JP2005207264A - Bearing for small wind power generator main spindle - Google Patents

Bearing for small wind power generator main spindle Download PDF

Info

Publication number
JP2005207264A
JP2005207264A JP2004012820A JP2004012820A JP2005207264A JP 2005207264 A JP2005207264 A JP 2005207264A JP 2004012820 A JP2004012820 A JP 2004012820A JP 2004012820 A JP2004012820 A JP 2004012820A JP 2005207264 A JP2005207264 A JP 2005207264A
Authority
JP
Japan
Prior art keywords
bearing
wind power
power generator
small wind
grease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004012820A
Other languages
Japanese (ja)
Inventor
Naoki Nakagawa
直樹 中川
Soichi Yagi
壮一 八木
Seiji Hori
政治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004012820A priority Critical patent/JP2005207264A/en
Publication of JP2005207264A publication Critical patent/JP2005207264A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6622Details of supply and/or removal of the grease, e.g. purging grease
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/94Volume
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wind Motors (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing for a small wind power generator main spindle, rotating a blade by even weak wind, reducing torque, and ensuring durability. <P>SOLUTION: The bearing 7 rotatively supports the main spindle 6 with the blade 4 of the small wind power generator 1 attached, and comprises a deep groove ball bearing lubricated with grease. An amount of grease filled into the bearing is set to 5 to 20% of the internal space S of the bearing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は駐車場や公園の照明、企業の看板のライト、各種公共施設の照明など、種々の用途に用いられる小型風力発電機における主軸用軸受に関する。   The present invention relates to a bearing for a main shaft in a small wind power generator used for various applications such as lighting for parking lots and parks, lighting for corporate signs, and lighting for various public facilities.

近年、小型風力発電機は、環境への配慮や、商用電源を用いるには配線が長くなる場合などの対策として、種々のものが開発、実用化され、使用が増えつつある。
このような小型風力発電機では、風の強い場所や高所を選んで設置される大型の発電機と異なり、設置場所が制限される場合が多く、弱い風でもブレードが回るように支持されることが望まれる。小型風力発電機においてブレードを取付けた主軸を支持する軸受には、グリース潤滑の深溝玉軸受が用いられることが多い。深溝玉軸受は、ラジアル軸受であるが、スラスト負荷の支持が可能であり、また価格面でも有利であり、小型風力発電機における主軸の支持に好適なものとなる。また、グリース潤滑であると、メンテナンスフリー化にも優れている。
NTN株式会社カタログ「転がり軸受総合カタログ」A63CAT.NO.2202−VI/J 2001年12月6日発行(A−73頁)
In recent years, various types of small wind power generators have been developed and put into practical use as a countermeasure for environmental considerations or when the wiring becomes long for using a commercial power supply.
In such a small wind power generator, unlike a large power generator that is installed by selecting a windy place or high place, the installation place is often limited, and it is supported so that the blade can rotate even in a weak wind It is desirable. Grease-lubricated deep groove ball bearings are often used as bearings for supporting the main shaft on which blades are mounted in a small wind power generator. Although the deep groove ball bearing is a radial bearing, it can support a thrust load and is advantageous in terms of price, and is suitable for supporting a main shaft in a small wind power generator. Grease lubrication is also excellent for maintenance-free.
NTN catalog “Rolling Bearing General Catalog” A63CAT. NO. 2202-VI / J Published on December 6, 2001 (A-73)

一般的なグリース潤滑の深溝玉軸受は、軸受空間内に封入される初期充填のグリース量が、軸受内部空間の40%前後(36〜50%)とされることが多い(非特許文献1)。しかし、グリース量が40%程度であると、グリースの粘性によるトルクが大きく、小型風力発電機の主軸の支持に用いた場合、弱い風ではブレードが回転しないことがある。   In general grease-lubricated deep groove ball bearings, the amount of initially filled grease filled in the bearing space is often about 40% (36 to 50%) of the bearing internal space (Non-patent Document 1). . However, when the amount of grease is about 40%, the torque due to the viscosity of the grease is large, and when used for supporting the main shaft of a small wind power generator, the blade may not rotate with a weak wind.

