JP2005207854A - Method for testing filling strength of sample particles - Google Patents

Method for testing filling strength of sample particles Download PDF

Info

Publication number
JP2005207854A
JP2005207854A JP2004014005A JP2004014005A JP2005207854A JP 2005207854 A JP2005207854 A JP 2005207854A JP 2004014005 A JP2004014005 A JP 2004014005A JP 2004014005 A JP2004014005 A JP 2004014005A JP 2005207854 A JP2005207854 A JP 2005207854A
Authority
JP
Japan
Prior art keywords
pressure
particle
moving speed
log
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004014005A
Other languages
Japanese (ja)
Other versions
JP4200906B2 (en
Inventor
Kazuya Tsuchimoto
和也 土本
Osamu Yamanishi
修 山西
Hidekatsu Kawazu
英勝 河津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004014005A priority Critical patent/JP4200906B2/en
Publication of JP2005207854A publication Critical patent/JP2005207854A/en
Application granted granted Critical
Publication of JP4200906B2 publication Critical patent/JP4200906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a testing method capable of measuring the filling strength of catalyst particles (2) as their deformability and the dispersibility of the particle sizes. <P>SOLUTION: A particle-filling part (6) is constituted of a base (3a), a first side surface (41a), a second side surface (42a), a third side surface (43a), and a pressing surface (5a) movable along these surfaces, and has an upward opened structure, and is filled with test particles 2 to form a particle-filled bed (20) and the pressing surface (5a) is moved at a constant moving speed (V) to compress the particle-filled bed (20) to calculate yield pressure (τ). A plurality of yield pressures (τ) are measured by changing the moving speed (V), and the displaceability of the test particles (2) is calculated from the coefficient (m), satisfying the formula (I): log(τ)=m×log(V)+log(a); and the dispersibility of the particle sizes of the test particles is calculated from the coefficient (a). A testing machine (1) is equipped with a moving means (7) for moving the pressing surface (5a), and a pressure measuring means (8) for measuring the pressure applied to the particle filled bed (20). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、試料粒子の充填強度の試験方法に関する。 The present invention relates to a method for testing the packing strength of sample particles.

図5に示すように、触媒粒子(2)が反応容器(B)内に充填され、触媒粒子充填層(20)となって固定された固定床反応装置(A)は、例えば炭化水素ガス、アルコールガスなどの原料ガス(C)から水素などを含む生成ガス(D)を製造するための改質反応装置などとして広く用いられている。かかる固定床反応装置(A)では、原料ガス(C)が触媒粒子充填層(20)を通過する間に生成ガス(D)に転化される。 As shown in FIG. 5, the fixed bed reactor (A) in which the catalyst particles (2) are filled in the reaction vessel (B) and fixed as the catalyst particle packed bed (20) is, for example, a hydrocarbon gas, It is widely used as a reforming reaction apparatus for producing a product gas (D) containing hydrogen or the like from a raw material gas (C) such as alcohol gas. In such a fixed bed reactor (A), the raw material gas (C) is converted into the product gas (D) while passing through the catalyst particle packed bed (20).

かかる反応装置(A)は、例えば運転中は外部から300℃〜700℃の高温に加熱された状態であるが、その一方で、運転停止後は室温、例えば20℃程度またはそれ以下に冷却された状態となる。運転と停止が繰り返されると、触媒粒子(2)や反応容器(7)が膨張、収縮を繰り返して、触媒粒子充填層(20)に応力が加わる。触媒粒子充填層(20)に応力が加わると、触媒粒子(2)が破壊されて微粉化するおそれがある。微粉化した触媒粒子(2)は、原料ガス(C)の通過を妨げる。このため触媒粒子(2)には、充填強度が高くて、充填された状態で応力が加わっても破壊されにくいものが求められている。 The reactor (A) is in a state of being heated to a high temperature of 300 ° C. to 700 ° C. from the outside during operation, for example. On the other hand, after the operation is stopped, it is cooled to room temperature, for example, about 20 ° C. or less. It becomes a state. When the operation and the stop are repeated, the catalyst particles (2) and the reaction vessel (7) are repeatedly expanded and contracted, and stress is applied to the catalyst particle packed bed (20). If stress is applied to the catalyst particle packed bed (20), the catalyst particles (2) may be broken and pulverized. The finely divided catalyst particles (2) prevent passage of the raw material gas (C). For this reason, the catalyst particles (2) are required to have a high packing strength and are not easily destroyed even when stress is applied in the packed state.

従来より、試料粒子(2)の充填強度を試験する法としては、図1に示すように、水平面状の底面(3a)と、平面状の第一側面(41a)および第二側面(42a)と、平面状の第三側面(33a)と、加圧面(5a)とで構成され、上部が開放された構成の粒子充填部(6)に、試料粒子(2)を充填して粒子充填層(20)を形成しておき、加圧面(5a)を所定の位置まで移動させて、この粒子充填層(20)を圧縮し、破壊された粒子(2)の割合から試料粒子(2)の充填強度を求める方法が知られていた〔特許文献1:特開平5−126706号公報〕。 Conventionally, as a method for testing the packing strength of sample particles (2), as shown in FIG. 1, a horizontal bottom surface (3a), a planar first side surface (41a) and a second side surface (42a) are used. And a packed particle layer (6) filled with a sample particle (2) in a particle packed portion (6) having a flat third side surface (33a) and a pressurizing surface (5a). (20) is formed, the pressure surface (5a) is moved to a predetermined position, the particle packed bed (20) is compressed, and the proportion of the sample particles (2) is determined from the ratio of the broken particles (2). A method for determining the filling strength has been known [Patent Document 1: Japanese Patent Laid-Open No. 5-126706].

