
FIG. 5 shows the measurement results for the Faraday rotation device having this structure. The materials used are as follows.
(1) Magneto-optical crystal: Bi-substituted rare earth iron garnet LPE film (crystal length corresponding to a 110 degree rotator for a wavelength of 1550 nm)
(2) Electromagnet and yoke material: Silicon steel with high saturation magnetic flux density (temperature characteristics are almost 0% / ° C)
Coil: 800 turns each (3) Permanent magnet: Ferrite magnet (temperature characteristic of residual magnetization Br is -0.12% / ° C)
As can be seen from FIG. 5, the rotation angle deviation Δθ can be suppressed to 1 degree or less in a wide range of the rotation angle from 0 degree to about 60 degrees, and a very good result was obtained. In particular, in the range of 0 degrees to 4 degrees, the angular deviation due to temperature was 0.1 degrees or less.

このようなファラデー回転デバイスを用いて可変光減衰器を構成するには、原理的には図2に示すファラデー回転デバイスの磁気光学結晶の入射側に偏光子を、出射側に検光子をそれぞれ配置し、偏光子と検光子の結晶軸方位が直交するように設定すればよい。磁気光学結晶には90度以上のファラデー回転が生じるような結晶長のものを使用する。   To construct a variable optical attenuator using such a Faraday rotation device, in principle, a polarizer is arranged on the incident side of the magneto-optical crystal of the Faraday rotation device shown in FIG. 2, and an analyzer is arranged on the emission side. The crystal axis orientations of the polarizer and the analyzer may be set so as to be orthogonal. A magneto-optical crystal having a crystal length that causes a Faraday rotation of 90 degrees or more is used.

計算結果の例を図6に示す。条件は次の通りである。
・磁気光学結晶のファラデー回転角の温度係数:0.045deg/℃(45度回転子での値)
・ヨークの磁界発生の温度特性:0%/℃
・偏光子と検光子は直交配置
図6のAは、永久磁石の残留磁界の温度特性を0%/℃とした場合(参考例)である。一定電流駆動時における減衰量の温度ばらつき(最大−最小)であるΔATTは0.7dB弱である。このΔATT曲線は、使用する永久磁石の残留磁束の温度特性に依存して図6のBのように変化する。つまり、永久磁石として、その残留磁束の温度特性が適当な値のものを選択することで、この減衰量の温度ばらつきΔATTが制御可能である。本発明では、永久磁石の残留磁界の温度特性は−0.05〜−0.25%/℃程度から選定する。特に、図6のBに示す結果から、−0.08〜−0.12%/℃とするのが好ましいことが分かる。これによって、減衰量の温度ばらつきΔATTを0.2dB以下に低減することができる。
An example of the calculation result is shown in FIG. The conditions are as follows.
-Temperature coefficient of Faraday rotation angle of magneto-optic crystal: 0.045deg / ° C (value at 45 degree rotor)
・ Temperature characteristics of yoke magnetic field generation: 0% / ℃
Polarizer and analyzer are orthogonally arranged A in FIG. 6 is a case where the temperature characteristics of the residual magnetic field of the permanent magnet is 0% / ° C. (reference example). ΔATT, which is the temperature variation (maximum-minimum) of attenuation during constant current drive, is a little less than 0.7 dB. This ΔATT curve changes as shown in FIG. 6B depending on the temperature characteristics of the residual magnetic flux of the permanent magnet used. That is, the temperature variation ΔATT of the attenuation amount can be controlled by selecting a permanent magnet having an appropriate value for the temperature characteristic of the residual magnetic flux. In the present invention, the temperature characteristic of the residual magnetic field of the permanent magnet is selected from about -0.05 to -0.25% / ° C. In particular, from the results shown in FIG. 6B, it can be seen that it is preferable to set to −0.08 to −0.12% / ° C. As a result, the temperature variation ΔATT of the attenuation amount can be reduced to 0.2 dB or less.

可変光減衰器の最も好ましい構造を図7に示す。ここでは図4に示す構造のファラデー回転デバイスをそのまま利用しており、そのため対応する部材には同一符号を付し、それらについての説明は省略する。本実施例では、磁気光学結晶30の入射側に偏光子42を設置し、出射側に検光子44を設置する。これら偏光子42及び検光子44の種類及び設置位置は任意であるが、図示のように磁気光学結晶30と電磁石32a,32bの間にそれぞれ設けることが好ましい。これは両方の電磁石32a,32bの間にはある程度の距離が必要であり、その空間を利用し偏光子42及び検光子44を挿入可能なためである。ここでは楔形の複屈折板(例えばルチル)を用いており、それらの結晶軸方位が互いに直交するように設定している。   The most preferred structure of the variable optical attenuator is shown in FIG. Here, the Faraday rotation device having the structure shown in FIG. 4 is used as it is. Therefore, the corresponding members are denoted by the same reference numerals, and description thereof is omitted. In this embodiment, a polarizer 42 is installed on the incident side of the magneto-optic crystal 30 and an analyzer 44 is installed on the exit side. The types and installation positions of the polarizer 42 and the analyzer 44 are arbitrary, but are preferably provided between the magneto-optical crystal 30 and the electromagnets 32a and 32b as shown in the figure. This is because a certain distance is required between the electromagnets 32a and 32b, and the polarizer 42 and the analyzer 44 can be inserted using the space. Here, wedge-shaped birefringent plates (for example, rutile) are used, and their crystal axis orientations are set to be orthogonal to each other.