この発明の目的は、弱い風でもブレードの回転が可能な低トルクのものとでき、かつ耐久性が確保できる小型風力発電機主軸用軸受を提供することである。   An object of the present invention is to provide a bearing for a small wind power generator main shaft that has a low torque capable of rotating a blade even in a weak wind and can ensure durability.

この発明における第1の発明の小型風力発電機主軸用軸受は、小型風力発電機のブレードを取付けた主軸を回転自在に支持する軸受であって、グリース潤滑の深溝玉軸受からなり、軸受内部空間に封入されるグリース量を、軸受内部空間の5〜20%としたことを特徴とする。ここで言うグリース量は、使用初期の封入グリース量である。軸受内部空間は、内外輪間の両端にシールを有する軸受の場合、内外輪間の両側のシールで仕切られた空間における転動体や保持器等の軸受構成部品が占める残りの空間のことである。   A bearing for a main shaft of a small wind generator according to a first aspect of the present invention is a bearing that rotatably supports a main shaft to which a blade of a small wind power generator is attached, and is constituted by a grease-lubricated deep groove ball bearing. The amount of grease enclosed in the bearing is 5 to 20% of the bearing internal space. The amount of grease referred to here is the amount of grease charged in the initial stage of use. In the case of a bearing having seals at both ends between the inner and outer rings, the bearing inner space is the remaining space occupied by bearing components such as rolling elements and cages in a space partitioned by seals on both sides between the inner and outer rings. .

小型風力発電機に用いられる程度の大きさのグリース潤滑の深溝玉軸受においては、試験によると、図2に見られるように、封入グリース量が20%を超えた程度から、回転抵抗となるトルクが急激に大きくなる傾向が見られた。したがって、グリース封入量の最大量は20%とすることが好ましい。グリース量が20%以下の場合は、グリース量によるトルクの差は小さいが、封入グリース量が5%未満であると、使用に伴うグリースの劣化のため、耐久性の面で望ましくない。   In grease-lubricated deep groove ball bearings of a size that can be used for small wind power generators, as shown in FIG. 2, the torque that causes rotational resistance from the extent that the amount of enclosed grease exceeds 20%, as shown in FIG. Tended to increase rapidly. Therefore, the maximum amount of grease filled is preferably 20%. When the amount of grease is 20% or less, the difference in torque due to the amount of grease is small, but when the amount of enclosed grease is less than 5%, it is not desirable in terms of durability because the grease deteriorates with use.

この発明における第2の発明の小型風力発電機主軸用軸受は、小型風力発電機のブレードを取付けた主軸を回転自在に支持する軸受であって、油潤滑の転がり軸受からなり、前記小型風力発電機の発電電力で駆動されるポンプにより、潤滑油を前記転がり軸受に供給しかつこの転がり軸受から漏れ出た潤滑油を再度供給に用いる潤滑油循環装置を設けたことを特徴とする。
この構成の場合、油潤滑のため、グリース潤滑に比べて回転抵抗となるトルクが小さいものとできる。油潤滑であると、耐久性確保のために補給を行う必要があるが、潤滑油を転がり軸受に供給しかつこの転がり軸受から漏れ出た潤滑油を再度供給に用いる潤滑油循環装置を設けたため、優れた耐久性が得られる。ポンプの駆動に電力が必要であるが、風力発電機の軸受であり、その発電電力を用いてポンプを駆動するようにしたため、別途に電源を設ける必要がない。
A small wind power generator main shaft bearing according to a second aspect of the present invention is a bearing that rotatably supports a main shaft to which a blade of a small wind power generator is attached, and is composed of an oil-lubricated rolling bearing. According to another aspect of the present invention, there is provided a lubricating oil circulation device that supplies lubricating oil to the rolling bearing by a pump driven by power generated by the machine and uses the lubricating oil leaked from the rolling bearing for supply again.
In the case of this configuration, because of oil lubrication, it is possible to reduce torque that becomes rotational resistance compared to grease lubrication. In the case of oil lubrication, it is necessary to replenish in order to ensure durability. However, a lubricating oil circulation device is provided that supplies lubricating oil to the rolling bearing and uses again the lubricating oil leaked from the rolling bearing. Excellent durability can be obtained. Electric power is required to drive the pump, but since it is a bearing of a wind power generator and the pump is driven using the generated electric power, it is not necessary to provide a separate power source.

