JP2005207523A - Flow control device - Google Patents

Flow control device Download PDF

Info

Publication number
JP2005207523A
JP2005207523A JP2004015907A JP2004015907A JP2005207523A JP 2005207523 A JP2005207523 A JP 2005207523A JP 2004015907 A JP2004015907 A JP 2004015907A JP 2004015907 A JP2004015907 A JP 2004015907A JP 2005207523 A JP2005207523 A JP 2005207523A
Authority
JP
Japan
Prior art keywords
flow rate
flow
valve mechanism
valve opening
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004015907A
Other languages
Japanese (ja)
Other versions
JP4221748B2 (en
Inventor
Osamu Momose
修 百瀬
Hiroyuki Inagaki
広行 稲垣
Isamu Warashina
勇 藁品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2004015907A priority Critical patent/JP4221748B2/en
Publication of JP2005207523A publication Critical patent/JP2005207523A/en
Application granted granted Critical
Publication of JP4221748B2 publication Critical patent/JP4221748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Flow Control (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow control device capable of effectively restraining extraordinary generation of heat of a solenoid even though inflow or outflow of fluid is disturbed. <P>SOLUTION: The device is provided with a solenoid type valve mechanism which regulates a flow rate of fluid flowing through a predefined flow passage by adjusting valve opening in accordance with a carried current of a proportional solenoid and a flow sensor which detects a flow rate of fluid flowing through the flow passage. The device is also provided with a first control means which adjusts valve opening of the valve mechanism in accordance with the set flow rate value or in accordance with a difference between setting flow rate value and flow rate detected via the flow sensor and a second control means which throttles the valve opening to the predefined value instead of the first control means when the flow rate detected via the flow sensor keeps below the predefined value for a constant time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、所定の流路を通流する流体の流量をソレノイド型の弁機構を用いて制御する流量制御装置に関する。   The present invention relates to a flow rate control device that controls a flow rate of a fluid flowing through a predetermined flow path using a solenoid type valve mechanism.

各種工業プロセスにおいては、所定の流体(例えばプロセスガス)を所定の設定流量で供給しながらプロセス処理を進めることが多い。このような流体の供給量(流量)制御には、専ら、比例ソレノイドを用いた弁機構が用いられる。この種の弁機構は、比例ソレノイドの通電電流に応じて弁開度を可変し、これによって所定の流路を通流する流体の流量を調整するもので、比例ソレノイドバルブとも称される。またこの弁機構(比例ソレノイドバルブ)を用いた流量制御装置は、流路に設けた流量センサにて該流路を通流する流体の流量を検出しながら、その検出流量と設定流量との差に応じて前記弁機構の弁開度を可変するように構成される(例えば特許文献1を参照)。
特開平2001−227657号公報
In various industrial processes, process processing is often performed while supplying a predetermined fluid (for example, process gas) at a predetermined flow rate. For such fluid supply amount (flow rate) control, a valve mechanism using a proportional solenoid is exclusively used. This type of valve mechanism varies the valve opening according to the energization current of the proportional solenoid, thereby adjusting the flow rate of the fluid flowing through a predetermined flow path, and is also referred to as a proportional solenoid valve. In addition, the flow rate control device using this valve mechanism (proportional solenoid valve) detects the flow rate of the fluid flowing through the flow path with a flow rate sensor provided in the flow path, while the difference between the detected flow rate and the set flow rate. The valve opening degree of the valve mechanism is varied in accordance with (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2001-227657

ところで上述した流量制御装置を小型化するべく前記比例ソレノイドを、特にそのソレノイド部分を小型化した場合、一般的には同じ駆動力を維持する為にはその通電電流を増やすことが必要である。すると通電電流の増大に伴ってソレノイドでの発熱量が増加することが否めない。ちなみにこのソレノイドでの発熱は、通常、流量制御装置(比例ソレノイド)を介して通流する流体に熱伝達されて外部に放出されるので、比例ソレノイドが異常に発熱することはない。   By the way, when the proportional solenoid, particularly the solenoid portion thereof, is miniaturized in order to miniaturize the above-described flow rate control device, it is generally necessary to increase the energization current in order to maintain the same driving force. Then, it cannot be denied that the amount of heat generated by the solenoid increases as the energization current increases. Incidentally, since the heat generated by the solenoid is normally transferred to the fluid flowing through the flow rate control device (proportional solenoid) and released to the outside, the proportional solenoid does not generate heat abnormally.

しかし比例ソレノイドにより流体の通流量を制御しているにも拘わらず、例えば流体供給源の元栓が閉じられたり、或いは供給すべき流体がなくなる(いわゆるガス欠)等して流体が流れなくなると、流体を介する熱放散がなくなることのみならず、その流量制御による流量設定値との比較結果に応じて上記比例ソレノイドが自動的に全開状態に設定されて多大な駆動電流が流れる。そしてこの比例ソレノイドの全開状態が継続すると、その異常発熱によって該比例ソレノイドが故障する虞がある。更にはソレノイドの発熱が流路ボディを介して、その流路に設けられた流量センサに伝わり、流量センサの計測特性に悪影響を及ぼす虞がある。これ故、比例ソレノイドの異常発熱を抑えることが必要となる。   However, even though the fluid flow rate is controlled by the proportional solenoid, if the main flow plug of the fluid supply source is closed or the fluid to be supplied disappears (so-called gas shortage), the fluid does not flow. Not only does heat dissipation through the fluid disappear, but the proportional solenoid is automatically set to the fully open state in accordance with the comparison result with the flow rate setting value by the flow rate control, and a large drive current flows. If the proportional solenoid is fully opened, the proportional solenoid may break down due to abnormal heat generation. Further, the heat generated by the solenoid is transmitted to the flow rate sensor provided in the flow path through the flow path body, which may adversely affect the measurement characteristics of the flow rate sensor. Therefore, it is necessary to suppress abnormal heat generation of the proportional solenoid.

本発明はこのような事情を考慮してなされたもので、その目的は、何等かの原因で流体の通流が妨げられた場合であってもソレノイドの異常発熱を効果的に抑えることのできる流量制御装置を提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to effectively suppress the abnormal heat generation of the solenoid even when the fluid flow is obstructed for some reason. To provide a flow control device.