特開平5−126706号公報Japanese Patent Laid-Open No. 5-126706

しかし、本発明者の検討によれば、かかる従来の試験方法では高い充填強度を示す粒子であっても、実際の反応器においては必ずしも十分な強度を示さないことがあることが分かった。 However, according to the study by the present inventor, it has been found that, even in the case of such a conventional test method, even particles having a high packing strength may not always show a sufficient strength in an actual reactor.

そこで本発明者は、実際の反応容器での強度を反映した充填強度の試験方法を開発するべく鋭意検討した結果、現実の反応容器では、運転の開始や停止等に伴う膨張や収縮は一様ではなく、緩やかに起こったり、急激に起こるものであること、および、緩やかな膨張・収縮に対して高い充填強度を示す触媒粒子であっても、必ずしも急激な膨張・収縮に対する充填強度が高いとは限らないことを見出すと共に、加圧面を一定の移動速度で移動させて粒子充填層を圧縮し、粒子充填層の降伏圧力を求める試験方法によれば、移動速度を変えて複数の降伏圧力を測定することにより、緩やかな膨張・収縮に対する充填強度を求めると同時に、急激な膨張・収縮に対する充填強度をも求めることができることを見出し、本発明に至った。 Therefore, as a result of intensive studies to develop a test method for filling strength that reflects the strength in the actual reaction vessel, the present inventor has found that the expansion and contraction accompanying the start and stop of operation are uniform in the actual reaction vessel. However, even if the catalyst particles show a high or high filling strength against a slow expansion / contraction, the catalyst has a high filling strength against a sudden expansion / contraction. According to the test method for determining the yield pressure of the particle packed bed by moving the pressure surface at a constant moving speed and determining the yield pressure of the particle packed bed, a plurality of yield pressures are changed by changing the moving speed. By measuring, it was found that the filling strength against the gentle expansion / contraction can be obtained, and at the same time, the filling strength against the rapid expansion / contraction can be obtained.

すなわち本発明は、水平面状の底面(3a)と、
前記底面(3a)から直立して固定され、互いに平行して対向する平面状の第一側面(41a)および第二側面(42a)と、
前記底面(3a)から直立して固定され、前記第一側面(41a)および第二側面(42a)に対して直交する第三側面(43a)と、
前記底面(3a)、第一側面(41a)および第二側面(42a)に対して直交し、前記底面(3a)、第一側面(41a)および第二側面(42a)に沿って移動可能な加圧面(5a)とで構成され、上方が開放された構成の粒子充填部(6)に、
試料粒子(2)を充填して粒子充填層(20)を形成し、
前記加圧面(5a)を前記底面(3a)、第一側面(41a)および第二側面(42a)に沿って一定の移動速度(V)で移動させて前記粒子充填層(20)を圧縮して粒子充填層(20)の降伏圧力(τ)を求める
ことを特徴とする前記試料粒子(2)の充填強度の試験方法を提供するものである。
That is, the present invention comprises a horizontal bottom surface (3a),
The first side surface (41a) and the second side surface (42a) which are fixed upright from the bottom surface (3a) and face each other in parallel,
A third side surface (43a) that is fixed upright from the bottom surface (3a) and orthogonal to the first side surface (41a) and the second side surface (42a);
It is perpendicular to the bottom surface (3a), the first side surface (41a) and the second side surface (42a), and is movable along the bottom surface (3a), the first side surface (41a) and the second side surface (42a). The particle filling section (6) is configured with a pressing surface (5a) and the upper part is open,
Fill the sample particles (2) to form a particle packed bed (20),
The pressurized surface (5a) is moved along the bottom surface (3a), the first side surface (41a) and the second side surface (42a) at a constant moving speed (V) to compress the particle packed bed (20). The yield strength (τ) of the particle packed bed (20) is obtained, and a method for testing the packing strength of the sample particles (2) is provided.

図1〜図3には、本発明の試験方法によって試料粒子(2)の充填強度を試験するための試験装置(1)を示す。この試験装置(1)は、粒子充填層(20)を形成するための粒子充填部(6)を備えている。この粒子充填部(6)は上記したように、水平面状の底面(3a)と、
前記底面(3a)から直立して固定され、互いに平行して対向する平面状の第一側面(41a)および第二側面(42a)と、
前記底面(3a)から直立して固定され、前記第一側面(41a)および第二側面(42a)に対して直交する第三側面(43a)と、
前記底面(3a)、第一側面(41a)および第二側面(42a)に対して直交し、前記底面(3a)、第一側面(41a)および第二側面(42a)に沿って移動可能な加圧面(5a)とで構成されている。またこの試験装置(1)は、加圧面(5a)を一定の移動速度(V)で底面(3a)、第一側面(31a)および第二側面(32a)に沿って移動させる移動手段(7)と、
移動手段(7)により移動させるときに加圧面(5a)から前記粒子充填部(6)に形成された粒子充填層(20)に加わる圧力を計測する圧力計測手段(8)とを備えている。そして、前記移動手段(7)により前記加圧面(5a)を前記底面(3a)、第一側面(41a)および第二側面(42a)に沿って一定の移動速度(V)で移動させることで前記粒子充填層(20)を圧縮しながら、前記加圧面(5a)から前記粒子充填層(20)に加わる圧力を前記圧力計測手段(8)により計測できるように構成されている。
1 to 3 show a test apparatus (1) for testing the filling strength of sample particles (2) by the test method of the present invention. This test apparatus (1) includes a particle packing section (6) for forming a particle packing layer (20). As described above, the particle packed portion (6) has a horizontal bottom surface (3a), and
The first side surface (41a) and the second side surface (42a) which are fixed upright from the bottom surface (3a) and face each other in parallel,
A third side surface (43a) that is fixed upright from the bottom surface (3a) and orthogonal to the first side surface (41a) and the second side surface (42a);
It is perpendicular to the bottom surface (3a), the first side surface (41a) and the second side surface (42a), and is movable along the bottom surface (3a), the first side surface (41a) and the second side surface (42a). And a pressing surface (5a). The test apparatus (1) also includes a moving means (7) for moving the pressure surface (5a) along the bottom surface (3a), the first side surface (31a), and the second side surface (32a) at a constant moving speed (V). )When,
Pressure measuring means (8) for measuring the pressure applied to the particle packed bed (20) formed in the particle packed section (6) from the pressure surface (5a) when moved by the moving means (7). . Then, the moving means (7) moves the pressure surface (5a) along the bottom surface (3a), the first side surface (41a) and the second side surface (42a) at a constant moving speed (V). While compressing the particle packed bed (20), the pressure applied to the particle packed bed (20) from the pressure surface (5a) can be measured by the pressure measuring means (8).