この発明の小型風力発電機主軸用軸受は、小型風力発電機のブレードを取付けた主軸を回転自在に支持する軸受であって、グリース潤滑の深溝玉軸受からなり、軸受空間内に封入されるグリース量を、軸受内部空間の5〜20%としたため、弱い風でもブレードの回転が可能な低トルクのものとでき、かつ耐久性も確保できる。
この発明の他の小型風力発電機主軸用軸受は、油潤滑として、前記小型風力発電機の発電電力で駆動されるポンプにより、潤滑油を前記転がり軸受に供給しかつこの転がり軸受から漏れ出た潤滑油を再度供給に用いる潤滑油循環装置を設けたため、弱い風でもブレードの回転が可能な低トルクのものとでき、かつ耐久性も確保できる。
A bearing for a main shaft of a small wind power generator according to the present invention is a bearing that rotatably supports a main shaft on which a blade of a small wind power generator is mounted, and is a grease-lubricated deep groove ball bearing that is sealed in a bearing space. Since the amount is 5 to 20% of the internal space of the bearing, it is possible to achieve a low torque capable of rotating the blade even in a weak wind and to ensure durability.
Another small wind power generator main shaft bearing of the present invention supplies lubricating oil to the rolling bearing and leaks out from the rolling bearing by a pump driven by power generated by the small wind power generator as oil lubrication. Since the lubricating oil circulating device for supplying the lubricating oil again is provided, it is possible to achieve a low torque that can rotate the blade even in a weak wind and to ensure durability.

この発明の第1の実施形態を図1,図2と共に説明する。図1(A)は小型風力発電機1の側面図であり、支持台2上にナセル3が水平旋回方向に方向転換自在に設置されている。ナセル3の前端に回転翼となるブレード4が設けられ、後部に、風向きに応じた方向にナセル3を方向転換させるための尾翼5が設けられている。このブレード4は、主軸6に取付けられている。主軸6は、ナセル3に設置された軸受7により、回転自在に支持されている。軸受7は、この実施形態にかかる小型風力発電機主軸用軸受であり、主軸6の支持に1個または複数個が用いられる。ナセル3内には、この他に主軸6の回転より発電を行う発電機8が設けられる。主軸6と発電機8の間には主軸6の回転を発電機の効率化のために増速する増速機(図示せず)を設けても良い。なお、ここで言う小型風力発電機は、発電電力が5〜6kw以下のもの、特に1kw以下のものである。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a side view of a small wind power generator 1, and a nacelle 3 is installed on a support base 2 so as to be capable of changing its direction in a horizontal turning direction. A blade 4 serving as a rotating blade is provided at the front end of the nacelle 3, and a tail blade 5 for changing the direction of the nacelle 3 in a direction corresponding to the wind direction is provided at the rear part. The blade 4 is attached to the main shaft 6. The main shaft 6 is rotatably supported by a bearing 7 installed in the nacelle 3. The bearing 7 is a bearing for a small wind power generator main shaft according to this embodiment, and one or more bearings are used for supporting the main shaft 6. In addition to this, a generator 8 is provided in the nacelle 3 to generate power from the rotation of the main shaft 6. Between the main shaft 6 and the generator 8, you may provide the gearbox (not shown) which speeds up rotation of the main shaft 6 for efficiency improvement of a generator. In addition, the small wind generator said here is a thing with generated electric power of 5-6 kw or less, especially 1 kw or less.