上述した目的を達成するべく本発明に係る流量制御装置は、
<a> 所定の流路に設けられて、比例ソレノイドの通電電流に応じて弁開度を可変して上記流路を通流する流体の流量を調整するソレノイド型の弁機構と、
<b> 上記流路を通流する流体の流量を検出する流量センサと、
<c> 指定された弁開度に応じて、または設定流量値と上記流量センサを介して検出された流量との差に応じて前記弁機構の弁開度を調整する制御手段(第1の制御手段)と
を備えたものであって、特に上記ソレノイド型の弁機構の発熱が問題となるのは何等かの原因によって流体の通流が妨げられたときであり、流体の通流が妨げられた状態を上記流量センサを介して検出し得ることに着目して、
<d> 前記流量センサを介して検出される流量が一定時間に亘って所定値を下回るとき、前記制御手段(第1の制御手段)に代わって前記弁開度を所定値に絞り込む手段(第2の制御手段)を設けたことを特徴としている。
In order to achieve the above-described object, the flow rate control device according to the present invention includes:
<a> a solenoid-type valve mechanism that is provided in a predetermined flow path and adjusts the flow rate of the fluid flowing through the flow path by changing the valve opening according to the energization current of the proportional solenoid;
<b> a flow sensor for detecting the flow rate of the fluid flowing through the flow path;
<c> Control means for adjusting the valve opening degree of the valve mechanism in accordance with the designated valve opening degree or according to the difference between the set flow rate value and the flow rate detected through the flow rate sensor (first In particular, the heat generation of the solenoid-type valve mechanism becomes a problem when the fluid flow is interrupted by any cause, and the fluid flow is blocked. Focusing on the fact that the detected state can be detected via the flow sensor,
<d> means for narrowing the valve opening to a predetermined value instead of the control means (first control means) when the flow rate detected via the flow sensor falls below a predetermined value for a predetermined time (first 2 control means) is provided.

即ち、本発明は、ソレノイド型の弁機構と流量センサとを備え、指定された弁開度に応じて、または設定流量値と上記流量センサを介して検出された流量との差に応じて上記弁機構の弁開度を可変して該弁機構を介して通流する流体の流量を制御する流量制御装置が、上記流量センサにてその流量を検出していることに着目し、例えば流量をその設定値に制御しているにも拘わらずその流量が所定値を下回る場合には、何等かの原因にて流体の通流が妨げられていると判定して前記弁機構の弁開度を強制的に所定値に絞り込み、これによってソレノイド型の弁機構の発熱を抑えることを特徴としている。   That is, the present invention includes a solenoid-type valve mechanism and a flow sensor, and according to a specified valve opening or according to a difference between a set flow rate value and a flow rate detected through the flow sensor. Focusing on the fact that the flow rate control device that controls the flow rate of the fluid flowing through the valve mechanism by varying the valve opening degree of the valve mechanism detects the flow rate by the flow rate sensor, If the flow rate is lower than the predetermined value despite being controlled to the set value, it is determined that the flow of fluid is hindered for some reason, and the valve opening of the valve mechanism is increased. It is characterized by forcibly narrowing down to a predetermined value, thereby suppressing heat generation of the solenoid type valve mechanism.

ちなみにフィードバック制御の下で流量を設定値に一定化しようとしているにも拘わらずその流量が所定値を下回る場合には、上記フィードバック制御の下で前記弁機構の弁開度が全開状態に設定されることから、前記第2の制御手段においては、前記第1の制御手段により制御される弁開度が一定時間に亘って全開であることを検出して作動するように構成することが望ましい。   Incidentally, when the flow rate is lower than the predetermined value even though the flow rate is being made constant under the feedback control, the valve opening of the valve mechanism is set to the fully open state under the feedback control. Therefore, it is desirable that the second control means is configured to operate by detecting that the valve opening degree controlled by the first control means is fully open over a certain period of time.

また前記第2の制御手段においては、更に前記弁開度を上述した所定値に絞り込んだ時間が所定時間に亘って継続したときには、異常状態が継続していると判断して前記弁開度を全閉とする機能を備えることが望ましい。   Further, in the second control means, when the time during which the valve opening is further reduced to the predetermined value described above continues for a predetermined time, it is determined that the abnormal state is continuing and the valve opening is set. It is desirable to have a function of fully closing.

このように構成された流量制御装置によれば、流量をその設定値とするべく弁機構を制御しているにも拘わらずその流量が継続して所定値を下回る場合、何等かの異常が生じていると判断してソレノイド型の弁機構の弁開度を所定値に絞り込むので、流体の通流による熱放散が期待できないような事態であっても該弁機構の異常発熱を効果的に防止することができる。この結果、異常発熱によるソレノイド型の弁機構の故障や流量センサの計測特性の劣化等を簡易にして効果的に防ぐことが可能となる。また流体が流れていないにも拘わらずソレノイド型の弁機構を長時間に亘って全開にすることがないので、その駆動電流量を少なく抑えることができ、省電力化にも大きく寄与する。   According to the flow control device configured as described above, if the flow rate continues to be lower than the predetermined value even though the valve mechanism is controlled to set the flow rate to the set value, some abnormality occurs. The valve opening of the solenoid-type valve mechanism is narrowed down to a predetermined value, effectively preventing abnormal heat generation of the valve mechanism even in situations where heat dissipation due to fluid flow cannot be expected. can do. As a result, failure of the solenoid type valve mechanism due to abnormal heat generation, deterioration of measurement characteristics of the flow rate sensor, and the like can be simplified and effectively prevented. In addition, the solenoid-type valve mechanism is not fully opened over a long period of time even though no fluid is flowing, so that the amount of drive current can be suppressed to a small extent, which greatly contributes to power saving.

更には上述したようにソレノイド型の弁機構の弁開度を所定値に絞り込んでいるだけなので、異常要因が取り除かれた場合には、その流体の弁機構を介する通流が再開する。この結果、この流体の通流再開を前記流量センサを介して速やかに検出することができるので、流体の通流量に基づく弁機構の駆動制御による流量の一定化制御を速やかに再開することが可能となる。   Furthermore, as described above, since the valve opening degree of the solenoid type valve mechanism is merely narrowed to a predetermined value, the flow of the fluid through the valve mechanism resumes when the abnormal factor is removed. As a result, the resumption of fluid flow can be quickly detected via the flow sensor, so that the flow rate stabilization control by the drive control of the valve mechanism based on the fluid flow rate can be resumed quickly. It becomes.

以下、図面を参照して本発明の一実施形態に係る流量制御装置について説明する。
図1はこの実施形態に係る流量制御装置の概略構成を示す図で、10は所定形状の流路を形成した流路ボディである。この流路ボディ10は、概略的にはその一端側から所定の深さまで穿いた丸穴状の上流側流路11を備える共に、他端側から穿いた丸穴状の下流側流路12を備え、これらの各流路11,12の底部にそれぞれ連通する連通孔13,14を該流路ボディ10の側部(図における上側)に開口したブロック体からなる。
Hereinafter, a flow control device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a flow control device according to this embodiment, and 10 is a flow channel body in which a flow channel having a predetermined shape is formed. The flow channel body 10 is generally provided with a round hole-shaped upstream flow channel 11 drilled from one end side to a predetermined depth, and a round hole-shaped downstream flow channel 12 drilled from the other end side. And a block body in which communication holes 13 and 14 communicating with the bottoms of the flow paths 11 and 12 are opened on the side of the flow path body 10 (upper side in the drawing).