本発明の試験方法によれば、緩やかな応力の上昇に対する触媒粒子の充填強度と共に、急激な応力の上昇に対する充填強度をも求めることができる。 According to the test method of the present invention, not only the packing strength of the catalyst particles against a gradual increase in stress, but also the packing strength against an abrupt increase in stress can be obtained.

以下、図1〜図4を用いて本発明の試験方法について説明する。
本発明の試験方法で降伏圧力(τ)を求めるには、先ず、粒子充填部(6)に試料粒子(2)を充填して粒子充填層(20)を形成する。図1〜図3は、粒子充填部(6)に粒子充填層(20)が形成された状態を示すものであり、図1は斜視図、図2は側断面図、図3は縦断面図である。
Hereinafter, the test method of the present invention will be described with reference to FIGS.
In order to obtain the yield pressure (τ) by the test method of the present invention, first, the particle packed portion (6) is filled with the sample particles (2) to form the particle packed layer (20). 1 to 3 show a state in which a particle packed layer (20) is formed in a particle packed portion (6), FIG. 1 is a perspective view, FIG. 2 is a side sectional view, and FIG. 3 is a longitudinal sectional view. It is.

粒子充填部(6)は、水平面状の底面(3a)と、平面状の第一側面(41a)および第二側面(42a)と、第三側面(43a)と、加圧面(5a)とで構成されている。 The particle packing section (6) includes a horizontal planar bottom surface (3a), a planar first side surface (41a) and a second side surface (42a), a third side surface (43a), and a pressure surface (5a). It is configured.

底面(3a)は厳密に水平面であってもよいが、実用的には概ね水平面であればよい。かかる底面(3a)は、例えば底板(3)により構成されている。 Although the bottom surface (3a) may be strictly a horizontal plane, in practice, it may be generally a horizontal plane. The bottom surface (3a) is constituted by, for example, a bottom plate (3).

第一側面(41a)および第二側面(42a)は平面状であり、厳密に平面状であってもよいが、実用的には概ね平面状であればよい。第一側面(41a)および第二側面(42a)は底面(3a)から直立した面であり、このため側方から見て底面(3a)と直交している。第一側面(41a)および第二側面(42a)は底面(3a)から厳密に直立していてもよいが、実用的には概ね直立していればよい。第一側面(41a)および第二側面(42a)は底面(3a)に対して固定されている。第一側面(41a)および第二側面(42a)は、互いに平行である。ここで第一側面(41a)および第二側面(42a)は厳密に平行であってもよいが、実用的には概ね平行であればよい。また、第一側面(41a)および第二側面(42a)は互いに対向して、粒子充填部(6)を形成している。かかる第一側面(41)および第二側面(42)はそれぞれ第一側板(41)および第二側板(42)で構成されている。 The first side surface (41a) and the second side surface (42a) are planar and may be strictly planar, but practically may be substantially planar. The first side surface (41a) and the second side surface (42a) are surfaces upstanding from the bottom surface (3a), and are thus orthogonal to the bottom surface (3a) when viewed from the side. The first side surface (41a) and the second side surface (42a) may be strictly upright from the bottom surface (3a), but in practice, they may be generally upright. The first side surface (41a) and the second side surface (42a) are fixed to the bottom surface (3a). The first side surface (41a) and the second side surface (42a) are parallel to each other. Here, the first side surface (41a) and the second side surface (42a) may be strictly parallel, but may be practically substantially parallel. Further, the first side surface (41a) and the second side surface (42a) are opposed to each other to form the particle packing portion (6). The first side surface (41) and the second side surface (42) are constituted by a first side plate (41) and a second side plate (42), respectively.

第三側面(43a)は、底面(3a)から直立した面であるので、側方から見て底面(3a)と直交している。第三側面(43a)は底面(3a)から厳密に直立していてもよいが、実用的には概ね直立していればよい。第三側面(43a)は、底面(3a)に対して固定されている。第三側面(43a)は、上方から見て第一側面(41a)および第二側面(42a)に対しても直交している。ここで第三側面(43a)は厳密に直交していてもよいが、実用的には概ね直交していればよい。第三側面(43a)は平面状であることが好ましい。かかる第三側面(43a)は第三側板(43)により構成されている。 Since the third side surface (43a) is a surface upright from the bottom surface (3a), it is orthogonal to the bottom surface (3a) when viewed from the side. The third side surface (43a) may be strictly upright from the bottom surface (3a), but in practice, it may be generally upright. The third side surface (43a) is fixed to the bottom surface (3a). The third side surface (43a) is also orthogonal to the first side surface (41a) and the second side surface (42a) when viewed from above. Here, the third side surface (43a) may be strictly orthogonal, but in practice, it may be substantially orthogonal. The third side surface (43a) is preferably planar. The third side surface (43a) is constituted by a third side plate (43).

