JP2005206434A - Manufacturing process of microparticle dispersion glass and ultraviolet cut filter - Google Patents

Manufacturing process of microparticle dispersion glass and ultraviolet cut filter Download PDF

Info

Publication number
JP2005206434A
JP2005206434A JP2004016059A JP2004016059A JP2005206434A JP 2005206434 A JP2005206434 A JP 2005206434A JP 2004016059 A JP2004016059 A JP 2004016059A JP 2004016059 A JP2004016059 A JP 2004016059A JP 2005206434 A JP2005206434 A JP 2005206434A
Authority
JP
Japan
Prior art keywords
glass
substitution
fine particles
mixture
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004016059A
Other languages
Japanese (ja)
Inventor
Nobuhito Takeshima
延仁 武島
Yutaka Kuroiwa
裕 黒岩
Yoshihiro Narita
善廣 成田
Kazuyuki Hirao
一之 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Okamoto Glass Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Hitachi Cable Ltd
Okamoto Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Hitachi Cable Ltd, Okamoto Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004016059A priority Critical patent/JP2005206434A/en
Publication of JP2005206434A publication Critical patent/JP2005206434A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of glass in which microparticles of a semiconductor compound containing sulfur, selenium or tellurium are dispersed and microparticle dispersion glass which does not require heat treatment, and an ultraviolet cut filter using the glass. <P>SOLUTION: The manufacturing process of the microparticle dispersion glass comprises mixing glass as a glass matrix, a compound containing a substitution substance including at least one kind selected from sulfur, selenium and tellurium and zinc oxide to obtain a mixture, melting the mixture by heating and cooling it so that the oxygen in the zinc oxide is substituted with the substitution substance through substitution reaction and miroparticles consisting of zinc and the substitution substance is deposited in the glass. Preferably, the concentration of the substitution substance to be added in the mixture such as sulfur, selenium and tellurium is so adjusted in advance as to obtain a desired particle size. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、硫黄、セレンまたはテルルを含む半導体化合物を微粒子として分散させているガラスの製造方法、およびそのガラスを用いた紫外線遮断フィルターに関するものである。
The present invention relates to a method for producing glass in which a semiconductor compound containing sulfur, selenium or tellurium is dispersed as fine particles, and an ultraviolet blocking filter using the glass.

微粒子を分散させたガラスは、これまでも光の吸収材として利用されてきている。例えばカドミウム化合物の半導体微粒子を分散させた材料は、それらの特殊なバンド構造に由来する吸収領域と透過領域の急激な推移を利用して光のシャープカットフィルターとして利用されている。
特開平3−130753号公報 特開平4−13306号公報 特開2000−250078号公報
Glass in which fine particles are dispersed has been used as a light absorber. For example, a material in which semiconductor fine particles of a cadmium compound are dispersed is used as a light sharp-cut filter by utilizing the abrupt transition of an absorption region and a transmission region derived from the special band structure.
Japanese Patent Laid-Open No. 3-130753 JP-A-4-13306 Japanese Patent Laid-Open No. 2000-250078

紫外線領域の光の遮断材としては、特許文献1または特許文献2に記載されているようなI−VII族半導体微粒子を分散させた材料が提供されている。しかしながら、これらの材料は半導体微粒子を析出させる際に熱処理を必要とする。加えてガラス製造過程においても中性または還元雰囲気での溶融作業が必要であり特殊な環境下での製造を必要とする。また、微粒子の大きさを制御させたり揃えたりするためにも、熱処理を施す必要がある。   As the light blocking material in the ultraviolet region, a material in which I-VII group semiconductor fine particles as described in Patent Document 1 or Patent Document 2 are dispersed is provided. However, these materials require heat treatment when the semiconductor fine particles are deposited. In addition, in the glass manufacturing process, a melting operation in a neutral or reducing atmosphere is required, and manufacturing in a special environment is required. Moreover, it is necessary to perform heat treatment in order to control and align the size of the fine particles.