この流路ボディ10の上記連通孔13,14に連結してソレノイド型の弁機構20が取り付けられる。このソレノイド型の弁機構20は、ソレノイド21により進退駆動されるスラスト軸22の先端に弁体23を備え、この弁体23に対峙する弁座24と上記弁体23との隙間(弁開度)を可変する機能を備える。特にこの弁機構20は、弁座24に対する弁体23が平坦化された形状を有しており、弁体23にて弁座24を閉塞することでその流路を遮断する遮断弁としての機能を有している。そしてソレノイド21を通電駆動して上記弁体23を弁座24から引き離すことで、その弁開度(弁体23と弁座24との隙間)を可変し、流体の通流量を比例制御する機能を持たせたものとなっている。   A solenoid type valve mechanism 20 is attached to the communication holes 13 and 14 of the flow path body 10. The solenoid-type valve mechanism 20 includes a valve body 23 at the tip of a thrust shaft 22 that is driven forward and backward by a solenoid 21, and a clearance (valve opening degree) between the valve seat 24 facing the valve body 23 and the valve body 23. ). In particular, the valve mechanism 20 has a shape in which the valve body 23 with respect to the valve seat 24 is flattened, and functions as a shut-off valve that blocks the flow path by closing the valve seat 24 with the valve body 23. have. The solenoid 21 is energized and the valve body 23 is pulled away from the valve seat 24, whereby the valve opening degree (the gap between the valve body 23 and the valve seat 24) is varied to proportionally control the fluid flow rate. It has become something that has.

またここでは弁機構20における弁体23の外側を前記連通孔13を介して上流側流路11に連結し、また弁体23の内側(弁座24側)を前記連通孔14を介して下流側流路12に連結することで、弁の外側から内側へと通流する流体の流量を制御する、いわゆるフロー・トゥー・クローズ[flow to close]方式のバルブを実現している。前述した流路ボディ10の上流側流路11に導入された流体(ガス)は、このような構造の弁機構20を介して下流側流路12に流量制御されて導かれることになる。   Further, here, the outer side of the valve body 23 in the valve mechanism 20 is connected to the upstream flow path 11 through the communication hole 13, and the inner side (the valve seat 24 side) of the valve body 23 is connected to the downstream side through the communication hole 14. By connecting to the side channel 12, a so-called flow-to-close type valve that controls the flow rate of the fluid flowing from the outside to the inside of the valve is realized. The fluid (gas) introduced into the upstream flow path 11 of the flow path body 10 is guided to the downstream flow path 12 through the valve mechanism 20 having such a structure.

尚、上記流路ボディ10における上記上流側流路11の入口部には、複数枚の整流用金網(整流体)15が互いに重ね合わせた状態で嵌め込まれている。これらの整流用金網15は、該上流側流路11内に導入された流体(ガス)がその流路に沿って滑らかに通流するべく整流する役割を担う。また上流側流路11における上記整流用金網15の下流側の壁面には、流量センサ30が設けられており、この流量センサ30によって該上流側流路11を、ひいては流路ボディ10を介して通流する流体の流量が検出されるようになっている。ちなみにこの流量センサ30は、流体の通流方向に発熱体を挟んで一対の温度センサを設けた構造を有し、流体の流速(流量)による温度分布の変化を上記一対の温度センサにより検出してその質量流量を検出する熱式流量センサからなる。   A plurality of rectifying wire meshes (rectifying bodies) 15 are fitted in the inlet portion of the upstream flow path 11 in the flow path body 10 so as to overlap each other. These rectifying metal meshes 15 play a role of rectifying the fluid (gas) introduced into the upstream flow path 11 so that the fluid (gas) smoothly flows along the flow path. In addition, a flow rate sensor 30 is provided on the downstream wall surface of the rectifying wire mesh 15 in the upstream flow path 11, and the upstream flow path 11 is connected to the upstream flow path 11 via the flow path body 10. The flow rate of the flowing fluid is detected. Incidentally, the flow rate sensor 30 has a structure in which a pair of temperature sensors are provided with a heating element sandwiched in the direction of fluid flow, and a change in temperature distribution due to the flow velocity (flow rate) of the fluid is detected by the pair of temperature sensors. It consists of a thermal flow sensor that detects the mass flow rate.

さて上述したように所定の流路を形成した流路ブロック10にソレノイド型の弁機構20を取り付けると共に、流量センサ30を組み込んだ流量制御装置の本体部は、マイクロプロセッサ(CPU)41を主体とする制御部40により動作制御される。このマイクロプロセッサ41は、マン・マシン・インターフェースとしての設定・表示部42から指示されるスイッチ情報をスイッチ入力回路43を介して入力して、流量設定値やその他の動作条件等が設定される。そしてマイクロプロセッサ41は、基本的にはセンサ信号処理回路44を介して前記流量センサ30の出力(流量)を入力し、この流量に応じて比例バルブ駆動回路45の作動を制御することで前記ソレノイド21を通電電流を可変し、これによって前記弁機構20の作動を、具体的にはその弁開度を制御する。   As described above, the solenoid-type valve mechanism 20 is attached to the flow path block 10 in which a predetermined flow path is formed, and the main body of the flow rate control device incorporating the flow rate sensor 30 is mainly composed of a microprocessor (CPU) 41. The operation is controlled by the control unit 40. The microprocessor 41 inputs switch information instructed from a setting / display unit 42 as a man-machine interface via a switch input circuit 43, and sets a flow rate setting value and other operating conditions. The microprocessor 41 basically inputs the output (flow rate) of the flow rate sensor 30 via the sensor signal processing circuit 44, and controls the operation of the proportional valve drive circuit 45 in accordance with the flow rate, thereby controlling the solenoid. 21 changes the energizing current, thereby controlling the operation of the valve mechanism 20, specifically the valve opening degree.

尚、マイクロプロセッサ41には、外部接点入力回路46を介して、例えば弁機構20を強制的に全閉にしたり、或いは全開にする等の動作切換要求が入力されるようになっており、またアナログ設定入力回路47を介して上述した流量制御のための流量設定値を前述した設定・表示部42を介することなく電圧情報として入力できるようになっている。更にマイクロプロセッサ41は、通信インターフェース48を介して図示しない主制御回路等との間で情報通信する機能や、EEPROM等のメモリ49を用いて所定の情報を記憶する機能を備えている。またマイクロプロセッサ41は、その作動によって前記流量センサ30から得られた流量等の情報を適宜表示出力回路50を介して前記設定・表示部42に表示出力すると共に、制御流量出力回路51を介して出力し、更に異常警報等の情報をイベント・アラーム出力回路51を介して出力するように構成されている。   The microprocessor 41 receives an operation switching request such as forcibly fully closing or fully opening the valve mechanism 20 via the external contact input circuit 46. The flow rate setting value for the above-described flow rate control can be input as voltage information via the analog setting input circuit 47 without passing through the setting / display unit 42 described above. Further, the microprocessor 41 has a function of communicating information with a main control circuit (not shown) via a communication interface 48 and a function of storing predetermined information using a memory 49 such as an EEPROM. Further, the microprocessor 41 appropriately displays information such as the flow rate obtained from the flow rate sensor 30 by its operation on the setting / display unit 42 via the display output circuit 50 and also via the control flow rate output circuit 51. The information is output, and information such as an abnormality alarm is output via the event / alarm output circuit 51.

基本的には上述した如く構成される流量制御装置において、この発明が特徴とするところは、前記マイクロプロセッサ41が持つ制御機能として、図2にその概念を示すように流量センサ30にて検出された流体(ガス)の流量Qと前述した設定流量値SPとを比較し、その差に応じて前述した弁機構20の弁開度を調整するソレノイド21に対する駆動電流Iを求めるPID演算部(第1の制御手段)60を備えている。またマイクロプロセッサ41は、前記PID演算部60が求めた駆動電流Iと予め設定した電流制限値I2とを比較して前記弁機構20の全開状態を検出する比較部61と、前記流量センサ30にて検出された流量Qを所定の流量閾値QLと比較してその流量が上記流量閾値QLに満たない状態を検出する比較部62とを備えている。更にマイクロプロセッサ41は、上記各比較部61,62の出力を受けて、前記弁機構20が全開状態であり、且つ上記流量Qが流量域値QLに満たない状態の継続時間を第1および第2のタイマー部63,64にて計時する機能を備えている。 Basically, in the flow rate control device configured as described above, the present invention is characterized in that the control function of the microprocessor 41 is detected by the flow rate sensor 30 as shown in FIG. A PID calculation unit (first operation) for comparing the flow rate Q of the fluid (gas) with the set flow rate value SP described above and obtaining the drive current I for the solenoid 21 for adjusting the valve opening degree of the valve mechanism 20 according to the difference. 1 control means) 60. Further, the microprocessor 41 compares the drive current I obtained by the PID calculation unit 60 with a preset current limit value I 2 to detect the fully open state of the valve mechanism 20, and the flow sensor 30. The comparison unit 62 detects the state in which the flow rate Q detected in step 1 is compared with a predetermined flow rate threshold value Q L and the flow rate is less than the flow rate threshold value Q L. Further, the microprocessor 41 receives the outputs of the comparison units 61 and 62, and sets the duration of the state in which the valve mechanism 20 is fully open and the flow rate Q is less than the flow rate range value Q L to the first and The second timer units 63 and 64 have a function of measuring time.

ちなみに第1のタイマー部63は、弁機構20が全開状態で、且つ流量Qが流量域値QLに満たない状態の継続時間が、例えば5分間に亘って継続したときにタイムオーバ信号を出力するものであり、また第2のタイマー部64は、弁機構20が全開状態で、且つ流量Qが流量域値QLに満たない状態の継続時間が、例えば30分間に亘って継続したときにタイムオーバ信号を出力するものである。 Incidentally, the first timer unit 63 outputs a time over signal when the valve mechanism 20 is fully open and the duration of the state where the flow rate Q is less than the flow rate range value Q L continues for, for example, 5 minutes. In addition, the second timer unit 64 is used when the valve mechanism 20 is in a fully open state and the duration of the state where the flow rate Q is less than the flow rate range value Q L continues for, for example, 30 minutes. A time over signal is output.

そして出力制御部65は、前記PID演算部60の出力から弁機構20の弁開度を判定すると共に、上記比較部61の出力と前記第1および第2のタイマー部63,64の出力とから流体の流量低下とその継続時間とを判定し、これらの判定結果に基づいてセレクタ66の作動を制御している。具体的には出力制御部65は、前記PID演算部61が求めた駆動電流Iが電流制限値I2に達していない場合、つまり弁機構20が全開状態となっていないことが前記比較部61にて判定されたとき、セレクタ66を介して前記PID演算部60の出力(駆動電流I)をそのまま前記比例バルブ駆動回路45に対する弁開度制御値として出力する。このPID演算部60の出力(駆動電流I)により、弁機構20の弁開度が流量Qに応じてフィードバック制御されて、基本的には前記流量制御装置を介する流体の流量Qが一定に保たれる。 The output control unit 65 determines the valve opening degree of the valve mechanism 20 from the output of the PID calculation unit 60, and from the output of the comparison unit 61 and the outputs of the first and second timer units 63 and 64. A decrease in the flow rate of the fluid and its duration are determined, and the operation of the selector 66 is controlled based on these determination results. The output control section 65 in particular, the PID operator if 61 is the drive current I obtained does not reach the current limit value I 2, the comparison unit 61 is that the clogging valve mechanism 20 is not fully opened state Is determined, the output (drive current I) of the PID calculation unit 60 is directly output as a valve opening control value for the proportional valve drive circuit 45 via the selector 66. The valve opening degree of the valve mechanism 20 is feedback-controlled according to the flow rate Q by the output (drive current I) of the PID calculation unit 60, and basically the fluid flow rate Q via the flow rate control device is kept constant. Be drunk.