底板(3)、第一側板(41)、第二側板(42)および第三側板(43)は、一体となって構成されていてもよいし、それぞれ別体となっているものを組み立てて構成されていてもよい。 The bottom plate (3), the first side plate (41), the second side plate (42), and the third side plate (43) may be configured integrally or assembled as separate bodies. It may be configured.

加圧面(5a)は、側方から見て底面(3a)に対して直交している。また、上方から見て第一側面(41a)および第二側面(42a)に対して直交している。加圧面(5a)は、これらの面(3a、41a、42a、43a)に対して厳密に直交していてもよいが、実用的には概ね直交していればよい。加圧面(5a)は、底面(3a)、第一側面(41a)および第二側面(42a)に沿って移動できるように構成されている。かかる加圧面(5a)は、加圧板(5)の一面として構成されている。 The pressing surface (5a) is orthogonal to the bottom surface (3a) when viewed from the side. Further, the first side surface (41a) and the second side surface (42a) are orthogonal to each other when viewed from above. The pressurizing surface (5a) may be strictly orthogonal to these surfaces (3a, 41a, 42a, 43a), but may be practically approximately orthogonal. The pressing surface (5a) is configured to be movable along the bottom surface (3a), the first side surface (41a), and the second side surface (42a). The pressure surface (5a) is configured as one surface of the pressure plate (5).

粒子充填部(6)は、かかる底面(3a)上で、第一側面(41a)、第二側面(42a)、第三側面(43a)および加圧面(5a)によって側方が囲まれている。そして、上方は開放された構成となっている。 On the bottom surface (3a), the particle packing portion (6) is surrounded on its side by the first side surface (41a), the second side surface (42a), the third side surface (43a), and the pressure surface (5a). . The upper part is open.

粒子充填部(6)の大きさは、例えば底面(3a)上で一辺が2cm〜15cm程度、高さは5cm〜7cm程度である。 The size of the particle filling portion (6) is, for example, about 2 cm to 15 cm on one side and about 5 cm to 7 cm in height on the bottom surface (3a).

かかる粒子充填部(6)に充填される試料粒子(2)としては、例えば気相接触酸化に用いられる触媒粒子が挙げられる。また、触媒担体粒子も挙げられる。触媒担体粒子とは、表面に触媒成分を担持させて触媒粒子を製造するために用いられる原材料である。かかる試料粒子(2)の粒子径は、通常0.5mm〜10mm程度である。球状の試料粒子(2)は一般に変位性が高い場合が多いので、本発明の試験方法は、試料粒子(2)が球状である場合に好適である。 Examples of the sample particles (2) filled in the particle filling section (6) include catalyst particles used for gas phase catalytic oxidation. Moreover, catalyst carrier particles are also included. The catalyst carrier particles are raw materials used to produce catalyst particles by supporting a catalyst component on the surface. The particle diameter of the sample particles (2) is usually about 0.5 mm to 10 mm. Since the spherical sample particles (2) generally have high displaceability in general, the test method of the present invention is suitable when the sample particles (2) are spherical.

本発明の試験方法では、粒子充填層(20)を形成した後、加圧面(5a)を移動させて粒子充填層(20)を圧縮する。図1に示す装置(1)では、図2に示すように、加圧面(5a)の背後に移動手段(7)が備えられていて、この移動手段(7)によって加圧面(5a)を移動させる。移動手段(7)としては、例えば電動モーター(M)からの回転出力を減速機(G)で減速し、クランク(C)によって加圧面(5a)を直線駆動させるクランク機構が挙げられる。また、圧縮空気などによって直線駆動するピストンなども挙げられる。加圧面(5a)を移動させる移動速度(V)は、通常1mm/分〜1000mm/分程度の範囲から選ばれる。かかる移動速度(V)は一定であり、厳密に一定としてもよいが、実用的には概ね一定であればよい。かかる加圧面(5a)は、前記底面(3a)、第一側面(41a)および第二側面(42a)に沿って移動する。 In the test method of the present invention, after the particle packed bed (20) is formed, the pressed surface (5a) is moved to compress the particle packed bed (20). In the apparatus (1) shown in FIG. 1, as shown in FIG. 2, a moving means (7) is provided behind the pressure surface (5a), and the pressure surface (5a) is moved by the moving means (7). Let Examples of the moving means (7) include a crank mechanism in which the rotational output from the electric motor (M) is decelerated by the speed reducer (G) and the pressure surface (5a) is linearly driven by the crank (C). Moreover, the piston etc. which drive linearly with compressed air etc. are mentioned. The moving speed (V) for moving the pressing surface (5a) is usually selected from the range of about 1 mm / min to 1000 mm / min. The moving speed (V) is constant and may be strictly constant, but it may be practically substantially constant. The pressure surface (5a) moves along the bottom surface (3a), the first side surface (41a), and the second side surface (42a).

本発明の試験方法では、かくして粒子充填層(20)を圧縮しながら、この粒子充填層の降伏圧力(τ)を求める。降伏圧力(τ)は、粒子充填層(20)を圧縮しながら、加圧面(5a)から粒子充填層(20)に加わる圧力を計測することで、求めることができる。 In the test method of the present invention, the yield pressure (τ) of the particle packed bed is obtained while compressing the particle packed bed (20). The yield pressure (τ) can be obtained by measuring the pressure applied to the particle packed bed (20) from the pressing surface (5a) while compressing the particle packed bed (20).