軸受7は、グリース潤滑の深溝玉軸受からなり、内輪11と外輪12の間に、保持器14に保持された玉13が介在させている。内外輪11,12間の軸受内部空間Sの両端は、外輪12に取付けられたシール15により密封されている。シール15は芯金にゴム材等の弾性体を設けた接触シールからなる。シール15の内径側の先端は内輪11の外径面に摺接する。なお、シール15は非接触シールでも良く、例えば非接触の鉄板シールであっても良い。内輪11および外輪12の玉13が転走する軌道溝11a,12aは、断面形状が半円状に形成されている。軌道溝11a,12aの曲率半径は、一般的な深溝玉軸受では、玉13の直径の1.02〜1.04倍の範囲とされるが、例えば1.08〜1.25倍の範囲としても良い。   The bearing 7 is a grease-lubricated deep groove ball bearing, and a ball 13 held by a cage 14 is interposed between an inner ring 11 and an outer ring 12. Both ends of the bearing internal space S between the inner and outer rings 11 and 12 are sealed by seals 15 attached to the outer ring 12. The seal 15 is formed of a contact seal in which an elastic body such as a rubber material is provided on a core metal. The tip on the inner diameter side of the seal 15 is in sliding contact with the outer diameter surface of the inner ring 11. The seal 15 may be a non-contact seal, for example, a non-contact iron plate seal. The raceway grooves 11a and 12a in which the balls 13 of the inner ring 11 and the outer ring 12 roll are formed in a semicircular cross section. The radius of curvature of the raceway grooves 11a and 12a is 1.02 to 1.04 times as large as the diameter of the ball 13 in a general deep groove ball bearing, for example, as a range of 1.08 to 1.25 times. Also good.

軸受6の軸受内部空間SにはグリースGを充填する。グリースGの初期封入量は、軸受内部空間Sの容積の5〜20%とする。このグリース封入量は、好ましくは、5〜15%であり、より好ましくは5〜10%である。
なお、軸受内部空間Sは、同図のようなシール付き軸受の場合は、内外輪11,12間の両側のシール15で仕切られた空間における玉13や保持器14等の軸受構成部品が占める残りの空間のことである。
The bearing internal space S of the bearing 6 is filled with grease G. The initial amount of grease G filled is 5 to 20% of the volume of the bearing internal space S. The amount of grease filled is preferably 5 to 15%, more preferably 5 to 10%.
In the case of a bearing with a seal as shown in the figure, the bearing internal space S is occupied by bearing components such as balls 13 and cages 14 in a space partitioned by seals 15 on both sides between the inner and outer rings 11 and 12. It is the remaining space.

シール無しの軸受の場合は、軸受内部空間Sは、厳密には内外輪11,12間の空間から玉13や保持器14等の軸受構成部品が占める残りの空間のことになるが、シール付き軸受に対応する空間容積、つまりシールがあると仮定した場合の空間容積を、上記軸受内部空間Sの容積として扱うこととしている。
軸受内部空間についての一般的な厳密な定義はないが、上記非特許文献1では、軸受内部空間の容積の概略値を次式で求めることができるとされている。
V=K・W …(1)
ここで、V:開放型軸受の空間容積(概略値)(cm3 )、
K:軸受空間係数(軸受形式によって定められている係数)、
W:軸受の質量(kg)、
である。
Kの値は、深溝玉軸受であって保持器形式が打抜き保持器の場合は、例えばK=61とされる。
例えば、上記の(1) 式で定められる容積Vを、シール無し軸受の場合の軸受内部空間Sの容積と定めてもよい。
In the case of a bearing without a seal, the bearing inner space S is strictly the remaining space occupied by bearing components such as the balls 13 and the cage 14 from the space between the inner and outer rings 11, 12. The space volume corresponding to the bearing, that is, the space volume when it is assumed that there is a seal, is treated as the volume of the bearing internal space S.
Although there is no general strict definition for the bearing internal space, the non-patent document 1 states that an approximate value of the volume of the bearing internal space can be obtained by the following equation.
V = K · W (1)
Where V: space volume of open type bearing (approximate value) (cm 3 ),
K: Bearing space coefficient (coefficient determined by bearing type),
W: Mass of bearing (kg),
It is.
When the value of K is a deep groove ball bearing and the cage type is a punched cage, for example, K = 61.
For example, the volume V defined by the above equation (1) may be determined as the volume of the bearing internal space S in the case of a bearing without a seal.