典型的には、90〜100度のファラデー回転デバイスを用い、偏光子42に対して検光子44はほぼ直交方位とする。入射光は偏光子42で常光・異常光に分離し、それらの偏光面が磁気光学結晶30で合成磁界方向に応じて回転し、それぞれ検光子44を通り更に光路分離して互いの平行光成分が出射側と結合することになる。両電磁石32a,32bの駆動電流がゼロの時は、偏光面は回転しないため殆ど出射側に結合できず、減衰量は最大となる。それに対して電磁石の駆動電流が十分大きい時は、偏光面はほぼ90度回転するため大部分が出射側と結合し、減衰量は最小となる。   Typically, a Faraday rotation device of 90 to 100 degrees is used, and the analyzer 44 has a substantially orthogonal orientation with respect to the polarizer 42. The incident light is separated into ordinary light and extraordinary light by the polarizer 42, and their polarization planes are rotated by the magneto-optical crystal 30 according to the direction of the combined magnetic field, and further pass through the analyzer 44 to further separate the optical paths, thereby producing parallel light components. Will be coupled to the exit side. When the drive currents of both the electromagnets 32a and 32b are zero, the polarization plane does not rotate, so that it can hardly be coupled to the emission side, and the attenuation is maximized. On the other hand, when the drive current of the electromagnet is sufficiently large, the plane of polarization rotates approximately 90 degrees, so that most of the plane is coupled to the emission side, and the attenuation is minimized.

この構造の可変光減衰器についての測定結果を図8に示す。使用した材料は次の通りである。
(1)磁気光学結晶:Bi置換希土類鉄ガーネットLPE膜(波長1550nmに対して110度回転子に相当する結晶長)
(2)電磁石
・ヨーク材:飽和磁束密の高いケイ素鋼(温度特性がほぼ0%/℃)
・コイル:各々800ターン
(3)永久磁石:フェライト系磁石(残留磁化Brの温度特性が−0.12%/℃)
図8から分かるように、コイル駆動電流一定条件下、環境温度の変化に対する減衰量変化を0.1dB以下に抑えることができた。
The measurement results for the variable optical attenuator having this structure are shown in FIG. The materials used are as follows.
(1) Magneto-optical crystal: Bi-substituted rare earth iron garnet LPE film (crystal length corresponding to a 110 degree rotator for a wavelength of 1550 nm)
(2) Electromagnet and yoke material: Silicon steel with high saturation magnetic flux density (temperature characteristics are almost 0% / ° C)
Coil: 800 turns each (3) Permanent magnet: Ferrite magnet (temperature characteristic of residual magnetization Br is -0.12% / ° C)
As can be seen from FIG. 8, the change in attenuation with respect to the change in environmental temperature can be suppressed to 0.1 dB or less under a constant coil drive current condition.

あるべき合成磁界の温度特性のイメージ図。The image figure of the temperature characteristic of the synthetic magnetic field which should be. 本発明に係るファラデー回転デバイスの一実施例を示す説明図。Explanatory drawing which shows one Example of the Faraday rotation device which concerns on this invention. その計算結果の一例を示すグラフ。The graph which shows an example of the calculation result. ファラデー回転デバイスの最も好ましい構造例を示す斜視図。The perspective view which shows the most preferable structural example of a Faraday rotation device. その測定結果の一例を示すグラフ。The graph which shows an example of the measurement result. 可変光アッテネータとしての計算結果の一例を示すグラフ。The graph which shows an example of the calculation result as a variable optical attenuator. 可変光減衰器の最も好ましい構造例を示す斜視図。The perspective view which shows the most preferable structural example of a variable optical attenuator. その測定結果の一例を示すグラフ。The graph which shows an example of the measurement result.

符号の説明Explanation of symbols

10 磁気光学結晶
12 電磁石
14 永久磁石
16 ヨーク
18 コイル
20 貫通孔
DESCRIPTION OF SYMBOLS 10 Magneto-optical crystal 12 Electromagnet 14 Permanent magnet 16 Yoke 18 Coil 20 Through-hole

Claims (4)