図4には、加圧面(5a)を移動させたときに加圧面(5a)から粒子充填層(20)に加わる圧力(P)を計測した例を模式的に示す。横軸は加圧面の位置(L)を、縦軸は圧力(P)を示す。この圧力(P)を計測する圧力計測手段(8)としては、例えば移動手段(7)として上記したクランク機構を用いた場合には、クランク(C)に加わる力を計測する圧電素子が挙げられる。クランクの歪みを歪み計などを用いて計測して圧力(P)を算出するように構成されている計測手段であってもよい。また、電動モーター(M)の回転数、電流値、電圧値などから算出するように構成されていてもよい。移動手段としてピストンなどを用いた場合には、ピストンに供給される圧縮空気の供給量、ピストン内の圧力などから計測してもよい。 FIG. 4 schematically shows an example in which the pressure (P) applied from the pressure surface (5a) to the particle packed bed (20) when the pressure surface (5a) is moved is measured. The horizontal axis indicates the position (L) of the pressure surface, and the vertical axis indicates the pressure (P). As the pressure measuring means (8) for measuring the pressure (P), for example, when the crank mechanism described above is used as the moving means (7), a piezoelectric element for measuring the force applied to the crank (C) can be mentioned. . The measuring means may be configured to calculate the pressure (P) by measuring the distortion of the crank using a strain gauge or the like. Further, it may be configured to calculate from the rotation speed, current value, voltage value, etc. of the electric motor (M). When a piston or the like is used as the moving means, measurement may be performed from the supply amount of compressed air supplied to the piston, the pressure in the piston, or the like.

図4において、加圧面(5a)の移動を開始した時点(L=0)では、粒子充填層(20)は未だ圧縮されておらず、圧力(P)は0である。加圧面(5a)がL=L1で示される位置まで移動する間は、次第に粒子充填層(20)が圧縮され、加圧面(5a)を移動させるに要する圧力(P)は次第に大きくなる。さらに、加圧面(5a)の移動を続け、L>L1となると、加圧面(5a)を移動させるに要する圧力(P)は概ね一定の降伏圧力を示すようになるので、この圧力を降伏圧力(τ)として読み取ればよい。 In FIG. 4, when the movement of the pressure surface (5a) is started (L = 0), the particle packed bed (20) is not yet compressed and the pressure (P) is zero. While moving to a position where pressing surface (5a) is represented by L = L 1 is gradually compressed particle packing layer (20), the pressure required to move the pressure surface (5a) (P) gradually increases. Moreover, continued movement of the pressure face (5a), so when it comes to L> L 1, the pressure required to move the pressure surface (5a) (P) is generally exhibits a constant yield pressure, yield this pressure What is necessary is just to read as a pressure (tau).

かくして一定速度(V)で加圧面(5a)を移動させたときの粒子充填層(20)の降伏圧力(τ)を求めることができる。 Thus, the yield pressure (τ) of the particle packed bed (20) when the pressing surface (5a) is moved at a constant speed (V) can be obtained.

本発明の方法によって、移動速度(V)を変えて複数の降伏圧力(τ)を測定し、この移動速度(V)と測定された降伏圧力(τ)とから式(I)
log(τ) = m × log(V) + log(a) (I)
を満足する係数aを求めることができる。この係数aは、試料充填層(20)に加わる応力が緩やかに上昇したときにおける試料粒子(2)の充填強度を示す指標である。係数aが小さいほど、試料粒子(2)は、応力が緩やかに上昇したときに壊れ易く、係数aが大きいほど、試料粒子(2)は、応力が緩やかに上昇したときに壊れにくい傾向にある。
According to the method of the present invention, a plurality of yield pressures (τ) are measured by changing the moving speed (V), and the equation (I) is calculated from the moving speed (V) and the measured yield pressure (τ).
log (τ) = m × log (V) + log (a) (I)
Can be obtained. The coefficient a is an index indicating the packing strength of the sample particles (2) when the stress applied to the sample packing layer (20) is gently increased. The smaller the coefficient a, the easier the sample particles (2) to break when the stress increases gently, and the larger the coefficient a, the more difficult the sample particles (2) break when the stress increases gently. .

同様にして、移動速度(V)と測定された降伏圧力(τ)とから上記式(I)を満足する係数mを求めることができる。係数mは、応力が急激に上昇したときの試料粒子(2)の充填強度を、応力が緩やかに上昇したときと比較して示す指標である。係数mが小さいと、たとえ係数aが大きくて、応力が緩やかに上昇したときに破壊されにくい試料粒子(2)であっても、応力が急激に上昇したときには破壊され易い傾向にある。また、係数mが大きいほど、たとえ係数aが小さくて応力が緩やかに上昇したときに壊れ易い試料粒子(2)であっても、応力が急激に上昇したときには、それ以上、壊れ易くなりにくい傾向にある。 Similarly, the coefficient m satisfying the above formula (I) can be obtained from the moving speed (V) and the measured yield pressure (τ). The coefficient m is an index indicating the packing strength of the sample particles (2) when the stress rapidly increases compared to when the stress gradually increases. If the coefficient m is small, even if the coefficient a is large and the sample particles (2) are not easily broken when the stress rises gently, they tend to break when the stress rises rapidly. In addition, the larger the coefficient m, the less likely the sample particles (2) that are fragile when the coefficient a is small and the stress rises slowly, are less likely to break when the stress is suddenly increased. It is in.