この構成の小型風力発電機主軸用軸受7によると、封入グリースを軸受内部空間Sの20%以下としたため、後の試験例に示すように、通常の40%前後の封入量とする場合に比べて、回転抵抗となるトルクが大幅に小さくなる。そのため、弱い風でもブレード4の回転が可能になる。また、封入グリース量を5%以上としたため、使用に伴うグリースの劣化に対して、必要な耐久性も確保できる。
この実施形態において、内外輪11,12の軌道面11a,12aの曲率半径を、玉径(玉の半径)に対して、従来の1.02〜1.04倍から1.08〜1.25倍の範囲と大きくした場合は、回転トルクがさらに低減される。軌道面11a,12aの玉径に対する曲率半径を大きくすると、トルクが低減する反面、支持精度が低下するが、小型風力発電機1の主軸6の支持では、あまり高い精度は要求されない。そのため、曲率半径が1.25倍まであれば、精度面の支障を生じることなく、トルク低減の効果が得られる。また曲率半径が1.08倍以上であれば、従来の一般的な曲率半径の割合である1.02〜1.04倍の場合に比べて明らかなトルク低減の効果が得られる。
According to the small-sized wind power generator main shaft bearing 7 having this configuration, since the sealed grease is 20% or less of the bearing internal space S, as shown in a later test example, compared with a case where the sealed amount is about 40% as usual. Thus, the torque that becomes the rotational resistance is significantly reduced. Therefore, the blade 4 can be rotated even in a weak wind. Further, since the amount of the enclosed grease is 5% or more, necessary durability can be ensured against the deterioration of the grease due to use.
In this embodiment, the radius of curvature of the raceway surfaces 11a and 12a of the inner and outer rings 11 and 12 is 1.02 to 1.04 times 1.08 to 1.25 compared with the conventional ball diameter (ball radius). When the range is doubled, the rotational torque is further reduced. Increasing the radius of curvature of the raceway surfaces 11a and 12a with respect to the ball diameter reduces the torque, but lowers the support accuracy. However, the support of the main shaft 6 of the small wind power generator 1 does not require a very high accuracy. Therefore, if the radius of curvature is up to 1.25 times, the effect of torque reduction can be obtained without causing any problem in accuracy. In addition, when the radius of curvature is 1.08 times or more, a clear torque reduction effect can be obtained as compared with the case of 1.02 to 1.04 times that is a ratio of a conventional general radius of curvature.

図2は、グリース封入割合とトルクとの関係の試験結果を示す。供試軸受には、JIS規格の6205番の深溝玉軸受を用いた。この軸受は内径が25mmのものである。回転速度は800rpmとした。
同図からわかるように、グリース封入割合(グリース封入量)が5%から20%の範囲では、封入量が増えるに従ってトルクが増大する傾向は見られるが、その増大割合は僅かであり、トルク値は20mN・m程度と略一定となっている。グリース封入割合が20%を超え、30%程度となると、トルク値が40N・m程度と略2倍になっており、この間ではグリース封入割合が増えるに従ってトルク価は急激に増大する。40%を超えると、60%程度までは、略一定のトルク価となっている。
同図の結果から、トルクを低減させるには、グリース封入量(封入割合)を20%以下とすることが好ましいことが判る。
FIG. 2 shows a test result of the relationship between the grease filling ratio and the torque. A JIS standard 6205 deep groove ball bearing was used as the test bearing. This bearing has an inner diameter of 25 mm. The rotation speed was 800 rpm.
As can be seen from the figure, when the grease filling ratio (grease filling amount) is in the range of 5% to 20%, the torque tends to increase as the filling amount increases, but the increase ratio is slight and the torque value is small. Is approximately constant at about 20 mN · m. When the grease filling ratio exceeds 20% and is about 30%, the torque value is approximately doubled to about 40 N · m. During this period, the torque value increases rapidly as the grease filling ratio increases. If it exceeds 40%, the torque value is substantially constant up to about 60%.
From the results shown in FIG. 6, it can be seen that the amount of grease (encapsulation ratio) is preferably 20% or less in order to reduce the torque.

図3は、この発明の他の実施形態を示す。この実施形態は、図1(A)に示した小型風力発電機1において、その軸受7を油潤滑の深溝玉軸受とし、次の構成の潤滑油循環装置20を設けたものである。   FIG. 3 shows another embodiment of the present invention. In this embodiment, in the small wind power generator 1 shown in FIG. 1A, the bearing 7 is an oil-lubricated deep groove ball bearing, and a lubricating oil circulation device 20 having the following configuration is provided.