これに対して駆動電流Iが電流制限値I2に達しており、弁機構20が全開状態となっていることが前記比較部61にて判定されたときには、前記出力制御部65は先ず比較部62の出力から、その流量Qが流量域値QLを下回っているか否かを判定する。その上で第1のタイマー部63の出力を監視する。そして第1のタイマー部63からのタイムオーバ信号により、例えば前記弁機構20が5分間以上に亘って流量Qが流量閾値QLを下回っている状態であることが示されたとき、出力制御部65はセレクタ66を切り換えて前述したPID演算部60が求めた駆動電流Iに代えて、予め設定された電流値I1を選択して前記比例バルブ駆動回路45に出力することで、弁機構20をその全閉状態から僅かに弁を開いた状態に設定する(第2の制御手段)。更には前記第2のタイマー部64からのタイムオーバ信号により、例えば前記弁機構20を30分間以上に亘ってその流量Qが前記流量閾値QLを下回っていることが示されたとき、出力制御部65は前述した電流値I1に代えて、予め設定された電流値I0(=0)を選択して前記比例バルブ駆動回路45に出力するようにセレクタ66の作動を切り換えることで、前記弁機構20を強制的に全閉状態に設定するものとなっている。 In contrast, when the drive current I has reached the current limit value I 2 and the comparison unit 61 determines that the valve mechanism 20 is fully open, the output control unit 65 first determines the comparison unit 65. from the output of 62 determines whether the flow rate Q is less than the flow rate range value Q L. Then, the output of the first timer unit 63 is monitored. And by the time-over signal from the first timer section 63, for example, when the valve mechanism 20 has been shown that the flow rate Q for over 5 minutes a condition below the flow threshold Q L, the output control section 65 switches the selector 66 and selects a preset current value I 1 instead of the drive current I obtained by the PID calculation unit 60 described above, and outputs the selected current value I 1 to the proportional valve drive circuit 45. Is set to a state where the valve is slightly opened from the fully closed state (second control means). Further, when the time-over signal from the second timer unit 64 indicates that the flow rate Q of the valve mechanism 20 is below the flow rate threshold value Q L for 30 minutes or more, for example, output control The section 65 selects the preset current value I 0 (= 0) instead of the current value I 1 described above, and switches the operation of the selector 66 so as to output it to the proportional valve drive circuit 45, thereby The valve mechanism 20 is forcibly set to a fully closed state.

換言すれば出力制御部65は、図3にその制御手順の例を示すように先ず弁機構20が全開状態であるか否かを判定し[ステップS1]、全開であるならばそのときの流量Qが所定の流量QL以下であるか否かを判定する[ステップS2]。そしてこれらの条件が成立したとき、その継続時間がt1(例えば5分)以上であるか否かを判定し[ステップS3]、更にはその継続時間がt2(例えば30分)以上であるか否かを判定する[ステップS4]。そしてこれらの状態に応じて、前述したPID演算部60の出力(駆動電流I)を用いて弁機構20の作動を制御するか[ステップS5]、或いは予め設定した電流値I1を用いて弁機構20が僅かに開いた状態に設定するか[ステップS6]、更には電流値I0を用いて弁機構20を全閉状態に設定するか[ステップS7]の制御を選択的に実行する。 In other words, the output control unit 65 first determines whether or not the valve mechanism 20 is fully opened as shown in FIG. 3 as an example of the control procedure [step S1]. It is determined whether or not Q is equal to or less than a predetermined flow rate Q L [step S2]. When these conditions are satisfied, it is determined whether or not the duration is t 1 (for example, 5 minutes) or more [Step S3], and further, the duration is t 2 (for example, 30 minutes) or more. [Step S4]. And according to these conditions, or to control the operation of the valve mechanism 20 with the output of the PID calculation section 60 described above (the drive current I) [step S5], or preset current value valves with I 1 or mechanism 20 is set to slightly open state [step S6], and more selectively performs control to set the valve mechanism 20 to the fully closed state [step S7] by using the current value I 0.

かくしてこのような制御によれば、図4にその動作タイミングを示すように、流量制御装置を介して通流する流体の流量Qが何等かの原因で低下すると、その流量低下を補って所定の設定流量を確保するべくソレノイド42の駆動電流Iが高められて弁機構20が自動的に全開状態に設定される。この際、ソレノイド42の駆動電流Iは、その最大限界値であるI2に制限される。このような制御にも拘わらず流量制御装置を介して通流する流体の流量Qが増加しない場合には、弁機構20は前述したPID制御の下で全開状態に保たれる。そしてこの状態において計測される流量Qが所定の時間t1に亘って流量域値QLを下回っていることが確認されたならばソレノイド42を駆動する電流を所定値I1に低減する。そして弁機構20の弁開度を所定値まで絞り込むことで流体(ガス)が僅かに通流可能な状態を維持しながら、ソレノイド42での発熱を抑え、同時に無駄な電力消費を低減する。 Thus, according to such control, as shown in the operation timing in FIG. 4, when the flow rate Q of the fluid flowing through the flow rate control device decreases for some reason, the flow rate decrease is compensated for by a predetermined amount. The drive current I of the solenoid 42 is increased to ensure the set flow rate, and the valve mechanism 20 is automatically set to the fully open state. At this time, the drive current I of the solenoid 42 is limited to the maximum limit value I 2 . When the flow rate Q of the fluid flowing through the flow rate control device does not increase in spite of such control, the valve mechanism 20 is kept fully open under the above-described PID control. If it is confirmed that the flow rate Q measured in this state is lower than the flow rate range value Q L for a predetermined time t 1 , the current for driving the solenoid 42 is reduced to the predetermined value I 1 . Then, by narrowing the valve opening of the valve mechanism 20 to a predetermined value, while maintaining a state in which a fluid (gas) can flow slightly, heat generation in the solenoid 42 is suppressed, and at the same time wasteful power consumption is reduced.

また上述したように弁機構20の弁開度を絞り込んだ後、更に流体の流量Qが前記流量域値QLを下回る状態が時間t2以上に亘って継続している場合には、流体の通流が回復する見込みがないと判定して前記ソレノイド42を駆動する電流を所定値I0(=0)に低減する。そして弁機構20を全閉状態に設定することでソレノイド42の発熱を抑えると共に、該ソレノイド24での無駄な電力消費をなくす。この結果、例えばボンベ等に収容されて供給される流体源の全てが消費され、流量制御装置を介する流体の通流がなくなった場合には、その流量低下に伴って前述したPID制御の下で弁機構20が徒に長時間に亘って全開状態に制御されることがなくなる。故に流体の通流がなくなった際、弁機構20を全開にする駆動電流I2によってソレノイド42が異常に発熱するような事態が効果的に防がれることになる。従って弁機構20がその発熱によって故障するような不具合を招来することがなく、またその消費電力を十分に低く抑えることが可能となる。更には弁機構20の異常発熱がないので、その熱が流路ブロック10を介して流路センサ30に伝わって該流路センサ30の計測精度を劣化させることがないので、安定した動作を保証することが可能となる。 Further, after the valve opening degree of the valve mechanism 20 is narrowed as described above, when the state where the flow rate Q of the fluid is lower than the flow rate range value Q L continues for a time t 2 or more, It is determined that the flow is not expected to be restored, and the current for driving the solenoid 42 is reduced to a predetermined value I 0 (= 0). Then, by setting the valve mechanism 20 to a fully closed state, heat generation of the solenoid 42 is suppressed, and unnecessary power consumption in the solenoid 24 is eliminated. As a result, for example, when all of the fluid source housed and supplied in the cylinder is consumed and the flow of the fluid through the flow rate control device is lost, under the above-mentioned PID control as the flow rate decreases. The valve mechanism 20 is not controlled to be fully opened for a long time. Therefore, when the fluid flow is lost, a situation in which the solenoid 42 generates heat abnormally due to the drive current I 2 that fully opens the valve mechanism 20 is effectively prevented. Therefore, the valve mechanism 20 does not cause a problem that the heat is generated by the heat generation, and the power consumption can be sufficiently reduced. Further, since there is no abnormal heat generation of the valve mechanism 20, the heat is not transmitted to the flow path sensor 30 via the flow path block 10, and the measurement accuracy of the flow path sensor 30 is not deteriorated, so that stable operation is guaranteed. It becomes possible to do.

尚、前述した如くして弁機構20の弁開度を絞り込んだ状態において流量制御装置に対する流体の通流が前述した時間t2を経過する前に再開した場合には、図5にその動作タイミングを示すように流体の流量Qが前記流量域値QLを上回るので前述した弁機構20の絞り込みが解除される。この結果、セレクタ66を介して前記PID制御部60で求められた流量Qと流量設定値SPとの差に応じた電流値Iがソレノイド21に供給されることになるので、速やかに弁機構20のフィードバック制御が再開される。これによって流量制御装置による流量制御が正常状態に復帰する。そしてこの際、ソレノイド21の通電電流によって生じる発熱は、弁機構20を通流する流体により吸熱されながら外部に放散されるので、弁機構20の異常発熱が効果的に抑制されることになる。 If the flow of the fluid to the flow control device is resumed before the time t 2 described above with the valve opening degree of the valve mechanism 20 reduced as described above, the operation timing is shown in FIG. Since the fluid flow rate Q exceeds the flow rate range value Q L , the above-described narrowing of the valve mechanism 20 is released. As a result, the current value I corresponding to the difference between the flow rate Q obtained by the PID control unit 60 and the flow rate set value SP is supplied to the solenoid 21 via the selector 66. The feedback control is resumed. As a result, the flow control by the flow controller returns to the normal state. At this time, the heat generated by the energizing current of the solenoid 21 is dissipated to the outside while being absorbed by the fluid flowing through the valve mechanism 20, so that abnormal heat generation of the valve mechanism 20 is effectively suppressed.

ここで前述した弁機構20について述べると、弁機構20には図6(a)に示すようなフロー・トゥー・クローズ[flow to close]方式のものと、図7(a)に示すようなフロー・トゥー・オープン[flow to open]方式のものとがある。フロー・トゥー・クローズ方式の弁機構20は、前述したように弁の外側から内側へと流体を通流するタイプのものであり、流体供給側から加わる圧力に逆らう向きに弁体23を移動させてその流量を増大させるように構成される。またフロー・トゥー・オープン方式の弁機構20は弁の内側から外側へと流体を通流するタイプのものであり、流体供給側から加わる圧力の向きに弁体23を移動させてその流量を増大させるように構成される。   Here, the valve mechanism 20 described above will be described. The valve mechanism 20 has a flow to close method as shown in FIG. 6A and a flow as shown in FIG.・ Some models have a flow to open method. As described above, the flow-to-close type valve mechanism 20 is of a type that allows fluid to flow from the outside to the inside of the valve, and moves the valve body 23 in a direction against the pressure applied from the fluid supply side. And configured to increase the flow rate. The flow-to-open type valve mechanism 20 is of a type that allows fluid to flow from the inside to the outside of the valve. The valve body 23 is moved in the direction of pressure applied from the fluid supply side to increase the flow rate. Configured to let

またこの種の遮断機能を備えたソレノイド型の弁機構20は、ソレノイド21の駆動電流によって弁開度が可変されるもので、その駆動電流Iの増減に対する流量Qとの間に図6(b)および図7(b)にそれぞれ示すようなヒステリシス特性を有している。しかもそのヒステリシス特性は、弁の外側と内側との差圧によって変化する。具体的にはフロー・トゥー・クローズ方式の弁機構20においては、流体供給側の圧力が弁体23を押さえ込むように作用するので、流量Qが所定の流量閾値QLを上回るようにする為の駆動電流I1は、弁機構20に加わる差圧が小さい程、少なくて良い。これに対してフロー・トゥー・オープン方式の弁機構20においては、流体供給側の圧力が弁体23を押し拡げるように作用するので、流量Qが所定の流量閾値QLを上回るようにする為の駆動電流I1は、弁機構20に加わる差圧が大きい程、少なくて良い。 Further, the solenoid type valve mechanism 20 having this kind of shut-off function is such that the valve opening is varied by the drive current of the solenoid 21, and the flow rate Q with respect to the increase or decrease of the drive current I is shown in FIG. ) And a hysteresis characteristic as shown in FIG. Moreover, the hysteresis characteristic changes depending on the differential pressure between the outside and inside of the valve. Specifically, in the flow-to-close type valve mechanism 20, the pressure on the fluid supply side acts so as to hold down the valve body 23, so that the flow rate Q exceeds a predetermined flow rate threshold value Q L. The drive current I 1 may be smaller as the differential pressure applied to the valve mechanism 20 is smaller. In the flow-to-open method of the valve mechanism 20 with respect to this, the pressure of the fluid supply side acts to expand pushing the valve element 23, since the flow rate Q is to exceed a predetermined flow rate threshold value Q L The drive current I 1 may be smaller as the differential pressure applied to the valve mechanism 20 is larger.

一方、前述したように弁機構20の弁開度を小さくしてその発熱量を抑えている状態において、流体の通流再開を検出して弁機構20を速やかに正常動作に復帰させるには、弁機構20に加わる差圧が小さい状態で該弁機構20を通して流体が通流し始めることが望ましい。従って前述したように流量Qが流量閾値QLを上回るようにする為の駆動電流I1をなるべく少なく抑えながら、上記流量閾値QLを越える流体の流量を検出して弁機構20の正常動作を開始させるには、駆動電流I1を図6(b)および図7(b)に示した範囲とすることが望ましい。また同図に示す電流・流量特性を対比すれば明らかなように、フロー・トゥー・クローズ方式の弁機構20を用いた方が、フロー・トゥー・オープン方式の弁機構20よりも駆動電流I1を低く設定することができるので有利であると言える。 On the other hand, in the state where the valve opening degree of the valve mechanism 20 is reduced and the heat generation amount is suppressed as described above, in order to detect the resumption of fluid flow and quickly return the valve mechanism 20 to normal operation, It is desirable that the fluid starts to flow through the valve mechanism 20 with a small differential pressure applied to the valve mechanism 20. Thus while suppressing as much as possible reduce the driving current I 1 for such flow Q as described above exceeds the flow threshold value Q L, the normal operation of the valve mechanism 20 by detecting the flow rate of the fluid exceeds the above flow threshold value Q L In order to start, it is desirable that the drive current I 1 be in the range shown in FIGS. 6B and 7B. Further, as is clear from the comparison of the current / flow rate characteristics shown in the figure, the drive current I 1 is greater when the flow-to-close type valve mechanism 20 is used than when the flow-to-open type valve mechanism 20 is used. Can be set to be low, which is advantageous.

ちなみにフロー・トゥー・クローズ方式の弁機構20を用いた場合、流量閾値QLを上回るようにする為の駆動電流I1は弁機構20に加わる差圧が高くなる程大きくなる。従って流体の通流再開時に弁機構20に高い差圧が加わるような場合、駆動電流I1を一定に保っている状態では、その差圧が弁体21を閉じる方向に作用するので弁機構20を介して流れる流量Qが上記流量閾値QLよりも低くなる虞がある。しかしながら実際には、流量制御装置が組み込まれる配管系での配管容量によって弁機構20に加わる差圧が急激に高くなることはなく緩やかに変化するので、図8に例示するように一時的に流量閾値QLを越える流量で流体が通流する。従って流量が一時的に上記流量閾値QLを越えたとき、これを検出して直ちに前述した駆動電流I1の供給を解除し、PID制御部60からの流量Qと流量設定値SPとの差に応じた電流Iを供給するようにすれば、これによって流量制御装置を正常動作に復帰させることができる。 Incidentally, when the flow-to-close type valve mechanism 20 is used, the drive current I 1 for exceeding the flow rate threshold value Q L increases as the differential pressure applied to the valve mechanism 20 increases. Therefore, when a high differential pressure is applied to the valve mechanism 20 when fluid flow is resumed, the differential pressure acts in the direction of closing the valve body 21 in a state where the drive current I 1 is kept constant, so that the valve mechanism 20. There is a possibility that the flow rate Q flowing through the flow rate becomes lower than the flow rate threshold value Q L. However, in actuality, the differential pressure applied to the valve mechanism 20 does not increase rapidly due to the piping capacity in the piping system in which the flow rate control device is incorporated, and thus changes gradually. As illustrated in FIG. fluid flowing at a rate exceeding the threshold value Q L. Therefore, when the flow rate temporarily exceeds the flow rate threshold value Q L , this is detected and immediately the supply of the drive current I 1 is canceled, and the difference between the flow rate Q from the PID control unit 60 and the flow rate set value SP. If the current I corresponding to is supplied, the flow control device can be returned to normal operation.

従って上述したように流体の流量Qが所定時間に亘って流量閾値QLよりも下回ったとき、弁機構20の駆動電流Iを上述したように低く抑えてその発熱と無駄な電力消費を抑えても、流体が上記流量閾値QLを越えて通流再開した時点で、流量制御装置を速やかに正常動作に復帰させることができる。
尚、本発明は上述した実施形態に限定されるものではない。例えば前述した流量閾値QLについては、制御対象とする流体の流量に応じて定めれば良いものであり、また流量Qが流量閾値QLを上回るようにする駆動電流I1についても弁機構20の仕様等に応じて定めれば良いものである。またここでは流量Qを自動制御する流量制御装置を例に説明したが、そのフィードバック制御の形態はPID制御に限られないことは言うまでもない。
Therefore, as described above, when the flow rate Q of the fluid falls below the flow rate threshold value Q L for a predetermined time, the drive current I of the valve mechanism 20 is kept low as described above to suppress the heat generation and wasteful power consumption. However, the flow rate control device can be quickly returned to normal operation when the fluid resumes flow after exceeding the flow rate threshold value Q L.
The present invention is not limited to the embodiment described above. For example, the above-described flow rate threshold value Q L may be determined according to the flow rate of the fluid to be controlled, and the valve mechanism 20 also applies to the drive current I 1 that causes the flow rate Q to exceed the flow rate threshold value Q L. What is necessary is just to determine according to the specification etc. Although the flow control device that automatically controls the flow rate Q has been described as an example here, it is needless to say that the form of feedback control is not limited to PID control.

また弁開度のフィードフォワード制御により流量Qをマニュアル的に設定する装置においても同様に適用することができる。即ち、マニュアル操作により弁開度を全開に設定しているに拘わらず、その流量Qが所定の流量閾値QLに満たないような場合、前述したようにして弁開度を所定値まで絞り込むようにしても良い。その他、本発明その要旨を逸脱しない範囲で種々変形して実施することができる。 The present invention can be similarly applied to an apparatus that manually sets the flow rate Q by feedforward control of the valve opening. That is, when the flow rate Q is less than the predetermined flow rate threshold value Q L regardless of the valve opening degree being set to full open by manual operation, the valve opening amount is reduced to the predetermined value as described above. Anyway. In addition, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態に係る流量制御装置の概略構成図。1 is a schematic configuration diagram of a flow control device according to an embodiment of the present invention. 弁機構に対する制御回路の構成例を示す図。The figure which shows the structural example of the control circuit with respect to a valve mechanism. 弁機構に対する制御処理手順の例を示す図。The figure which shows the example of the control processing procedure with respect to a valve mechanism. 弁機構の流量抑制と遮断動作を示すタイミング図。The timing diagram which shows the flow volume suppression and interruption | blocking operation | movement of a valve mechanism. 弁機構の流量抑制とその復帰動作を示すタイミング図。The timing diagram which shows the flow volume suppression of a valve mechanism, and its return operation | movement. フロー・トゥー・クローズ方式の弁機構とその動作特性を示す図。The figure which shows the valve mechanism of a flow-to-close system, and its operation characteristic. フロー・トゥー・オープン方式の弁機構とその動作特性を示す図。The figure which shows the valve mechanism of a flow-to-open system, and its operation characteristic. 流体の通流開始時に弁機構に加わる流量と差圧との関係を示す図。The figure which shows the relationship between the flow volume added to a valve mechanism at the time of a fluid flow start, and differential pressure | voltage.

符号の説明Explanation of symbols

10 流路ブロック
20 弁機構
30 流量センサ
40 制御部
41 マイクロプロセッサ
DESCRIPTION OF SYMBOLS 10 Flow path block 20 Valve mechanism 30 Flow rate sensor 40 Control part 41 Microprocessor

Claims (3)

所定の流路に設けられ、比例ソレノイドの通電電流に応じて弁開度を可変して上記流路を通流する流体の流量を調整するソレノイド型の弁機構と、
上記流路を通流する流体の流量を検出する流量センサと、
指定された弁開度に応じて、または設定流量値と上記流量センサを介して検出された流量との差に応じて前記弁機構の弁開度を調整する第1の制御手段と、
前記流量センサを介して検出される流量が一定時間に亘って所定値を下回るとき、前記第1の制御手段に代わって前記弁開度を所定値に絞り込む第2の制御手段と
を具備したことを特徴とする流量制御装置。
A solenoid-type valve mechanism that is provided in a predetermined flow path and adjusts the flow rate of the fluid flowing through the flow path by changing the valve opening according to the energization current of the proportional solenoid;
A flow rate sensor for detecting a flow rate of the fluid flowing through the flow path;
First control means for adjusting the valve opening of the valve mechanism according to a specified valve opening or according to a difference between a set flow rate value and a flow rate detected via the flow sensor;
A second control means for reducing the valve opening to a predetermined value instead of the first control means when the flow rate detected via the flow sensor falls below a predetermined value for a predetermined time; A flow control device characterized by.
前記第2の制御手段は、前記第1の制御手段により制御される弁開度が一定時間に亘って全開であることを検出して作動するものである請求項1に記載の流量制御装置。   2. The flow rate control device according to claim 1, wherein the second control unit operates by detecting that the valve opening degree controlled by the first control unit is fully open over a predetermined time. 前記第2の制御手段は、前記弁開度を所定値に絞り込んだ時間が所定時間に亘って継続したとき、前記弁開度を全閉とする機能を備えることを特徴とする請求項1又は2に記載の流量制御装置。   The said 2nd control means is provided with the function which makes the said valve opening fully closed when the time which narrowed down the said valve opening to predetermined value continued over predetermined time. 2. The flow control device according to 2.
JP2004015907A 2004-01-23 2004-01-23 Flow control device Expired - Lifetime JP4221748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015907A JP4221748B2 (en) 2004-01-23 2004-01-23 Flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015907A JP4221748B2 (en) 2004-01-23 2004-01-23 Flow control device

Publications (2)

Publication Number Publication Date
JP2005207523A true JP2005207523A (en) 2005-08-04
JP4221748B2 JP4221748B2 (en) 2009-02-12

Family

ID=34901237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015907A Expired - Lifetime JP4221748B2 (en) 2004-01-23 2004-01-23 Flow control device

Country Status (1)

Country Link
JP (1) JP4221748B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215913A (en) * 2010-03-31 2011-10-27 Ckd Corp Flow rate controller, flow rate control system equipped with the same, flow rate controller control program, and flow rate control program
JP2012515958A (en) * 2009-01-21 2012-07-12 日立金属株式会社 Hysteresis compensation system and method for mass flow controller
JP2019145047A (en) * 2018-02-23 2019-08-29 株式会社堀場エステック Fluid control device, control program and fluid control system
CN112146555A (en) * 2019-06-26 2020-12-29 舍弗勒技术股份两合公司 Displacement detection method and flow detection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295233B2 (en) 2003-09-30 2007-11-13 Fotonation Vision Limited Detection and removal of blemishes in digital images utilizing original images of defocused scenes
WO2007095556A2 (en) 2006-02-14 2007-08-23 Fotonation Vision Limited Digital image acquisition device with built in dust and sensor mapping capability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253517A (en) * 1985-05-07 1986-11-11 Nippon Tairan Kk Controller for fluid flow rate
JPS63168505U (en) * 1987-04-17 1988-11-02
JPH02257205A (en) * 1989-03-29 1990-10-18 Stec Kk Mass flow controller
JPH0766137A (en) * 1993-08-30 1995-03-10 Sony Corp Gas flow controller
JP2001356824A (en) * 1998-06-30 2001-12-26 Yamatake Corp Flow rate controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253517A (en) * 1985-05-07 1986-11-11 Nippon Tairan Kk Controller for fluid flow rate
JPS63168505U (en) * 1987-04-17 1988-11-02
JPH02257205A (en) * 1989-03-29 1990-10-18 Stec Kk Mass flow controller
JPH0766137A (en) * 1993-08-30 1995-03-10 Sony Corp Gas flow controller
JP2001356824A (en) * 1998-06-30 2001-12-26 Yamatake Corp Flow rate controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515958A (en) * 2009-01-21 2012-07-12 日立金属株式会社 Hysteresis compensation system and method for mass flow controller
JP2011215913A (en) * 2010-03-31 2011-10-27 Ckd Corp Flow rate controller, flow rate control system equipped with the same, flow rate controller control program, and flow rate control program
JP2019145047A (en) * 2018-02-23 2019-08-29 株式会社堀場エステック Fluid control device, control program and fluid control system
JP7051211B2 (en) 2018-02-23 2022-04-11 株式会社堀場エステック Fluid control devices, control programs and fluid control systems
CN112146555A (en) * 2019-06-26 2020-12-29 舍弗勒技术股份两合公司 Displacement detection method and flow detection method

Also Published As

Publication number Publication date
JP4221748B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
TWI719513B (en) Flow control method and flow control device
TWI537696B (en) Pressure flow control device and its flow control at the beginning of the over-prevention method
US6338358B1 (en) Pressure control apparatus
KR20100053462A (en) Temperature control device
JP4221748B2 (en) Flow control device
US20200408442A1 (en) Water heating apparatus and water heating system
TW201945657A (en) Flow rate control method and flow rate control device
JP3417391B2 (en) Flow control method
JP2008057814A (en) Gas hot water supply apparatus
JP7417049B2 (en) water heater
JP3621267B2 (en) Proportional valve controller
JP2508566B2 (en) Water heater
JP3973785B2 (en) Hot water mixing device
KR102673741B1 (en) Flow rate control apparatus, flow rate control method, and program recording medium having recorded therein program for flow rate control apparatus
CN115523425A (en) Fluid control device, fluid control system, recording medium, and fluid control method
TW202417748A (en) Fluid control device, fluid pressure supply device and fluid control method
US20230332774A1 (en) Hot water supply device and hot water supply system
JP2001242939A (en) Valve open/close control method
JP2015090558A (en) Water temperature control device
JP2005144235A (en) Premixing type catalytically deodorization method and apparatus
JP3384855B2 (en) Hot water heater and its hot water temperature control method
JP4505739B2 (en) Heat source equipment
JPH0972611A (en) Water heater
JPH06174303A (en) Hot water supplier
JPH04314835A (en) Melt temperature controlling device for aluminum melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20081107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

R150 Certificate of patent or registration of utility model

Ref document number: 4221748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5