複数の降伏圧力(τ)を求めるには、粒子充填層(20)に充填された試料粒子(2)を入れ替えながら、上記と同様に操作すればよい。降伏圧力(τ)は、2点の移動速度(V)について求めるだけであってもよいが、少なくとも3点の移動速度(V)について求めることが好ましい。 In order to obtain a plurality of yield pressures (τ), the same operation as described above may be performed while replacing the sample particles (2) filled in the particle packed bed (20). The yield pressure (τ) may be obtained only for the moving speed (V) at two points, but is preferably obtained for the moving speed (V) at at least three points.

次いで移動速度(V)と、求めた降伏圧力(τ)から上記式(I)を満足する係数mを求める。かかる係数mを求めるには通常の方法、例えば回帰計算法などの方法で容易に求めることができる。 Next, a coefficient m satisfying the above formula (I) is obtained from the moving speed (V) and the obtained yield pressure (τ). The coefficient m can be easily obtained by a normal method such as a regression calculation method.

以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

実施例1
図1〜図3に示すように底面(3a)と第一側面(41a)、第二側面(42a)および第三側面(43)と加圧面(5a)とで構成され、縦5cm×横4cmで高さが7cmの粒子充填部(6)に市販の活性アルミナ球状粒子〔住友化学工業(株)製、「KHD−12」、外径は約1mm〜2mm〕を充填して粒子充填層(20)を形成した。次いで加圧面(5a)を3.3m/分の速度(V)で移動させた。このとき、加圧面(5a)から粒子充填層(20)へ加えられた圧力(P)を加圧板(5)の背後に設けた圧力測定機(8)にて測定しながら移動させた。移動は、電動モーター(図示せず)により駆動される直線駆動機構(7)によって行った。加圧面(5a)の位置と圧力(P)との関係を図4に示す。加圧面の位置(L)と圧力(P)との関係から、降伏圧力(τ)を求めた結果を第1表に示す。木屋式の圧縮強度測定装置にて測定した圧縮強度も同時に示す。
Example 1
As shown in FIG. 1 to FIG. 3, it is composed of a bottom surface (3a), a first side surface (41a), a second side surface (42a), a third side surface (43), and a pressure surface (5a). The particle packed part (6) having a height of 7 cm is filled with commercially available activated alumina spherical particles (manufactured by Sumitomo Chemical Co., Ltd., “KHD-12”, outer diameter is about 1 mm to 2 mm). 20) was formed. Next, the pressure surface (5a) was moved at a speed (V) of 3.3 m / min. At this time, the pressure (P) applied from the pressure surface (5a) to the particle packed bed (20) was moved while being measured by a pressure measuring device (8) provided behind the pressure plate (5). The movement was performed by a linear drive mechanism (7) driven by an electric motor (not shown). FIG. 4 shows the relationship between the position of the pressing surface (5a) and the pressure (P). Table 1 shows the results of determining the yield pressure (τ) from the relationship between the pressure surface position (L) and the pressure (P). The compressive strength measured with the Kiya-type compressive strength measuring device is also shown.

測定後、活性アルミナ球状粒子の全量を入れ替え、移動速度(V)を33m/分とする以外は上記と同様にして降伏圧力(τ)を求めた。さらに活性アルミナ球状粒子の全量を入れ替え、移動速度(V)を333m/分とする以外は上記と同様にして降伏圧力(τ)を求めた。結果を第1表に示す。 After the measurement, the yield pressure (τ) was determined in the same manner as described above except that the total amount of the activated alumina spherical particles was changed and the moving speed (V) was changed to 33 m / min. Further, the yield pressure (τ) was determined in the same manner as described above except that the total amount of the activated alumina spherical particles was changed and the moving speed (V) was changed to 333 m / min. The results are shown in Table 1.

各移動速度(V)と得られた降伏圧力(τ)とから回帰計算により式(1)を満足する係数mおよび係数aを求めた。結果を第2表に示す。 From each moving speed (V) and the obtained yield pressure (τ), coefficient m and coefficient a satisfying the expression (1) were obtained by regression calculation. The results are shown in Table 2.

実施例2〜実施例4
活性アルミナ球状粒子〔KHD−12〕に代えて、活性アルミナ球状粒子〔住友化学工業(株)製、「KHD−24」、外径約2mm〜4mm〕(実施例2)、活性アルミナ球状粒子〔住友化学工業(株)製、「KHD−46」、外径約4mm〜6mm〕(実施例3)および樹脂粒子〔アクリロニトリル−スチレン−ブタジエン樹脂(ABS樹脂)製、外径約6mm〕(実施例4)を用いる以外は実施例1と同様に操作して、移動速度(V)が3.3M/分、33m/分、333m/分について降伏圧力(τ)を求めた。結果を第1表および第2表に示す。
Example 2 to Example 4
Instead of activated alumina spherical particles [KHD-12], activated alumina spherical particles [manufactured by Sumitomo Chemical Co., Ltd., “KHD-24”, outer diameter of about 2 mm to 4 mm] (Example 2), activated alumina spherical particles [ “KHD-46” manufactured by Sumitomo Chemical Co., Ltd., outer diameter of about 4 mm to 6 mm] (Example 3) and resin particles [acrylonitrile-styrene-butadiene resin (ABS resin), outer diameter of about 6 mm] (Example) By operating in the same manner as in Example 1 except that 4) was used, the yield pressure (τ) was determined for the moving speed (V) of 3.3 M / min, 33 m / min, and 333 m / min. The results are shown in Tables 1 and 2.