この潤滑油循環装置20は、小型風力発電機1(図1)における上記発電機8の発電電力で駆動されるポンプ21により、潤滑油を軸受7に供給し、かつこの軸受7から漏れ出た潤滑油を再度供給に用いるものである。潤滑油循環装置20は、油溜め22に溜めた潤滑油を供給路23によって軸受7内に供給するものであり、軸受7から漏れた潤滑油を受ける潤滑油受け24を有している。潤滑油受け24の潤滑油が、上記ポンプ21により、循環路25を介して油溜め22に送られる。循環路25の油溜め22に対向する出口にはフィルタ26が設けられている。油溜め22には潤滑油の油面を検出するレベルセンサ27が設けられ、レベルセンサ27の検出値によってポンプ21を駆動するモータ28のオンオフ制御が行われる。   The lubricating oil circulation device 20 supplies lubricating oil to the bearing 7 by the pump 21 driven by the generated power of the generator 8 in the small wind power generator 1 (FIG. 1), and leaks from the bearing 7. Lubricating oil is used again for supply. The lubricating oil circulation device 20 supplies the lubricating oil stored in the oil reservoir 22 into the bearing 7 through the supply passage 23, and has a lubricating oil receiver 24 that receives the lubricating oil leaking from the bearing 7. Lubricating oil in the lubricating oil receiver 24 is sent to the oil sump 22 through the circulation path 25 by the pump 21. A filter 26 is provided at the outlet of the circulation path 25 facing the oil sump 22. The oil sump 22 is provided with a level sensor 27 for detecting the oil level of the lubricating oil, and on / off control of the motor 28 that drives the pump 21 is performed based on the detection value of the level sensor 27.

ポンプ21のモータ28は、発電機8の発電電力を直接用いるものであっても良いが、この例では、発電機8の発電電力を充電回路29によって二次電池30に充電し、二次電池30の電力をモータ28の駆動に用いるようにしている。   The motor 28 of the pump 21 may directly use the generated power of the generator 8, but in this example, the secondary battery 30 is charged by the charging circuit 29 with the generated power of the generator 8, and the secondary battery is charged. 30 electric power is used to drive the motor 28.

この実施形態の場合、軸受7は油潤滑のため、グリース潤滑に比べて回転抵抗となるトルクが小さいものとできる。油潤滑であると、耐久性確保のために補給を行う必要があるが、ポンプ21によって潤滑油を軸受7に供給し、この軸受7から漏れ出た潤滑油を、潤滑油循環装置20により再度供給に用いるようにしたため、優れた耐久性が得られる。ポンプ28の駆動に電力が必要であるが、風力発電機1の軸受7であり、その発電電力を用いてポンプ28を駆動するようにしたため、別途に電源を設ける必要がない。   In the case of this embodiment, since the bearing 7 is oil-lubricated, it can have a smaller torque that becomes a rotational resistance than grease lubrication. In the case of oil lubrication, it is necessary to replenish in order to ensure durability. However, the lubricating oil is supplied to the bearing 7 by the pump 21, and the lubricating oil leaked from the bearing 7 is again supplied by the lubricating oil circulation device 20. Since it was used for supply, excellent durability was obtained. Electric power is required to drive the pump 28, but the bearing 7 of the wind power generator 1 is used to drive the pump 28 using the generated electric power, so there is no need to provide a separate power source.

なお、図3に示すような油潤滑とする場合は、軸受7は、深溝玉軸受に限らず、種々の形式の転がり軸受を用いることができる。   In the case of oil lubrication as shown in FIG. 3, the bearing 7 is not limited to a deep groove ball bearing, and various types of rolling bearings can be used.

(A)はこの発明の第1の実施形態にかかる軸受を用いた小型風力発電機の概略側面図、(B)はその軸受の部分断面図である。(A) is a schematic side view of the small wind power generator using the bearing concerning 1st Embodiment of this invention, (B) is a fragmentary sectional view of the bearing. 深溝玉軸受におけるグリース封入割合とトルクの関係を示すグラフである。It is a graph which shows the relationship between the grease enclosure ratio and torque in a deep groove ball bearing. この発明の他の実施形態にかかる小型風力発電機主軸用軸受、およびその潤滑油循環装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the bearing for small wind power generator main shafts concerning other embodiment of this invention, and its lubricating oil circulation apparatus.

符号の説明Explanation of symbols

1…小型風力発電機
4…ブレード
6…主軸
7…小型風力発電機主軸用軸受
11…内輪
12…外輪
11a,12a…軌道溝
13…玉
15…シール
20…潤滑油循環装置
21…ボンプ
28…モータ
G…グリース
S…軸受内部空間
DESCRIPTION OF SYMBOLS 1 ... Small wind power generator 4 ... Blade 6 ... Main shaft 7 ... Bearing for small wind power generator main shaft 11 ... Inner ring 12 ... Outer ring 11a, 12a ... Track groove 13 ... Ball 15 ... Seal 20 ... Lubricating oil circulation device 21 ... Pump 28 ... Motor G ... Grease S ... Bearing internal space

Claims (2)

小型風力発電機のブレードを取付けた主軸を回転自在に支持する軸受であって、グリース潤滑の深溝玉軸受からなり、軸受内部空間に封入されるグリース量を、軸受内部空間の5〜20%としたことを特徴とする小型風力発電機主軸用軸受。   A bearing that rotatably supports a main shaft to which a blade of a small wind power generator is attached. The bearing comprises a grease-lubricated deep groove ball bearing, and the amount of grease enclosed in the bearing inner space is 5 to 20% of the bearing inner space. A small wind power generator main shaft bearing characterized by the above. 小型風力発電機のブレードを取付けた主軸を回転自在に支持する軸受であって、油潤滑の転がり軸受からなり、前記小型風力発電機の発電電力で駆動されるポンプにより、潤滑油を前記転がり軸受に供給しかつこの転がり軸受から漏れ出た潤滑油を再度供給に用いる潤滑油循環装置を設けたことを特徴とする小型風力発電機主軸用軸受。   A bearing for rotatably supporting a main shaft on which a blade of a small wind power generator is mounted, comprising a rolling bearing of oil lubrication, and lubricating oil is supplied to the rolling bearing by a pump driven by power generated by the small wind power generator. A small wind power generator main shaft bearing provided with a lubricating oil circulating device that supplies the lubricating oil that is supplied to the rolling bearing and leaked from the rolling bearing to supply again.
JP2004012820A 2004-01-21 2004-01-21 Bearing for small wind power generator main spindle Pending JP2005207264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012820A JP2005207264A (en) 2004-01-21 2004-01-21 Bearing for small wind power generator main spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012820A JP2005207264A (en) 2004-01-21 2004-01-21 Bearing for small wind power generator main spindle

Publications (1)

Publication Number Publication Date
JP2005207264A true JP2005207264A (en) 2005-08-04

Family

ID=34899084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012820A Pending JP2005207264A (en) 2004-01-21 2004-01-21 Bearing for small wind power generator main spindle

Country Status (1)

Country Link
JP (1) JP2005207264A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078113A (en) * 2005-09-15 2007-03-29 Ntn Corp Roller bearing, ball bearing, and bearing structure
DE102007036891A1 (en) * 2007-08-04 2009-02-19 Ab Skf Storage of a main shaft of a wind turbine
WO2010044171A1 (en) * 2008-10-17 2010-04-22 三菱重工業株式会社 Wind-driven electricity generator
KR100999715B1 (en) 2008-09-01 2010-12-08 두산중공업 주식회사 Cooling Lubrication System of Wind Generating Gearbox
JP2011027188A (en) * 2009-07-27 2011-02-10 Ntn Corp Rotating bearing and rotating section support device for wind turbine
JPWO2010018630A1 (en) * 2008-08-14 2012-01-26 三菱重工業株式会社 Wind power generator
WO2012038327A1 (en) * 2010-09-21 2012-03-29 Xemc Darwind B.V. Wind turbine with oil lubrication
US8227950B2 (en) 2005-09-15 2012-07-24 Ntn Corporation Rolling bearing, spindle support structure of main motor for railway vehicle, and bearing structure
WO2013136056A1 (en) * 2012-03-10 2013-09-19 Romax Technology Limited Overhead tank
CN103791037A (en) * 2012-10-30 2014-05-14 吴小杰 Wind power generation variable-pitch speed reducing device with bearings lubricated by grease
EP3018375A1 (en) * 2014-11-07 2016-05-11 Senvion GmbH Roller bearing lubrication of a wind power facility

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078113A (en) * 2005-09-15 2007-03-29 Ntn Corp Roller bearing, ball bearing, and bearing structure
US8227950B2 (en) 2005-09-15 2012-07-24 Ntn Corporation Rolling bearing, spindle support structure of main motor for railway vehicle, and bearing structure
DE102007036891A1 (en) * 2007-08-04 2009-02-19 Ab Skf Storage of a main shaft of a wind turbine
JPWO2010018630A1 (en) * 2008-08-14 2012-01-26 三菱重工業株式会社 Wind power generator
KR100999715B1 (en) 2008-09-01 2010-12-08 두산중공업 주식회사 Cooling Lubrication System of Wind Generating Gearbox
US8672093B2 (en) 2008-10-17 2014-03-18 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
KR101087518B1 (en) * 2008-10-17 2011-11-28 미츠비시 쥬고교 가부시키가이샤 Wind turbine generator
JP5031031B2 (en) * 2008-10-17 2012-09-19 三菱重工業株式会社 Wind power generator
WO2010044171A1 (en) * 2008-10-17 2010-04-22 三菱重工業株式会社 Wind-driven electricity generator
JP2011027188A (en) * 2009-07-27 2011-02-10 Ntn Corp Rotating bearing and rotating section support device for wind turbine
US8944692B2 (en) 2009-07-27 2015-02-03 Ntn Corporation Slewing bearing and rotating section support device for wind turbine
WO2012038327A1 (en) * 2010-09-21 2012-03-29 Xemc Darwind B.V. Wind turbine with oil lubrication
CN103189643A (en) * 2010-09-21 2013-07-03 湘电达尔文有限责任公司 Wind turbine with oil lubrication
US9903345B2 (en) 2010-09-21 2018-02-27 Xemc Darwind B.V. Wind turbine with oil lubrication
WO2013136056A1 (en) * 2012-03-10 2013-09-19 Romax Technology Limited Overhead tank
CN103791037A (en) * 2012-10-30 2014-05-14 吴小杰 Wind power generation variable-pitch speed reducing device with bearings lubricated by grease
EP3018375A1 (en) * 2014-11-07 2016-05-11 Senvion GmbH Roller bearing lubrication of a wind power facility

Similar Documents

Publication Publication Date Title
CN102725546B (en) Electrical machine having a roller bearing, which is protected against electrical breakdowns, and a geared motor having such a roller bearing
JP2005207264A (en) Bearing for small wind power generator main spindle
US10190635B2 (en) Electric machine with improved bearing lubrication
JP2014181750A (en) Fluid dynamic pressure bearing device and motor including the same
CN207333223U (en) Diving canned motor pump
JP2007247711A (en) Rolling bearing for underwater rotary device
CN203615028U (en) Motor lubrication circulation structure
JP2005036880A (en) Planetary gear device and its rolling bearing
CN201180672Y (en) Bearing rare oil lubrication apparatus for bearing box of vertical pump
CN203146400U (en) Lubricating and cooling mechanism of pipeline pump bearing assembly
CN103115018B (en) A kind of lubrication of pipeline pump bearing unit and cooling mechanism
JP2006194406A (en) Rolling bearing device
US6715927B1 (en) Rolling bearing and bearing apparatus
JP2006234096A (en) Sealed roller bearing
JP2014066346A (en) Ball bearing cage, and ball bearing
JP2008025668A (en) Sealing device
JP2005147329A (en) Bearing device for wind power generator
JPH08322191A (en) Motor
CN2594503Y (en) Magnetofluid bearing radiating fans
JP3799176B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
CN102734204A (en) Circulating lubricating cooling bearing oil tank for pumps
JP2000336383A (en) Hydrodynamic bearing, spindle motor and rotor apparatus
CN208169355U (en) The fit structure of bearing and water-cooling bearing block
JP2003247556A (en) Multi-point contact ball bearing and pulley for automobiles
JPH03260415A (en) Dynamic pressure fluid bearing device