磁気光学結晶と、該磁気光学結晶を通る光の進行方向に対して実質的に垂直に固定磁界が印加されるように配置した永久磁石と、前記磁気光学結晶を通る光の進行方向に対して実質的に平行に可変磁界が印加されるように配置した電磁石を具備しているファラデー回転デバイスにおいて、
電磁石への供給電流が一定である条件下で、電磁石の発生磁界強度に対し、永久磁石の残留磁界強度の比率が、高温になるほど小さくなるようにし、永久磁石による固定磁界と電磁石による可変磁界の温度特性と磁気光学結晶の温度特性によって、電磁石への供給電流に対するファラデー回転角の温度による角度ずれが打ち消されるようにしたことを特徴とするファラデー回転デバイス。
A magneto-optical crystal, a permanent magnet arranged so that a fixed magnetic field is applied substantially perpendicular to the traveling direction of light passing through the magneto-optical crystal, and the traveling direction of light passing through the magneto-optical crystal In a Faraday rotation device comprising an electromagnet arranged such that a variable magnetic field is applied substantially in parallel,
Under a condition where the current supplied to the electromagnet is constant, the ratio of the residual magnetic field strength of the permanent magnet to the generated magnetic field strength of the electromagnet becomes smaller as the temperature rises, and the fixed magnetic field of the permanent magnet and the variable magnetic field of the electromagnet are reduced. A Faraday rotation device characterized in that an angular shift due to a temperature of a Faraday rotation angle with respect to a current supplied to an electromagnet is canceled out by a temperature characteristic and a temperature characteristic of a magneto-optical crystal.
電磁石への供給電流が一定である条件下での電磁石の発生磁界強度の温度変動が、永久磁石の残留磁界強度の温度変動に比べて実質的に無視できるようにした請求項1記載のファラデー回転デバイス。   2. The Faraday rotation according to claim 1, wherein the temperature fluctuation of the generated magnetic field strength of the electromagnet under the condition that the current supplied to the electromagnet is constant can be substantially ignored as compared with the temperature fluctuation of the residual magnetic field strength of the permanent magnet. device. 請求項1又は2記載のファラデー回転デバイスを用い、磁気光学結晶の出射側に検光子を配置し、電磁石に電流を供給していない時に減衰量が最大となるように検光子方位が設定されている可変光減衰器。   Using the Faraday rotation device according to claim 1 or 2, the analyzer is arranged on the exit side of the magneto-optical crystal, and the analyzer orientation is set so that the attenuation is maximized when no current is supplied to the electromagnet. A variable optical attenuator. 請求項1又は2記載のファラデー回転デバイスを用い、磁気光学結晶の入射側に偏光子を、出射側に検光子をそれぞれ配置し、電磁石に電流を供給していない時に減衰量が最大となるように偏光子と検光子の結晶軸方位が実質的に直交するように設定されている可変光減衰器。
The Faraday rotation device according to claim 1 or 2, wherein a polarizer is arranged on the incident side of the magneto-optic crystal and an analyzer is arranged on the emission side, so that the attenuation is maximized when no current is supplied to the electromagnet. The variable optical attenuator is set so that the crystal axis orientations of the polarizer and the analyzer are substantially orthogonal to each other.
JP2004017467A 2004-01-22 2004-01-26 Faraday rotator device Pending JP2005208516A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004017467A JP2005208516A (en) 2004-01-26 2004-01-26 Faraday rotator device
PCT/JP2005/000670 WO2005071470A1 (en) 2004-01-22 2005-01-20 Variable faraday rotor and variable optical attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017467A JP2005208516A (en) 2004-01-26 2004-01-26 Faraday rotator device

Publications (1)

Publication Number Publication Date
JP2005208516A true JP2005208516A (en) 2005-08-04

Family

ID=34902283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017467A Pending JP2005208516A (en) 2004-01-22 2004-01-26 Faraday rotator device

Country Status (1)

Country Link
JP (1) JP2005208516A (en)

Similar Documents

Publication Publication Date Title
US5812304A (en) Faraday rotator which generates a uniform magnetic field in a magnetic optical element
US6580546B2 (en) Faraday rotator
JPH0968675A (en) High-performance small-sized optical isolator using faraday rotator
Katayama et al. Resistance anomaly and negative magnetoresistance in n-type InSb at very low temperatures
US5535046A (en) Faraday rotator
WO2012011365A1 (en) Reflective type variable optical attenuator
US7280264B2 (en) Magneto-optical device
JP3493119B2 (en) Faraday rotation angle variable device
US6833941B2 (en) Magneto-optic optical device
US6392784B1 (en) Faraday rotator
JP2005208516A (en) Faraday rotator device
JP2004157494A (en) Faraday rotator and optical part using the same
JP3764825B2 (en) Optical attenuator
JP2005208295A (en) Variable faraday rotator, and variable optical attenuator using the same
JPS59197013A (en) Faraday rotor
JP3936451B2 (en) Optical attenuator module
WO2005071470A1 (en) Variable faraday rotor and variable optical attenuator
US7535616B2 (en) Polarization controlling apparatus and polarization operation apparatus
JP4149248B2 (en) Optical parts
JP2005055740A (en) Magnetic optics optical component
JP2004077617A (en) Variable light attenuator with optical isolator function
JP2000122017A (en) Faraday rotating angle variable device
JP4931070B2 (en) Variable optical attenuator
JPH04304418A (en) Faraday rotator
JP2003279895A (en) Optical isolator