第 1 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
球状粒子 移動速度 降伏応力 圧縮強度
(m/分) (N/cm2) (N)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例1 KHD−12 3.3 1.23 54.9
33 1.62
333 1.90
実施例2 KHD−24 3.3 0.74 131.8
33 0.80
333 1.03
実施例3 KHD−46 3.3 0.80 254.5
33 0.94
333 0.98
実施例4 樹脂粒子 3.3 0.67 330.5
33 0.78
333 0.89
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


Table 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Spherical particle movement speed Yield stress Compressive strength
(m / min) (N / cm 2 ) (N)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 1 KHD-12 3.3 1.23 54.9
33 1.62
333 1.90
Example 2 KHD-24 3.3 0.74 131.8
33 0.80
333 1.03
Example 3 KHD-46 3.3 0.80 254.5
33 0.94
333 0.98
Example 4 Resin particles 3.3 0.67 330.5
33 0.78
333 0.89
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


第 2 表
━━━━━━━━━━━━━━━━━━━━━━━━━━━
球状粒子 係数m 係数a
━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例1 KHD−12 0.049 1.358
実施例2 KHD−24 0.051 0.720
実施例3 KHD−46 0.026 0.838
実施例4 樹脂粒子 0.034 0.705
━━━━━━━━━━━━━━━━━━━━━━━━━━━
Table 2
━━━━━━━━━━━━━━━━━━━━━━━━━━━
Spherical particle coefficient m coefficient a
━━━━━━━━━━━━━━━━━━━━━━━━━━━
Example 1 KHD-12 0.049 1.358
Example 2 KHD-24 0.051 0.720
Example 3 KHD-46 0.026 0.838
Example 4 Resin particles 0.034 0.705
━━━━━━━━━━━━━━━━━━━━━━━━━━━

充填層強度を試験する方法を説明するための斜視図である。It is a perspective view for demonstrating the method to test a packed bed intensity | strength. 充填層強度を試験するための試験装置の一例を示す側断面図である。It is a sectional side view which shows an example of the testing apparatus for testing a packed bed intensity | strength. 充填層強度を試験するための試験装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the testing apparatus for testing a packed bed intensity | strength. 加圧面から粒子充填層に加わる圧力(P)を計測した例であり、横軸は加圧面の位置(L)を、縦軸は圧力(P)を示す。In this example, the pressure (P) applied to the particle packed bed from the pressing surface is measured, the horizontal axis indicates the position (L) of the pressing surface, and the vertical axis indicates the pressure (P). 固定床反応装置の一例を模式的に示す断面図である。It is sectional drawing which shows an example of a fixed bed reaction apparatus typically.

符号の説明Explanation of symbols

1:充填強度の試験装置
2:試料粒子 20:粒子充填層
3a:底面 3:底板
41a:第一側面 41:第一側板
42a:第二側面 42:第二側板
43a:第三側面 43:第三側板
5a:加圧面 5:加圧板
6:粒子充填部 7:移動手段 8:圧力計測手段
V:加圧面の移動速度 τ:粒子充填層の降伏圧力
L:加圧面の位置 P:圧力
A:固定床反応装置 B:反応容器
C:原料ガス D:生成ガス
1: Packing strength test device 2: Sample particles 20: Particle packed bed
3a: Bottom 3: Bottom plate
41a: First side 41: First side plate
42a: second side 42: second side plate
43a: Third side 43: Third side plate
5a: Pressurizing surface 5: Pressurizing plate 6: Particle filling unit 7: Moving means 8: Pressure measuring means V: Moving speed of the pressing surface τ: Yield pressure of the particle packed bed L: Position of the pressing surface P: Pressure A: Fixed bed Reactor B: Reaction vessel C: Raw material gas D: Product gas

Claims (4)