一方、前記したカドミウム化合物の半導体微粒子を含む光の吸収ガラスは、吸収領域と透過領域の間での急峻な透過特性の推移があり、光のカットフィルターとしては好ましいが、紫外線領域の特定の波長の光をその波長に応じて選択的に遮断するガラスとすることが出来ない。加えて、前述のI−VII族半導体微粒子の場合と同様に、微粒子の大きさを制御させたり揃えたりするためには、熱処理を施す必要がある。   On the other hand, the light-absorbing glass containing the semiconductor fine particles of the cadmium compound described above has a sharp transition in transmission characteristics between the absorption region and the transmission region, and is preferable as a light cut filter, but has a specific wavelength in the ultraviolet region. It is not possible to make a glass that selectively blocks the light according to its wavelength. In addition, as in the case of the aforementioned I-VII group semiconductor fine particles, it is necessary to perform a heat treatment in order to control and align the size of the fine particles.

これらの化合物半導体微粒子分散ガラスにおいては波長を制御するためにはカドミウム化合物半導体の組成、添加量や微粒子析出温度・時間条件を変化させるのが普通であった。更に前述の様に従来の微粒子分散ガラスでは、熱処理をすることにより微粒子の粒径を揃えていた。ところが、この熱処理温度に光学的なフィルター特性が依存していたため、図4に見られるように、更に熱処理より高い温度が加わるとその光学的なフィルターとしての特性が変化してしまうという問題もあった。   In these compound semiconductor fine particle-dispersed glasses, in order to control the wavelength, it is common to change the composition, addition amount, and fine particle deposition temperature / time conditions of the cadmium compound semiconductor. Further, as described above, in the conventional fine particle-dispersed glass, the particle diameters of the fine particles are made uniform by heat treatment. However, since the optical filter characteristics depend on the heat treatment temperature, as shown in FIG. 4, there is a problem that the characteristics of the optical filter change when a temperature higher than the heat treatment is applied. It was.

これに対して、上記と同様に特定な波長の光を遮断する目的で多層膜をコーティングした材料が用いられることもある。しかしこの場合は、光の遮断効果には入射角度依存性があり、一定方向の光しか遮断する効果が得られないという問題がある。この為、用途が限られ、また使用する場合でも光の入射方向に対して制約を受けるので使い勝手が非常に悪いものとなっていた。
On the other hand, a material coated with a multilayer film may be used for the purpose of blocking light of a specific wavelength as described above. However, in this case, the light blocking effect has an incident angle dependency, and there is a problem that an effect of blocking only light in a certain direction can be obtained. For this reason, the usage is limited, and even when it is used, it is restricted in the incident direction of light, so that it is very inconvenient.

上記の課題を解決するために、本発明の第1の態様に係る微粒子分散ガラスの製造方法は、まず母材としてのガラス材と、少なくとも硫黄、セレン、またはテルルのいずれか1種以上を含む置換物質を含有する化合物と、酸化亜鉛とを混合して混合物とする。このとき、混合物はこれら硫黄、セレン、テルルなどの置換物質の添加濃度を予め所定の粒径となるように調整しておくことが好ましい。
そして、当該混合物を加熱溶融した後冷却して、前記酸化亜鉛の酸素と前記置換物質とを置換反応させ、亜鉛と置換物質とからなる微粒子をガラス中に析出させて微粒子分散ガラスを製造する。
In order to solve the above problems, the method for producing a fine particle-dispersed glass according to the first aspect of the present invention first includes a glass material as a base material and at least one of sulfur, selenium, and tellurium. A compound containing a substitution substance and zinc oxide are mixed to form a mixture. At this time, it is preferable that the mixture is adjusted in advance so that the addition concentration of the substitutional substances such as sulfur, selenium, and tellurium has a predetermined particle size.
Then, the mixture is heated and melted and then cooled to cause a substitution reaction between the oxygen of the zinc oxide and the substitution substance, and fine particles composed of zinc and the substitution substance are precipitated in the glass to produce a fine particle-dispersed glass.

こうして作成された亜鉛と置換物質との半導体化合物からなる微粒子が分散されたガラスは、特に熱処理をしなくとも置換物質の添加濃度によってその粒径が制御できる。従って置換物質の添加濃度、即ち粒径の大きさに応じて吸収波長の異なる光学フィルターとすることができる。特に、紫外線領域において任意の波長以下を選択的に遮断できる紫外線遮断フィルターとして用いることができる。
The glass in which fine particles made of a semiconductor compound of zinc and a substitute substance dispersed in this way are dispersed can be controlled in particle size by the addition concentration of the substitute substance without any particular heat treatment. Therefore, it is possible to obtain an optical filter having different absorption wavelengths according to the addition concentration of the substitution substance, that is, the size of the particle diameter. In particular, it can be used as an ultraviolet blocking filter capable of selectively blocking below an arbitrary wavelength in the ultraviolet region.

本発明では、微粒子の析出は溶解とその後の冷却など製造条件にほとんど依存せず、硫黄などの置換物質の添加濃度によりほぼ粒径が決定する。従って、光の吸収波長帯を制御できる。
In the present invention, the precipitation of fine particles hardly depends on the production conditions such as dissolution and subsequent cooling, and the particle size is almost determined by the addition concentration of a substitution substance such as sulfur. Therefore, the absorption wavelength band of light can be controlled.

本発明者らは、熱処理を必要としない紫外線を遮断する新しいガラスを得るべく研究を重ねてきた。その結果、酸化亜鉛を含有させたガラス中に酸化亜鉛の酸素と、置換物質として混入する硫黄、セレン、またはテルルを含む化合物中の硫黄、セレン、またはテルルの置換反応を高効率に促進することにより、成形後熱処理することなくZnS、ZnSe、またはZnTe微粒子を形成することに成功した。   The inventors of the present invention have made researches to obtain new glasses that block ultraviolet rays that do not require heat treatment. As a result, it is possible to efficiently promote the substitution reaction of sulfur, selenium, or tellurium in a compound containing zinc oxide oxygen and sulfur, selenium, or tellurium mixed as a substitute substance in the glass containing zinc oxide. Thus, ZnS, ZnSe, or ZnTe fine particles were successfully formed without heat treatment after molding.

本発明の製造方法の一例について、実施例1〜5に基づいて以下に説明する。
まず、表1に記載されているような配合比で、母材となるガラスと、酸化亜鉛と、置換物質として硫黄またはセレンと、さらにこの置換物質と溶融中に一時的に化合物を生成するための酸化鉛とを混合し実施例1〜5に相当する原料混合物を作る。

Figure 2005206434
An example of the production method of the present invention will be described below based on Examples 1 to 5.
First, in order to generate a compound temporarily during melting with the glass as a base material, zinc oxide, sulfur or selenium as a substitute material, and further with the blend ratio as described in Table 1 The raw material mixture corresponding to Examples 1 to 5 is made by mixing with lead oxide.
Figure 2005206434

このとき置換物質は、硫黄、セレンなど単体で混合されても良いし、酸化物等の化合物とされて混合されても良い。また、実施例では硫黄およびセレンを用いたが、テルルでも同様の効果が得られると考えられる。置換物質を含有する化合物としては、これらの物質が少なくとも1種以上含む化合物でもよい。   At this time, the substitution substance may be mixed alone such as sulfur and selenium, or may be mixed as a compound such as an oxide. Moreover, although sulfur and selenium were used in the examples, it is considered that the same effect can be obtained with tellurium. The compound containing a substitution substance may be a compound containing at least one of these substances.

一方、溶融中に一時的に化合物を生成するために必要な鉛は、混合物中では実施例の様に酸化鉛やその他の化合物の形でも良いし鉛単体でも良い。
ここで比較のために表1に示されているような配合比で比較例1も作成した。この比較例1は、以後に示されているような実施例1〜5と同様な製造過程で作成した。
On the other hand, the lead necessary for temporarily generating a compound during melting may be in the form of lead oxide or other compounds in the mixture as in the embodiment, or lead alone.
Here, for comparison, Comparative Example 1 was also prepared with a blending ratio as shown in Table 1. This Comparative Example 1 was prepared in the same manufacturing process as Examples 1 to 5 as shown below.

次に、この実施例1〜5の混合物を摂氏1,350℃まで加熱して2時間保持し溶融ガラス状態とする。このように高温に加熱された状態で、添加されていた鉛と置換物質とは、酸化亜鉛が共存する状況では、次の化学式に表されるように変化する。
PbA+ZnO → PbO+ZnA
(ここで、Aは、硫黄またはセレン。)
Next, the mixture of Examples 1 to 5 is heated to 1,350 ° C. and held for 2 hours to obtain a molten glass state. Thus, in the state heated to high temperature, the added lead and the substitute substance change as represented by the following chemical formula in the situation where zinc oxide coexists.
PbA + ZnO → PbO + ZnA
(Here, A is sulfur or selenium.)

本発明で重要なことは、溶融後も、この硫黄またはセレンが十分にガラス中に残存し、かつ均等に分散されていることである。その為に、溶融時には、溶融ポットに蓋をして、溶融時間、温度を適切に制御する必要があるが、適宜最適条件を選択すれば良い。   What is important in the present invention is that the sulfur or selenium remains sufficiently in the glass even after melting and is evenly dispersed. Therefore, at the time of melting, it is necessary to cover the melting pot and appropriately control the melting time and temperature, but the optimum conditions may be selected as appropriate.

このように高温で溶融された後、およそ5℃/min(分)の割合で急速冷却する。なお、成形ガラスの歪を取るためのアニール温度は530℃およそ60分であるがその間に粒径の変化は起こらない。すると、溶融時に亜鉛と結びついた置換物質が半導体化合物となり微粒子となって析出する。本発明では前述の様に、適切な条件で溶融されているので、半導体化合物の元となる硫黄またはセレンは十分にガラス中に残存しており、またこの濃度によって粒径が決まるので、溶融条件や冷却条件によらず、一定の粒径の微粒子が析出する。   After being melted at such a high temperature, it is rapidly cooled at a rate of approximately 5 ° C./min (minutes). The annealing temperature for removing the distortion of the molded glass is about 530 ° C. for about 60 minutes, but the particle size does not change during that time. Then, the substituted substance combined with zinc at the time of melting becomes a semiconductor compound and precipitates as fine particles. In the present invention, as described above, since it is melted under appropriate conditions, sulfur or selenium as a base of the semiconductor compound is sufficiently left in the glass, and the particle size is determined by this concentration. Regardless of the cooling conditions, fine particles with a constant particle size are deposited.

一般に析出させる微粒子の大きさを変化させることにより、光の吸収する波長を変化させることが可能である。これはZnS、ZnSe、ZnTe等のバンドギャップに依存している。本発明においては、析出微粒子が1〜100nm程度であるため量子効果によりバンドギャップが変化し、それにより光の吸収波長帯が変化する。従って、微粒子の粒径を制御することにより吸収波長帯を容易に制御することが可能である。   In general, it is possible to change the wavelength of light absorption by changing the size of fine particles to be deposited. This depends on the band gap of ZnS, ZnSe, ZnTe or the like. In the present invention, since the precipitated fine particles are about 1 to 100 nm, the band gap changes due to the quantum effect, thereby changing the light absorption wavelength band. Therefore, the absorption wavelength band can be easily controlled by controlling the particle size of the fine particles.

図1に示されているように、実施例1〜4のガラスにおける光の吸収波長帯は、硫黄の濃度に応じて変化している。即ち、硫黄の濃度に応じて粒径が変化していると言える。また実施例5から、添加される置換物質によっても光の吸収波長帯は変化していることが分かる。即ち、添加される置換物質によっても粒径が異なるといえる。   As shown in FIG. 1, the absorption wavelength band of light in the glasses of Examples 1 to 4 varies depending on the concentration of sulfur. That is, it can be said that the particle size changes according to the concentration of sulfur. In addition, it can be seen from Example 5 that the light absorption wavelength band also varies depending on the added substitute substance. In other words, it can be said that the particle diameter varies depending on the substituted substance to be added.

本発明によれば、添加する置換物質の濃度を調整することによってのみ、析出する微粒子の粒径が変化し、図3の比較例1や、図4に見られる従来例のように、熱処理による光の吸収波長帯の変化を伴わない。従って図2に見られるように、本発明により作られた微粒子分散ガラスは、熱処理によっても光の吸収波長帯が変化せず、粒径が変化することがない。   According to the present invention, the particle size of the precipitated fine particles is changed only by adjusting the concentration of the substitutional substance to be added, and by heat treatment as in Comparative Example 1 in FIG. 3 and the conventional example shown in FIG. There is no change in the light absorption wavelength band. Therefore, as can be seen in FIG. 2, in the fine particle-dispersed glass made according to the present invention, the light absorption wavelength band does not change and the particle size does not change even by heat treatment.

このように本発明においては、微粒子析出は溶解とその後の冷却に依存せず、硫黄など置換物質の添加濃度によりほぼ決定するという特長を有し、製造条件にほとんど依存しない。   As described above, in the present invention, the precipitation of fine particles does not depend on dissolution and subsequent cooling, but has a feature that it is substantially determined by the addition concentration of a substitute substance such as sulfur, and hardly depends on manufacturing conditions.

なお、本発明による母材のガラスは組成が限定されるものではなく、様々なガラス系においてZnS、ZnSe、またはZnTe等の半導体化合物の微粒子を析出させることが可能である。
Note that the glass of the base material according to the present invention is not limited in composition, and fine particles of semiconductor compounds such as ZnS, ZnSe, or ZnTe can be precipitated in various glass systems.

本発明により吸収波長帯を制御できるので、目的領域の紫外光線を取り出すことが出来る紫外線領域のガラスフィルターに適用できる。また、これまで記憶媒体に対する発光体としては、600nm付近の半導体レーザが主流で使用されてきたが、これら光源の短波長化の要求がある。本発明は、これに対応できるフィルターに適用できる。更に、紫外線自体にある人体に有害な波長や、材料を早く劣化させるような波長を選択的に遮断する光学フィルターに適用できる。
Since the absorption wavelength band can be controlled according to the present invention, the present invention can be applied to a glass filter in the ultraviolet region from which ultraviolet light in the target region can be extracted. In addition, as a light emitter for a storage medium, a semiconductor laser having a wavelength near 600 nm has been mainly used, but there is a demand for shortening the wavelength of these light sources. The present invention can be applied to a filter that can cope with this. Furthermore, the present invention can be applied to an optical filter that selectively blocks wavelengths that are harmful to the human body in the ultraviolet rays themselves or wavelengths that rapidly degrade materials.

紫外線フィルターガラスの分光曲線を示すグラフである。It is a graph which shows the spectral curve of ultraviolet filter glass. 実施例4の熱処理による分光曲線の変化を示すグラフである。6 is a graph showing changes in a spectral curve due to heat treatment in Example 4. 実施例4と比較例1の微粒子析出ガラス熱処理変化を示すグラフである。It is a graph which shows the heat treatment change of the fine particle precipitation glass of Example 4 and Comparative Example 1. 従来例のフィルターの更に高温での加熱処理による分光曲線の変化を示すグラフである。It is a graph which shows the change of the spectroscopic curve by the heat processing at the still higher temperature of the filter of a prior art example.

Claims (6)

母材としてのガラス材と、少なくとも硫黄、セレン、またはテルルのいずれか1種以上を含む置換物質を含有する化合物と、酸化亜鉛とを混合して混合物とし、当該混合物を加熱溶融した後冷却して、前記酸化亜鉛の酸素と前記置換物質とを置換反応させ、亜鉛と置換物質とからなる微粒子をガラス中に析出させることを特徴とする微粒子分散ガラスの製造方法。   A glass material as a base material, a compound containing a substitution material containing at least one of sulfur, selenium, and tellurium, and zinc oxide are mixed to form a mixture, and the mixture is heated and melted and then cooled. Then, a method for producing a fine particle-dispersed glass, wherein oxygen of the zinc oxide and the substitution substance are subjected to substitution reaction, and fine particles comprising zinc and the substitution substance are precipitated in the glass. 前記微粒子の粒径が、所定の粒径となるように前記混合物における前記化合物の添加濃度を調整しておくことを特徴とする請求項1記載の微粒子分散ガラスの製造方法。   The method for producing a fine particle-dispersed glass according to claim 1, wherein the concentration of the compound in the mixture is adjusted so that the fine particles have a predetermined particle size. 前記微粒子が、少なくともZnS、ZnSe、またはZnTeのいずれかを含むことを特徴とする請求項1または2に記載の微粒子分散ガラスの製造方法。   The method for producing a fine particle-dispersed glass according to claim 1 or 2, wherein the fine particles contain at least one of ZnS, ZnSe, and ZnTe. 前記混合物に、鉛または鉛化合物を含むことを特徴とする請求項1、2または3に記載の微粒子分散ガラスの製造方法。   The method for producing a fine particle-dispersed glass according to claim 1, wherein the mixture contains lead or a lead compound. 請求項1、2、3または4に記載の微粒子分散ガラスを光学フィルターとして用いたことを特徴とする紫外線遮断フィルター。   An ultraviolet blocking filter using the fine particle-dispersed glass according to claim 1 as an optical filter. 少なくともZnS、ZnSe、またはZnTeのいずれか1種を含む微粒子が、ガラス中に分散されていることを特徴とする紫外線遮断フィルター。   An ultraviolet blocking filter, wherein fine particles containing at least one of ZnS, ZnSe, and ZnTe are dispersed in glass.
JP2004016059A 2004-01-23 2004-01-23 Manufacturing process of microparticle dispersion glass and ultraviolet cut filter Pending JP2005206434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016059A JP2005206434A (en) 2004-01-23 2004-01-23 Manufacturing process of microparticle dispersion glass and ultraviolet cut filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016059A JP2005206434A (en) 2004-01-23 2004-01-23 Manufacturing process of microparticle dispersion glass and ultraviolet cut filter

Publications (1)

Publication Number Publication Date
JP2005206434A true JP2005206434A (en) 2005-08-04

Family

ID=34901331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016059A Pending JP2005206434A (en) 2004-01-23 2004-01-23 Manufacturing process of microparticle dispersion glass and ultraviolet cut filter

Country Status (1)

Country Link
JP (1) JP2005206434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058185A1 (en) 2005-11-15 2007-05-24 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
WO2008123378A1 (en) 2007-03-29 2008-10-16 Isuzu Glass Co., Ltd. Method for production of distributed refractive index-type optical element having ultraviolet ray-absorbing ability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058185A1 (en) 2005-11-15 2007-05-24 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
WO2008123378A1 (en) 2007-03-29 2008-10-16 Isuzu Glass Co., Ltd. Method for production of distributed refractive index-type optical element having ultraviolet ray-absorbing ability

Similar Documents

Publication Publication Date Title
CN102378925B (en) Optical filter material made of gallium-doped quartz glass, filter component and method for irradiation by means of a uv radiation source
JP2003177234A (en) Optical sharp edge filter containing no cadmium
JP2013159553A (en) Transparent heat-shielding material and method for producing the same
JPWO2008072368A1 (en) Visible glass polarizer
US10683232B2 (en) Photochromic glass with sharp cutoff
TWI642641B (en) UV rays pass through visible light absorption glass and UV rays pass through visible light absorption filters
JP2005206434A (en) Manufacturing process of microparticle dispersion glass and ultraviolet cut filter
JP2017536323A (en) Doped silica-titania glass having low expansion coefficient and method for producing the same
WO2017208679A1 (en) Method and device for manufacturing near infrared absorbing glass
JP2004086100A (en) Polarizing glass and its manufacture method
Iribarren et al. Experimental evidence of compositional mixture in CdTeO films grown by radio-frequency sputtering
KR20120097832A (en) Fabrication method of silicate glass including lead sulfide quantum dots containing rare earth metal
Espiau de Lamaëstre et al. PbS nanocrystal synthesis in Pb-containing silicate glasses
CN112760613B (en) Preparation method of carbon-doped molybdenum disulfide nano material
US7732054B2 (en) Method for preparing ZnO nanocrystals directly on silicon substrate
TW201808832A (en) Method and device for manufacturing near infrared absorbing glass
JPH0397638A (en) Multicomponent glass containing dispersed fine particle and production thereof
JP5131824B2 (en) Method for producing sol
CN117687138B (en) Optical filter and manufacturing method thereof
JP2945258B2 (en) Manufacturing method of nonlinear optical material
JP2509361B2 (en) Method for producing PbSe fine particle dispersed glass
JP6095156B2 (en) Photocatalytic glass
KR100485865B1 (en) Preparation method of crystal rhinestone for hot fix of cloths and its preparation method
JP2612613B2 (en) Method for producing fine particle dispersed glass
JP2006206337A (en) Glass filter for lowering color temperature and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Effective date: 20091217

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A02