水平面状の底面と、前記底面から直立して固定され、互いに平行して対向する平面状の第一側面および第二側面と、前記底面から直立して固定され、前記第一側面および第二側面に対して直交する第三側面と、前記底面、第一側面および第二側面に対して直交し、前記底面、第一側面および第二側面に沿って移動可能な加圧面とで構成され、上方が開放された構成の粒子充填部に、試料粒子を充填して粒子充填層を形成し、
前記加圧面を前記底面、第一側面および第二側面に沿って一定の移動速度(V)で移動させることで前記粒子充填層を圧縮して、粒子充填層の降伏圧力(τ)を求める
ことを特徴とする前記試料粒子の充填強度の試験方法。
A horizontal bottom surface, a planar first side surface and a second side surface which are fixed upright from the bottom surface and face each other in parallel, and a first side surface and a second side surface which are fixed upright from the bottom surface. A third side surface orthogonal to the bottom surface, the first side surface and the second side surface, and a pressure surface movable along the bottom surface, the first side surface and the second side surface. In the particle packing part of the configuration where is opened, the sample particles are packed to form a particle packed layer,
Compressing the particle packed bed by moving the pressure surface along the bottom surface, the first side surface, and the second side surface at a constant moving speed (V) to obtain a yield pressure (τ) of the particle packed layer. A method for testing the filling strength of the sample particles.
前記加圧面の移動速度(V)を変えて複数の降伏圧力(τ)を測定し、
前記移動速度(V)と測定された降伏圧力(τ)とから式(I)
log(τ) = m × log(V) + log(a) (I)
を満足する係数aを求める請求項1に記載の試験方法。
A plurality of yield pressures (τ) are measured by changing the moving speed (V) of the pressing surface,
From the moving speed (V) and the measured yield pressure (τ), the formula (I)
log (τ) = m × log (V) + log (a) (I)
The test method according to claim 1, wherein a coefficient a satisfying
前記加圧面の移動速度(V)を変えて複数の降伏圧力(τ)を測定し、
前記移動速度(V)と測定された降伏圧力(τ)とから式(I)
log(τ) = m × log(V) + log(a) (I)
を満足する係数mを求める請求項1または請求項2に記載の試験方法。
A plurality of yield pressures (τ) are measured by changing the moving speed (V) of the pressing surface,
From the moving speed (V) and the measured yield pressure (τ), the formula (I)
log (τ) = m × log (V) + log (a) (I)
The test method according to claim 1 or 2, wherein a coefficient m satisfying the above is obtained.
水平面状の底面と、前記底面から直立して固定され、互いに平行して対向する平面状の第一側面および第二側面と、前記底面から直立して固定され、前記第一側面および第二側面に対して直交する第三側面と、前記底面、第一側面および第二側面に対して直交し、前記底面、第一側面および第二側面に沿って移動可能な加圧面とで構成されていて、上方が開放された構成で、試料粒子を充填して粒子充填層を形成するための粒子充填部を備えると共に、
前記加圧面を一定の移動速度で前記底面、第一側面および第二側面に沿って移動させる移動手段と、前記移動手段により移動させるときに加圧面から前記粒子充填層に加わる圧力を計測する圧力計測手段とを備え、
前記移動手段により前記加圧面を前記底面、第一側面および第二側面に沿って一定の移動速度で移動させることで前記粒子充填部に形成された粒子充填層を圧縮しながら、前記加圧面から前記粒子充填層に加わる圧力を前記圧力計測手段により計測できるように構成されている
ことを特徴とする前記試料粒子の充填強度の試験装置。
A horizontal bottom surface, a planar first side surface and a second side surface which are fixed upright from the bottom surface and face each other in parallel, and a first side surface and a second side surface which are fixed upright from the bottom surface. A third side surface orthogonal to the bottom surface, the first side surface and the second side surface, and a pressure surface which is movable along the bottom surface, the first side surface and the second side surface. In addition to a configuration in which the upper part is opened, a particle filling part for filling a sample particle to form a particle packed layer is provided,
A moving means for moving the pressurizing surface along the bottom surface, the first side surface and the second side surface at a constant moving speed, and a pressure for measuring a pressure applied to the particle packed layer from the pressurizing surface when the moving surface is moved by the moving means. Measuring means,
The pressing means moves the pressing surface along the bottom surface, the first side surface, and the second side surface at a constant moving speed while compressing the particle packed layer formed in the particle packing portion from the pressing surface. The apparatus for testing the filling strength of the sample particles, wherein the pressure applied to the particle packed bed can be measured by the pressure measuring means.
JP2004014005A 2004-01-22 2004-01-22 Test method for packing strength of sample particles Expired - Fee Related JP4200906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014005A JP4200906B2 (en) 2004-01-22 2004-01-22 Test method for packing strength of sample particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014005A JP4200906B2 (en) 2004-01-22 2004-01-22 Test method for packing strength of sample particles

Publications (2)

Publication Number Publication Date
JP2005207854A true JP2005207854A (en) 2005-08-04
JP4200906B2 JP4200906B2 (en) 2008-12-24

Family

ID=34899915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014005A Expired - Fee Related JP4200906B2 (en) 2004-01-22 2004-01-22 Test method for packing strength of sample particles

Country Status (1)

Country Link
JP (1) JP4200906B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052921A (en) * 2016-05-23 2016-10-26 山东理工大学 Filling retaining wall stress change rule simulation test device and test method
CN113533022A (en) * 2021-07-14 2021-10-22 华电电力科学研究院有限公司 Multi-test-bin honeycomb catalyst wear resistance evaluation test method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052921A (en) * 2016-05-23 2016-10-26 山东理工大学 Filling retaining wall stress change rule simulation test device and test method
CN113533022A (en) * 2021-07-14 2021-10-22 华电电力科学研究院有限公司 Multi-test-bin honeycomb catalyst wear resistance evaluation test method
CN113533022B (en) * 2021-07-14 2023-06-23 华电电力科学研究院有限公司 Multi-test-bin honeycomb catalyst wear resistance evaluation test method

Also Published As

Publication number Publication date
JP4200906B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
Tsai et al. Internal granular dynamics, shear-induced crystallization, and compaction steps
CN104502202A (en) Online material biaxial static-dynamic performance test platform under service temperature
US6813961B2 (en) Method and apparatus for the testing of cuboid-shaped packs
JP2006284583A (en) Intelligent system and method for automatic packing for chromatography column
CN110018273B (en) Device and method for bidirectional dynamic loading/unloading of diamond anvil
Kinkelaar et al. Development of a dilatometer and its application to low‐shrink unsaturated polyester resins
CN110183473B (en) Novel superconducting material and preparation method thereof
WO2013180268A1 (en) Rigidity measurement method and device
JP4200906B2 (en) Test method for packing strength of sample particles
De Jonghe et al. Loading dilatometer
Wan et al. Tunable dry adhesion of soft hollow pillars through sidewall buckling under low pressure
JP2009047194A (en) Method of manufacturing stacked base isolation bearing and plug forming device used therefor
CN113125259A (en) Quasi-static compression test piece with lattice structure and test method
Pham et al. Measuring the strength of slurry phase heterogeneous catalysts
CN104237016A (en) High-speed dynamic compression testing device
CN103543006A (en) Wave spring pre-pressure testing device
JP2002357520A (en) Viscoelasticity-measuring apparatus
CN109459303A (en) Portable micro- tension and compression loading device in place
CN108760499B (en) Electric plastic foam thickness and compression creep testing device
CN212059324U (en) Spring check out test set is used in spring production
Berg et al. Experimental characterization of CaCO3 powder for use in compressible gaskets up to ultra-high pressure
CN203629796U (en) Waveform spring precompression tester
JP2000002637A (en) Device and method for measuring crush strength
Kenny et al. Slow compression crushing of single particles of glass
JP2011075293A (en) Photoelastic stress application stage and photoelasticity measuring apparatus employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Effective date: 20080813

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121017

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees