JP2005205879A - Inorganic board made by paper-making process and its manufacturing method - Google Patents

Inorganic board made by paper-making process and its manufacturing method Download PDF

Info

Publication number
JP2005205879A
JP2005205879A JP2004222404A JP2004222404A JP2005205879A JP 2005205879 A JP2005205879 A JP 2005205879A JP 2004222404 A JP2004222404 A JP 2004222404A JP 2004222404 A JP2004222404 A JP 2004222404A JP 2005205879 A JP2005205879 A JP 2005205879A
Authority
JP
Japan
Prior art keywords
inorganic
papermaking
plate
board
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004222404A
Other languages
Japanese (ja)
Other versions
JP4468760B2 (en
Inventor
Tomoki Iwanaga
朋来 岩永
Akira Owada
彰 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2004222404A priority Critical patent/JP4468760B2/en
Publication of JP2005205879A publication Critical patent/JP2005205879A/en
Application granted granted Critical
Publication of JP4468760B2 publication Critical patent/JP4468760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/12Absence of mineral fibres, e.g. asbestos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic board made by a paper-making process which shows excellence in workability, flexibility, strength, a screw holding force and the like, and has high shock resistance and moisture release and absorption required for a moisture-conditioning building material in spite of no use of asbestos as a raw material, and to provide its manufacturing method. <P>SOLUTION: The manufacturing method of the inorganic board made by the paper-making process comprises the steps of wet-mixing a compound to obtain slurry, the compound containing 20 to 60 mass% of a matrix-forming hydraulic material, 1 to 50 mass% of an inorganic filler, 3.5 to 12 mass% of a reinforcing fiber (excluding asbestos) and 10 to 50 mass% of calcium silicate hydrate obtained by beforehand carrying out hydrothermal synthesis of a calcareous material and a siliceous material, subjecting the slurry to the paper-making process to obtain a green board, dehydrating the obtained green board under pressure, then curing and hardening it. The calcium silicate hydrate having a special particle diameter and the specific reinforcing fiber are used, and special conditions in the paper making process are employed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、無機質抄造板およびその製造方法に関するものであり、さらに詳しくは、原料として石綿(アスベスト)を使用しないにもかかわらず、施工性、柔軟性、強度、ネジ保持力等に優れるとともに、高い耐衝撃性能並びに吸放湿性能を有する無機質抄造板およびその製造方法に関するものである。   The present invention relates to an inorganic papermaking plate and a method for producing the same, and more specifically, although it does not use asbestos (asbestos) as a raw material, it has excellent workability, flexibility, strength, screw holding power, etc. The present invention relates to an inorganic papermaking plate having high impact resistance and moisture absorption / release performance and a method for producing the same.

現在、一般的な建材として使用されている無機質板には、例えばセメント系、石膏系、ケイ酸カルシウム系等の材質のものがある。これらの無機質板は、通常、抄造法、プレス成形法等の方法によって製造されている。
無機質板の原料としては、セメント系、石膏系およびケイ酸カルシウム系とも、通常、マトリックス形成原料および繊維原料を必須原料とし、これらの必須原料とともに、必要な性能を付与するための無機質充填材を併用している。従来は、繊維原料として石綿が使用されていた。石綿は、無機質板の製造および性能に極めて好適な繊維であるが、健康への影響も指摘されていることから、石綿を使用せずに無機質板を製造し、必要な性能を得るために様々な技術開発が行われてきた。
例えば、繊維補強された無機質板の抄造法による製造方法に関して、特許文献1には、セルロースパルプ、合成パルプ、ガラス繊維、PVA繊維、PAN繊維、アラミド繊維及びカーボン繊維からなる群から選択された繊維質原料と、ポルトランドセメントを主体とするか、または石灰質原料と珪酸質原料を主体とするマトリックス形成用粉体原料を必須成分とする構成原料を湿式混合し、抄造法により形成した生板を複数枚積層した後、プレス成形を行い、養生硬化することからなるノンアスベストスレートの製造方法において、プレス成形前の生板含水率を33%以上とし且つプレス成形による生板含水率の低下量を10%以上とすることを特徴とするノンアスベストスレートの製造方法が開示されている。
At present, inorganic boards used as general building materials include, for example, cement-based, gypsum-based, and calcium silicate-based materials. These inorganic plates are usually produced by methods such as papermaking and press molding.
As raw materials for inorganic boards, cement-based, gypsum-based and calcium silicate-based materials usually use matrix forming raw materials and fiber raw materials as essential raw materials, and together with these essential raw materials, an inorganic filler for imparting necessary performance. Used together. Conventionally, asbestos has been used as a fiber raw material. Asbestos is a very suitable fiber for the production and performance of inorganic board, but it has been pointed out that its effects on health. Therefore, asbestos can be manufactured in various ways to produce inorganic board without using asbestos and obtain the required performance. Technology development has been carried out.
For example, with respect to a method for producing a fiber-reinforced inorganic plate by a papermaking method, Patent Document 1 discloses a fiber selected from the group consisting of cellulose pulp, synthetic pulp, glass fiber, PVA fiber, PAN fiber, aramid fiber, and carbon fiber. A plurality of raw plates formed by paper-making method by wet mixing of raw materials and component raw materials mainly composed of Portland cement or matrix forming powder materials mainly composed of calcareous materials and siliceous materials In the method for producing non-asbestos slate, which is formed by laminating the sheets, press-molding, and curing and curing, the moisture content of the green plate before press molding is set to 33% or more, and the decrease in the moisture content of the green plate by press molding is 10 A method for producing non-asbestos slate, characterized in that it is at least%, is disclosed.

また、特許文献2には、セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物5〜50質量%、補強繊維3〜18質量%および充填材0〜60質量%からなる配合物を湿式成形して得られ、かさ比重0.5〜1.2、曲げ強度10〜30N/mmおよび壁倍率2.5以上であることを特徴とする無機質耐力面材が開示されている。 Patent Document 2 discloses that cement is 20 to 60% by mass, calcium silicate-based lightweight hydrothermal compound obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance, and 5 to 18% by mass of reinforcing fibers. % And a filler consisting of 0 to 60% by weight, obtained by wet molding, having a bulk specific gravity of 0.5 to 1.2, a bending strength of 10 to 30 N / mm 2 and a wall magnification of 2.5 or more. A featured inorganic load bearing material is disclosed.

更に、特許文献3には、II型無水石こう98〜60重量%(質量%)と短繊維2〜40重量%(質量%)からなる混合物100重量部(質量部)、無機粉末5〜100重量部(質量部)、および上記II型無水石こう100重量部(質量部)に対する添加割合が0.1〜2.5重量部(質量部)の石こう硬化促進剤からなる組成物を、水温20〜35℃のスラリーとし、該スラリーを抄造成形した後、1〜400kg/cmの圧力で加圧成形して抄造板とし、該抄造板を温度0〜15℃、湿度70〜100%の雰囲気下で冷却養生することを特徴とする無水石こう抄造板の製造方法が開示されている。 Further, Patent Document 3 discloses that a type II anhydrous gypsum 98-60 wt% (mass%) and a mixture of short fibers 2-40 wt% (mass%) 100 parts by weight (mass part), inorganic powder 5-100 wt%. A composition comprising a gypsum hardening accelerator having an addition ratio of 0.1 to 2.5 parts by weight (parts by weight) relative to 100 parts by weight (parts by weight) and 100 parts by weight (parts by weight) of the above type II anhydrous gypsum After making the slurry at 35 ° C. and paper-molding the slurry, the slurry is pressure-molded at a pressure of 1 to 400 kg / cm 2 to obtain a paper-making plate, and the paper-making plate is subjected to an atmosphere at a temperature of 0 to 15 ° C. and a humidity of 70 to 100%. Discloses a method for producing anhydrous gypsum paperboard, which is characterized by cooling and curing.

また、特許文献4には、予め石灰質原料とケイ酸質原料を水と混合し、水熱合成して得られ、平均粒子径が25μm〜150μmであるケイ酸カルシウム水和物5〜50質量%、セメント20〜60質量%及び補強繊維3〜18質量%を含有する配合物を湿式加圧成形することにより表裏面の少なくとも一面に凹凸形状を形成してなる、曲げ強度が10N/mm以上の無機質板(請求項1);予め石灰質原料とケイ酸質原料を水と混合し、水熱合成して得られ、平均粒子径が25μm〜150μmであるケイ酸カルシウム水和物5〜50質量%、セメント20〜60質量%及び補強繊維3〜18質量%を含有する配合物に水を加えてスラリーとし、該スラリーを脱水成形して得られたグリーンシートの表裏面の片面又は両面と凹凸形状を有する型板とを重ね合わせた積層体を単体又は複数体積み重ねて1〜25N/mmの圧力で加圧成形し、次いで養生硬化することを特徴とする製造方法(請求項5)が開示されている。 Patent Document 4 discloses that calcium silicate hydrate having an average particle size of 25 to 150 μm is obtained by previously mixing a calcareous material and a siliceous material with water and hydrothermally synthesizing 5 to 50 mass%. In addition, a bending strength of 10 N / mm 2 or more is obtained by forming a concavo-convex shape on at least one surface of the front and back surfaces by wet pressing a compound containing 20 to 60% by mass of cement and 3 to 18% by mass of reinforcing fibers. An inorganic plate (Claim 1): Calcium silicate hydrate having an average particle diameter of 25 to 150 μm and having an average particle size of 25 to 150 μm obtained by previously mixing a calcareous raw material and a siliceous raw material with water and hydrothermally synthesizing them. %, Cement, 20 to 60% by mass and reinforcing fiber 3 to 18% by mass, water is added to form a slurry, and one surface or both surfaces of the green sheet obtained by dehydrating the slurry, and unevenness Have shape The laminate obtained by superposing the template stacked single or multiple bodies were pressed at a pressure of 1~25N / mm 2, then manufacturing method characterized by curing curable (claim 5) discloses Yes.

また、近年、高断熱技術の向上に伴い、住宅及び他の建築物の高気密化が進み、室内の温度環境及び省エネルギーレベルが向上している。その反面、室内の多湿化、あるいは寒冷期の結露といった弊害も少なくない。換気システムの導入による解消は可能であるが、小規模オフィスや一般家庭では現実的とは言えない。そこで、現在では、内装用壁材に調湿機能を付与した調湿建材が提案されている。例えば特許文献5には、かさ比重がある一定の範囲内にありかつ、ある一定範囲内の直径を有する細孔を特定量有する多孔質成形体に潮解性物質を含有させることにより、表面硬度が高く、吸放湿性に優れ吸湿時も表面にぬれが生じにくい吸放湿建材が開示されている。   In recent years, with the improvement of high heat insulation technology, the airtightness of houses and other buildings has been advanced, and the indoor temperature environment and the energy saving level have been improved. On the other hand, there are a lot of harmful effects such as indoor humidification and condensation in the cold season. It can be solved by introducing a ventilation system, but it is not practical in small offices and general households. Therefore, a humidity control building material in which a humidity control function is given to an interior wall material has been proposed. For example, in Patent Document 5, the surface hardness is reduced by including a deliquescent substance in a porous molded body having a specific amount of pores having a specific gravity within a certain range and a specific gravity within a certain range. A moisture-absorbing / releasing building material is disclosed that is high, has excellent moisture-absorbing / releasing properties, and does not easily wet on the surface even when moisture is absorbed.

特公平8−25182号公報 特許請求の範囲Japanese Patent Publication No. 8-25182 Patent Claim 特開2001−48630号公報 特許請求の範囲JP, 2001-48630, A Claims 特公平7−35289号公報 特許請求の範囲Japanese Patent Publication No. 7-35289 特開2003−136514号公報 特許請求の範囲JP, 2003-136514, A Claims 特開2003−286088号公報 特許請求の範囲JP, 2003-286088, A Claims

しかしながら、特許文献1に開示されているノンアスベストスレートの製造方法は、抄造法により、厚さの厚いノンアスベストスレートを剥離を生ずることなく効率的に製造する方法に関するものであり、耐衝撃性や吸放湿性能に優れたノンアスベストスレートを製造するための方法については何等開示されていない。また、この方法により製造されたノンアスベストスレートは、高密度及び高強度を有するが、必ずしも十分な柔軟性、耐衝撃性及び吸放湿性能を有するものではない。また、特許文献2には、耐衝撃性および吸放湿性能に優れた無機質板を製造するための方法は何等開示されておらず、特許文献2に開示されている原料および方法により製造して得られる無機質耐力面材は、高密度及び高強度を有するものであるが、必ずしも十分な柔軟性、耐衝撃性及び吸放湿性能を有するものではない。更に、特許文献3に開示されている無水石こう抄造板の製造方法においても、耐衝撃性や吸放湿性能に優れた無水石こう板を製造するための方法については何等開示されていない。また、特許文献4は、深い凹凸形状を有する無機質板及びその製造方法に関するものであり、耐衝撃性および吸放湿性能に優れた無機板の製造方法については何等開示されていない。更に、特許文献5には、調湿建材を抄造法により製造することについて何等開示されていない。   However, the method for producing non-asbestos slate disclosed in Patent Document 1 relates to a method for efficiently producing a non-asbestos slate having a large thickness without causing peeling by a papermaking method. There is no disclosure of a method for producing non-asbestos slate with excellent moisture absorption / release performance. Further, the non-asbestos slate produced by this method has high density and high strength, but does not necessarily have sufficient flexibility, impact resistance and moisture absorption / release performance. Patent Document 2 does not disclose any method for producing an inorganic plate excellent in impact resistance and moisture absorption / release performance, and is produced by using the raw materials and methods disclosed in Patent Document 2. The obtained inorganic load-bearing face material has high density and high strength, but does not necessarily have sufficient flexibility, impact resistance, and moisture absorption / release performance. Furthermore, the method for producing an anhydrous gypsum board disclosed in Patent Document 3 does not disclose any method for producing an anhydrous gypsum board excellent in impact resistance and moisture absorption / release performance. Patent Document 4 relates to an inorganic plate having a deep concavo-convex shape and a method for producing the same, and does not disclose any method for producing an inorganic plate excellent in impact resistance and moisture absorption / release performance. Furthermore, Patent Document 5 does not disclose anything about producing a humidity-control building material by a papermaking method.

また、耐力壁として構造用合板も多用されており、この構造用合板は木質ではあるが、接着による多層構造であり、透湿性や通気性が乏しい。従って、寒冷期における耐力壁内側、つまり断熱層での結露が多く発生しており、それが長期にわたることで材料の腐食に繋がっている。   In addition, structural plywood is also frequently used as a load bearing wall. Although this structural plywood is made of wood, it is a multi-layer structure formed by bonding and has poor moisture permeability and air permeability. Therefore, a large amount of dew condensation occurs on the inner side of the load bearing wall in the cold season, that is, on the heat insulating layer, which leads to corrosion of the material over a long period of time.

更に、一般建材として使用される無機質板には、高い耐衝撃性能が求められている。とくに、例えば壁材として施工された材料には、単発的な高い衝撃荷重や、比較的低い繰り返し衝撃荷重がかかることが多い。したがって、一般建材として使用される無機質板には、高い耐衝撃性能を付与する必要がある。
なお、一般的に、製品の見掛け密度を高くすると剛直となり、静荷重に対する強度(以下、単に強度と記す)は高くなるものの、柔軟性に乏しく、耐衝撃性能に劣る傾向がある。逆に、製品の見掛け密度を低くすると柔軟性を付与することはできるが、強度が低くなる傾向がある。逆に、製品の見掛け密度を低くすると、柔軟性を付与することはできるが、強度が低くなる傾向がある。
また、最近は、建材に対して、強度、ネジ保持力、耐衝撃性能等の力学的特性が優れているのは勿論のこと、優れた吸放湿性能を併せ持つことが求められている。
Furthermore, high impact resistance performance is required for inorganic plates used as general building materials. In particular, for example, a material constructed as a wall material is often subjected to a single high impact load or a relatively low repeated impact load. Therefore, it is necessary to impart high impact resistance to the inorganic board used as a general building material.
In general, when the apparent density of a product is increased, the product becomes rigid and the strength against static load (hereinafter simply referred to as strength) is increased, but the flexibility is poor and the impact resistance tends to be inferior. Conversely, if the apparent density of the product is lowered, flexibility can be imparted, but the strength tends to be lowered. Conversely, if the apparent density of the product is lowered, flexibility can be imparted, but the strength tends to be lowered.
Recently, building materials are required to have excellent moisture absorption / release performance as well as excellent mechanical properties such as strength, screw retention, and impact resistance.

従って、本発明の目的は、原料として石綿を使用しないにもかかわらず、施工性、柔軟性、強度、ネジ保持力等に優れるとともに、高い耐衝撃性能並びに調湿建材としての吸放湿性能を有する無機質抄造板およびその製造方法を提供することにある。   Therefore, the object of the present invention is excellent in workability, flexibility, strength, screw holding power, etc., while not using asbestos as a raw material, and also has high impact resistance performance and moisture absorption / release performance as a humidity control building material. An object of the present invention is to provide an inorganic papermaking plate and a method for producing the same.

本発明者等は、石綿を使用せずに、軽量で高強度を有する無機質板を得るためには、原料としてマトリックス形成用水和性原料、充填材、補強繊維(石綿を除く)および予め石灰質原料およびケイ酸質原料を水熱合成して得られるケイ酸カルシウム水和物を使用することが重要であることを見出し、特許文献2として既に出願している。そして、前記原料を基本として、製造効率に優れた抄造法を用い、強度を低下させることなく耐衝撃性を向上させ吸放湿性能を付与するための様々な研究を行った結果、抄造法により前記原料を用いて無機質板を製造する場合、製造された無機質板の見掛け密度および曲げ強度については、原料の配合条件および抄造して得られた生板を加圧脱水する際の圧力が重要であるが、耐衝撃性や吸放湿性能については、原料の配合条件および抄造して得られた生板を加圧脱水する際の圧力条件のみならず、抄造工程における工程条件、および加圧脱水前の生板の見掛け密度と加圧脱水後の生板の見掛け密度との比率が大きな影響を与えることを見出し、本発明を完成するに至った。   In order to obtain a lightweight and high-strength inorganic board without using asbestos, the present inventors have used as raw materials matrix-forming hydratable raw materials, fillers, reinforcing fibers (excluding asbestos), and calcareous raw materials in advance. And it has been found that it is important to use calcium silicate hydrate obtained by hydrothermal synthesis of siliceous raw materials, and has already been filed as Patent Document 2. Based on the above raw materials, as a result of various researches for improving impact resistance and imparting moisture absorption and desorption performance without reducing strength, using a papermaking method with excellent manufacturing efficiency, When manufacturing an inorganic board using the raw material, the apparent density and bending strength of the manufactured inorganic board are important for the blending conditions of the raw material and the pressure during pressure dehydration of the green board obtained by papermaking. However, with regard to impact resistance and moisture absorption and desorption performance, not only the mixing conditions of raw materials and the pressure conditions when pressure dewatering the green plate obtained by papermaking, but also the process conditions in the papermaking process, and pressure dehydration It has been found that the ratio between the apparent density of the green board before and the apparent density of the green board after pressure dehydration has a great influence, and the present invention has been completed.

即ち、本発明の無機質抄造板の製造方法は、マトリックス形成用水和性原料20〜60質量%;無機質充填材1〜50質量%;補強繊維(石綿を除く)3.5〜12質量%;及び予め石灰質原料およびケイ酸質原料を水熱合成して得られるケイ酸カルシウム水和物10〜50質量%を含有してなる配合物を湿式混合してスラリーを得、得られたスラリーを抄造することにより生板を得、得られた生板を加圧脱水した後、養生硬化することからなる無機質抄造板の製造方法において、前記ケイ酸カルシウム水和物の平均粒子径は30μm〜100μmの範囲内にあり、補強繊維は、濾水度がカナディアン標準フリーネスで150〜450mlの範囲内にある天然繊維3〜11質量%及び繊維長6.0〜0.2mmで、繊維径20〜50μmの範囲内にある無機繊維及び/または合成繊維0.5〜5質量%から構成され、抄造工程におけるエンドレスフェルト上での薄膜の脱水速度を5〜30%/秒の範囲内とし、且つメーキングロールに巻き取る際の薄膜の含水率を100〜180%とすることによりメーキングロールから切り離した後の生板の見掛け密度を0.35〜0.65g/cmの範囲内とし、該生板を加圧脱水し、加圧脱水後の生板の見掛け密度を加圧脱水前の生板の見掛け密度の1.3〜2.0倍の範囲内とすることを特徴とする。 That is, the method for producing an inorganic papermaking plate of the present invention comprises 20 to 60% by mass of a hydrated raw material for forming a matrix; 1 to 50% by mass of an inorganic filler; 3.5 to 12% by mass of reinforcing fibers (excluding asbestos); A slurry containing 10 to 50% by mass of calcium silicate hydrate obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance is wet mixed to obtain a slurry, and the resulting slurry is made. In the manufacturing method of the inorganic paper-making board which obtains a raw board by pressurizing and dehydrating the obtained raw board, and curing and hardening, the average particle diameter of the said calcium silicate hydrate is the range of 30 micrometers-100 micrometers The reinforcing fiber has a freeness of 3 to 11% by weight and a fiber length of 6.0 to 0.2 mm and a fiber diameter of 20 to 50 μm in a Canadian standard freeness range of 150 to 450 ml. The thin film on the endless felt in the paper making process has a dehydration rate in the range of 5 to 30% / second and is wound around a making roll. When the moisture content of the thin film is 100 to 180%, the apparent density of the green plate after separation from the making roll is set within the range of 0.35 to 0.65 g / cm 3 , and the green plate is subjected to pressure dehydration. The apparent density of the green plate after pressure dehydration is 1.3 to 2.0 times the apparent density of the green plate before pressure dehydration.

また、本発明の無機質抄造板の製造方法は、抄造法が、丸網式抄造法であることを特徴とする。   Moreover, the manufacturing method of the inorganic papermaking board of this invention is characterized by the papermaking method being a round net-type papermaking method.

更に、上記無機質抄造板の製造方法により製造された無機質抄造板は、前記無機質抄造板の曲げ強度が10N/mm以上であることを特徴とする。 Furthermore, the inorganic papermaking plate manufactured by the method for manufacturing an inorganic papermaking plate is characterized in that the bending strength of the inorganic papermaking plate is 10 N / mm 2 or more.

また、上記無機質抄造板の製造方法により製造された無機質抄造板は、前記無機質抄造板の厚さ1mmあたりのネジ保持力が20N以上であることを特徴とする。   Moreover, the inorganic papermaking board manufactured by the manufacturing method of the said inorganic papermaking board is characterized by the screw retention strength per 1 mm thickness of the said inorganic papermaking board being 20 N or more.

更に、上記無機質抄造板の製造方法により製造された無機質抄造板は、前記無機質抄造板の厚さ1mmあたりの耐衝撃エネルギーが2.0J以上であることを特徴とする。   Furthermore, the inorganic papermaking plate produced by the method for producing an inorganic papermaking plate is characterized in that impact energy per 1 mm thickness of the inorganic papermaking plate is 2.0 J or more.

また、上記無機質抄造板の製造方法により製造された無機質抄造板は、前記無機質抄造板の23℃−75%RHと23℃−53%RHの間での吸放湿量が30g/m以上であることを特徴とする。 Moreover, the inorganic papermaking board manufactured by the manufacturing method of the said inorganic papermaking board WHEREIN: The moisture absorption-and-release amount between 23 degreeC-75% RH and 23 degreeC-53% RH of the said inorganic papermaking board is 30 g / m < 2 > or more. It is characterized by being.

本発明によれば、原料として石綿を使用しないにもかかわらず、施工性、柔軟性、強度、ネジ保持力等に優れるとともに、高い耐衝撃性能並びに調湿建材として優れた吸放湿性能を有する無機質抄造板およびその製造方法が提供される。   According to the present invention, despite not using asbestos as a raw material, it has excellent workability, flexibility, strength, screw holding power, etc., and has high impact resistance and moisture absorption / release performance as a humidity control building material. An inorganic papermaking plate and a method for producing the same are provided.

以下、本発明をさらに詳細に説明する。
抄造法は製造効率に優れていることから、無機質板の製造方法として広く使用されてきた。従来の無機質抄造板において、最も一般的な補強繊維は石綿であった。石綿は、後述の各原料を水と混合してスラリーとする際の分散性が良好であり、且つそのゼータ電位が正であるので、特にマトリックスを構成するマトリックス形成用水和性原料がポルトランドセメントのようなセメントの場合にはセメントマトリックスとの密着が良好であるので、従来の無機質抄造板においては、石綿を増量することにより耐衝撃性を向上させることが容易であった。また、石綿とともに他の繊維を併用しても、原料を混合する際の繊維の分散性やセメントマトリックスとの密着性はあまり低下しないことから、耐衝撃性への補強効果の大きな繊維を石綿と併用することにより、無機質抄造板の耐衝撃性を向上させることが容易であった。しかし、石綿は健康への影響も指摘されていることから、石綿に代わる繊維を使用しなければならなくなった。石綿代替繊維の場合には、配合割合を多くすると原料混合において均一分散が著しく困難になるばかりでなく、製品としての表面の美観が損なわれるという問題があり、また、石綿代替繊維として有機繊維を使用する場合が多いことから、製品の不燃性能や耐火性能が低下することもあり、補強繊維の配合割合を多くすることにより耐衝撃性能の向上を図ることができる範囲は限られている。さらに、繊維質原料とセメントマトリックスとの密着性および材料組織の結合力が十分でないと、高い耐衝撃性能は得られないが、代表的な石綿代替繊維である木質パルプのゼータ電位は負であり、セメントマトリックスとの密着性は石綿の場合よりも劣る。また、無機質抄造板の見掛け密度を高めるとその強度を高めることができるが、見掛け密度を高めるような原料設計にすると無機質抄造板は剛直となり柔軟性を失うので、必ずしも耐衝撃性が向上するわけではない。また、無機質抄造板の見掛け密度を高くすることは、無機質抄造板の空隙が少なくなることを意味する。現在一般的に提供されている調湿建材と称されるものは、一定の空隙を有することで吸放湿性能を付与されたものであるため、ほとんどがポーラスな材料組織であり、見掛け密度も小さいものか、または高温で処理されたセラミックス質材料であるため、強度や耐衝撃性の点ではいささか劣るのが実際である。本発明のように特定の平均粒子径を有するケイ酸カルシウム水和物を多量に添加する方法もその範疇であるが、それだけでは得られる無機質抄造板の見掛け密度が低くなりすぎ、高強度並びに耐衝撃性を得ることはできない。従って、原料として石綿を使用しないにもかかわらず、施工性、柔軟性、強度、ネジ保持力等に優れるとともに、高い耐衝撃性能並びに調湿建材として優れた吸放湿性能を有する無機質抄造板を製造するためには、
(1)原料としてマトリックス形成用水和性原料、充填材、補強繊維(石綿を除く)および予め石灰質原料およびケイ酸質原料を水熱合成して得られるケイ酸カルシウム水和物を所定の配合比率で使用すること;
(2)抄造工程において、グリーンフィルム(薄膜)の含水率および脱水速度を制御して所定の見掛け密度の生板を成形すること;
(3)加圧脱水後の生板の見掛け密度を加圧脱水前の生板の見掛け密度の所定倍率の範囲内とすること、
のいずれをも充足させることが重要である。
Hereinafter, the present invention will be described in more detail.
Since the papermaking method is excellent in production efficiency, it has been widely used as a method for producing an inorganic board. In the conventional inorganic papermaking board, the most common reinforcing fiber was asbestos. Asbestos has good dispersibility when it is mixed with each raw material to be described later with water and has a positive zeta potential, so that the hydrating raw material for forming a matrix constituting the matrix is particularly Portland cement. In the case of such a cement, since the adhesion with the cement matrix is good, it has been easy to improve the impact resistance by increasing the amount of asbestos in the conventional inorganic papermaking board. In addition, even when other fibers are used in combination with asbestos, the dispersibility of the fibers when mixing the raw materials and the adhesion to the cement matrix do not decrease so much. By using it together, it was easy to improve the impact resistance of the inorganic papermaking plate. However, asbestos has been pointed out to affect health, so it has become necessary to use fibers that replace asbestos. In the case of asbestos substitute fiber, if the blending ratio is increased, not only uniform dispersion becomes extremely difficult in the raw material mixing, but also the problem that the aesthetic appearance of the product surface is impaired, and organic fiber is used as asbestos substitute fiber. Since it is often used, the incombustibility and fire resistance of the product may be lowered, and the range in which the impact resistance can be improved by increasing the blending ratio of the reinforcing fibers is limited. Furthermore, if the adhesion between the fiber raw material and the cement matrix and the bonding strength of the material structure are not sufficient, high impact resistance performance cannot be obtained, but the zeta potential of wood pulp, which is a typical asbestos substitute fiber, is negative. The adhesion to the cement matrix is inferior to that of asbestos. In addition, increasing the apparent density of the inorganic papermaking board can increase its strength, but if the raw material design increases the apparent density, the inorganic papermaking board becomes rigid and loses its flexibility, so the impact resistance is not necessarily improved. is not. Further, increasing the apparent density of the inorganic papermaking plate means that the voids of the inorganic papermaking plate are reduced. The so-called moisture conditioning building materials that are currently generally provided are those that have moisture absorption and desorption performance by having a certain gap, so that they are mostly porous material structures and apparent density is also Since it is a small or ceramic material processed at a high temperature, it is actually inferior in terms of strength and impact resistance. A method of adding a large amount of calcium silicate hydrate having a specific average particle diameter as in the present invention is also in its category, but by itself, the apparent density of the resulting inorganic papermaking sheet becomes too low, and high strength and resistance Can not get impact. Therefore, despite the fact that no asbestos is used as a raw material, an inorganic papermaking plate having excellent workability, flexibility, strength, screw holding power, etc., as well as high impact resistance and moisture absorbing / releasing performance as a humidity control building material. To manufacture
(1) Predetermined blending ratio of hydrated raw material for matrix formation, filler, reinforcing fiber (excluding asbestos) and calcium silicate hydrate obtained by hydrothermal synthesis of calcareous raw material and siliceous raw material in advance as raw materials To use in;
(2) In the paper making process, forming a green plate with a predetermined apparent density by controlling the water content and dewatering rate of the green film (thin film);
(3) The apparent density of the green plate after pressure dehydration is set within a predetermined magnification range of the apparent density of the green plate before pressure dehydration.
It is important to satisfy both of these.

(マトリックス形成用水和性原料)
本発明で使用するマトリックス形成用水和性原料は、水硬性および気硬性のいずれであってもよく、とくに限定されないが、強度発現力が高いことから水硬性セメントが好適であり、例えば、普通ポルトランドセメント、早強セメント、高炉セメント、低熱セメント、エコセメント等を挙げることができる。また、気硬性セメントとしては、半水石膏、II型無水石膏等の石膏系材料を挙げることができる。石膏系材料を用いる場合は、必要に応じて硬化遅延剤(クエン酸、フタル酸、酒石酸等)または硬化促進剤(硫酸ナトリウム等のアルカリ金属硫酸塩等)を所定量添加することができる。マトリックス形成用水和性原料の比表面積は、水硬性セメントの場合、2500〜5000cm/g、好ましくは3000〜4000cm/gの範囲内にあり、気硬性セメントの場合、4000〜80000cm/g、好ましくは4500〜6500cm/gの範囲内にある。
(Hydratable raw material for matrix formation)
The matrix-forming hydratable raw material used in the present invention may be either hydraulic or pneumatic, and is not particularly limited. However, hydraulic cement is suitable because of its high strength development ability. For example, ordinary Portland cement And high strength cement, blast furnace cement, low heat cement, eco cement and the like. Examples of the air-cement cement include gypsum-based materials such as hemihydrate gypsum and type II anhydrous gypsum. When a gypsum-based material is used, a predetermined amount of a curing retarder (citric acid, phthalic acid, tartaric acid, etc.) or a curing accelerator (alkali metal sulfate such as sodium sulfate) can be added as necessary. The specific surface area of the matrix-forming water-dispersible material in the case of hydraulic cement, 2500~5000cm 2 / g, is preferably in the range of 3000~4000cm 2 / g, when the air-hardening cement, 4000~80000cm 2 / g Preferably, it exists in the range of 4500-6500 cm < 2 > / g.

(無機質充填材)
本発明で使用する無機質充填材は、一般的に無機質板に使用されるものであればよく、とくに制限されないが、例えばマイカやウォラストナイト等の耐熱性向上用充填材、二水石膏や炭酸カルシウム等の耐火性向上用充填材、珪石等の亀裂発生防止用充填材、フェロシリコンダストやフライアッシュ等のポラゾン物質等が挙げられ、これらは2種類以上を併用することもできる。
(Inorganic filler)
The inorganic filler used in the present invention is not particularly limited as long as it is generally used for an inorganic board, but for example, a filler for improving heat resistance such as mica and wollastonite, dihydrate gypsum and carbonic acid. Examples thereof include fillers for improving fire resistance such as calcium, fillers for preventing cracking such as silica, and porazone substances such as ferrosilicon dust and fly ash. These can be used in combination of two or more.

(補強繊維)
本発明で使用する補強繊維は、例えば、木質パルプ、各種麻類等の天然繊維、ガラス繊維、ロックウール、セラミックウール、炭素繊維などの無機繊維、人造パルプ、ポリビニルアルコール、ポリプロピレン、ポリエチレン、ポリエステル、アクリル、レーヨン等の合成繊維が挙げられる。中でも、曲げ強度および耐衝撃性能を一層高めるという観点から、木質パルプ等のセルロース系繊維を補強繊維の主成分として用いるのが好適である。
(Reinforcing fiber)
Reinforcing fibers used in the present invention include, for example, natural fibers such as wood pulp and various hemp, glass fibers, rock wool, ceramic wool, inorganic fibers such as carbon fibers, artificial pulp, polyvinyl alcohol, polypropylene, polyethylene, polyester, Examples include synthetic fibers such as acrylic and rayon. Among these, from the viewpoint of further improving the bending strength and impact resistance performance, it is preferable to use cellulosic fibers such as wood pulp as the main component of the reinforcing fibers.

なお、天然繊維の濾水度は、JIS P 8121に規定されるカナディアン標準フリーネス(以下CSFという)で150〜450ml、好ましくは150〜350mlの範囲内にある。CSFは、補強繊維、例えば木質パルプを湿式にてリファイナー等による叩解処理を行うことで調整することができる。該叩解処理により、繊維の枝分かれが増加し、いわゆるフィブリル化がなされ、その結果マトリックス形成用水和性原料が水和して形成されるマトリックスとの密着性および柔軟性の向上を図ることができる。ここでCSFを450ml以下にすることにより、補強繊維とマトリックスとの十分な密着が達成されるとともに、良好な補強繊維の分散が得られ、製品(無機質抄造板)に高い強度を付与することができる。また、CSFを150ml以上にすることにより、スラリーの濾水性を高め、加圧脱水時の脱水ムラ、フクレ、ハクリ等を防止するとともに、良好な柔軟性、ひいては耐衝撃性能を製品に付与することができる。   In addition, the freeness of natural fiber is in the range of 150 to 450 ml, preferably 150 to 350 ml in terms of Canadian standard freeness (hereinafter referred to as CSF) defined in JIS P8121. The CSF can be adjusted by beating a reinforcing fiber, such as wood pulp, with a refiner or the like wet. The beating treatment increases the branching of the fibers, so-called fibrillation, and as a result, it is possible to improve adhesion and flexibility with the matrix formed by hydration of the hydratable raw material for matrix formation. Here, when the CSF is 450 ml or less, sufficient adhesion between the reinforcing fibers and the matrix is achieved, good dispersion of the reinforcing fibers can be obtained, and high strength can be imparted to the product (inorganic papermaking board). it can. In addition, by increasing the CSF to 150 ml or more, the drainage of the slurry is increased, dehydration unevenness at the time of pressure dehydration, blistering, tearing, etc. are prevented, and good flexibility and consequently impact resistance performance is imparted to the product. Can do.

また、無機繊維及び合成繊維の繊維長は、6.0〜0.2mm、好ましくは4.0〜0.5mmの範囲内にあり、かつ繊維径が20〜50μm、好ましくは20〜40μmの範囲内である。このように無機繊維及び合成繊維のサイズを規定することによって、抄造法による製造に適した、良好な濾水性を保持しつつ、複合材料として十分な強度を得ることができるという効果が奏される。   The fiber length of the inorganic fiber and the synthetic fiber is 6.0 to 0.2 mm, preferably 4.0 to 0.5 mm, and the fiber diameter is 20 to 50 μm, preferably 20 to 40 μm. Is within. By prescribing the sizes of the inorganic fibers and the synthetic fibers in this way, there is an effect that sufficient strength can be obtained as a composite material while maintaining good drainage suitable for manufacturing by the papermaking method. .

(ケイ酸カルシウム水和物)
本発明で使用されるケイ酸カルシウム水和物は、石灰質原料およびケイ酸質原料を水とともに混合し、高温高圧下での水熱合成により生成させることができる。
石灰質原料としては、生石灰、消石灰等が挙げられ、ケイ酸質原料としては、珪石、珪藻土、シリカヒューム等が挙げられ、とくに珪石が好適である。
ケイ酸カルシウム水和物の合成は、例えば次のようにして行なうことができる。石灰質原料とケイ酸質原料とを、例えば配合比(CaO/SiOのモル比)0.5〜1.5、好ましくは0.5〜1.2とし、この混合物に対し、質量比で5〜20倍、好ましくは7〜16倍の水を加え、混合分散し、原料スラリーとし、この原料スラリーを攪拌可能な圧力容器内にて150〜230℃、好ましくは170〜210℃の温度で、1〜20時間、好ましくは3〜12時間にわたり水熱合成を行なう。このようにして、例えばトバモライト、ゾノトライト等としてケイ酸カルシウム水和物が得られる。
(Calcium silicate hydrate)
The calcium silicate hydrate used in the present invention can be produced by mixing a calcareous raw material and a siliceous raw material together with water and hydrothermal synthesis under high temperature and high pressure.
Examples of the calcareous raw material include quick lime and slaked lime, and examples of the siliceous raw material include quartzite, diatomaceous earth, silica fume and the like, and particularly preferred is quartzite.
The synthesis of calcium silicate hydrate can be performed, for example, as follows. The calcareous raw material and the siliceous raw material are, for example, a blending ratio (CaO / SiO 2 molar ratio) of 0.5 to 1.5, preferably 0.5 to 1.2, and a mass ratio of 5 to this mixture. ~ 20 times, preferably 7-16 times water is added, mixed and dispersed to form a raw slurry, and the raw material slurry is stirred at a temperature of 150 to 230 ° C, preferably 170 to 210 ° C, Hydrothermal synthesis is carried out for 1 to 20 hours, preferably 3 to 12 hours. In this way, calcium silicate hydrate is obtained as, for example, tobermorite, zonotrite and the like.

本発明に使用されるケイ酸カルシウム水和物の平均粒子径は、30μm〜100μm、好ましくは50μm〜90μmの範囲内にある。このようにケイ酸カルシウム水和物の平均粒子径を規定することによって、抄造法による製造に適した、良好な濾水性を保持しつつ、複合材料として十分な強度を得ることができるという効果が奏される。   The average particle diameter of the calcium silicate hydrate used in the present invention is in the range of 30 μm to 100 μm, preferably 50 μm to 90 μm. By prescribing the average particle size of calcium silicate hydrate in this way, there is an effect that it is possible to obtain sufficient strength as a composite material while maintaining good drainage suitable for production by a papermaking method. Played.

なお、前記平均粒子径は、ケイ酸質原料の粒度、使用される水の割合、圧力容器内における攪拌の度合い等によって調整することができる。例えばケイ酸質原料の粒度を80μm以下、好ましくは60μm以下とし、水の使用量を、石灰質原料とケイ酸質原料との混合物に対し、質量比で7〜16倍とし、圧力容器内に備えられた攪拌回転羽根の周速を100〜200m/分とすることにより、得られるケイ酸カルシウム水和物の平均粒子径を前記のように30μm〜100μmの範囲で調整することができる。なお、本発明で規定するケイ酸カルシウム水和物の平均粒子径は、レーザー回折散乱法による粒度分布測定装置により求めたものである。   In addition, the said average particle diameter can be adjusted with the particle size of a siliceous raw material, the ratio of the water used, the degree of stirring in a pressure vessel, etc. For example, the particle size of the siliceous material is 80 μm or less, preferably 60 μm or less, and the amount of water used is 7 to 16 times the mass ratio of the mixture of the calcareous material and the siliceous material, and is provided in the pressure vessel. By setting the peripheral speed of the obtained stirring rotary blade to 100 to 200 m / min, the average particle diameter of the obtained calcium silicate hydrate can be adjusted in the range of 30 μm to 100 μm as described above. In addition, the average particle diameter of the calcium silicate hydrate prescribed | regulated by this invention is calculated | required with the particle size distribution measuring apparatus by the laser diffraction scattering method.

(配合割合)
前記各種原料は、得られる無水質抄造板に対する質量割合として、マトリックス形成用水和性原料20〜60質量%、好ましくは30〜60質量%、無機質充填材1〜50質量%、好ましくは1〜30質量%、補強繊維3〜12質量%、好ましくは3〜10質量%、およびケイ酸カルシウム水和物10〜50質量%、好ましくは15〜40質量%となるように配合するのが好ましい。なお、補強繊維は、濾水度がカナディアン標準フリーネスで150〜450mlの範囲内にある天然繊維3.5〜11質量%、好ましくは4〜8質量%及び繊維長6.0〜0.2mmで、繊維径20〜50μmの範囲内にある無機繊維及び/または合成繊維0.5〜5質量%、好ましくは0.5〜3質量%から構成され、天然繊維と無機繊維及び/または合成繊維の合計量が上記範囲内となるように配合する。
(Mixing ratio)
The various raw materials are 20 to 60% by mass, preferably 30 to 60% by mass, and 1 to 50% by mass, and preferably 1 to 30% by mass of an inorganic filler, as a mass ratio with respect to the resulting anhydrous papermaking plate. It is preferable to blend so as to be 3% by mass, 3-12% by mass of reinforcing fibers, preferably 3-10% by mass, and 10-50% by mass, preferably 15-40% by mass of calcium silicate hydrate. The reinforcing fiber has a freeness of 3.5 to 11% by mass, preferably 4 to 8% by mass, and a fiber length of 6.0 to 0.2 mm. The inorganic fiber and / or synthetic fiber in the range of 20 to 50 μm in diameter, and 0.5 to 5% by mass, preferably 0.5 to 3% by mass, of natural fiber and inorganic fiber and / or synthetic fiber It mix | blends so that a total amount may become in the said range.

(無水質抄造板の製造)
本発明の無機質抄造板は、前記の各種材料を、好ましくは前記配合割合にて配合し、そこに各種材料の7〜30倍(質量比)、好ましくは10〜20倍の水を加えて湿式混合してスラリーとし、得られたスラリーを抄造することにより生板を得、得られた生板を加圧脱水した後、養生硬化することにより製造することができる。但し、本発明の無機質抄造板の製造方法においては、抄造工程におけるエンドレスフェルト上での薄膜の脱水速度を5〜30%/秒、好ましくは5〜15%/秒の範囲内とし、且つメーキングロールに巻き取る際の薄膜の含水率を100〜180%、好ましくは110〜160%とすることによりメーキングロールから切り離した後の生板の見掛け密度を0.35〜0.65g/cmの範囲内とし(条件1)、次に、得られた生板を加圧脱水し、加圧脱水後の生板の見掛け密度を加圧脱水前の生板の見掛け密度の1.3〜2.0倍の範囲内とする(条件2)ことが重要である。
(Manufacture of anhydrous papermaking board)
In the inorganic papermaking plate of the present invention, the above-mentioned various materials are preferably blended at the above-mentioned blending ratio, and 7 to 30 times (mass ratio) of the various materials, preferably 10 to 20 times as much water is added thereto, and wet. It can be manufactured by mixing and preparing a slurry, and making the obtained slurry to obtain a green plate, dehydrating the obtained green plate under pressure, and curing and curing. However, in the method for producing the inorganic papermaking sheet of the present invention, the dehydration rate of the thin film on the endless felt in the papermaking process is 5 to 30% / second, preferably 5 to 15% / second, and the making roll The apparent density of the green plate after being separated from the making roll by setting the moisture content of the thin film when wound to 100 to 180%, preferably 110 to 160% in the range of 0.35 to 0.65 g / cm 3 Then, the obtained green plate is dehydrated under pressure, and the apparent density of the green plate after pressure dehydration is 1.3 to 2.0 of the apparent density of the green plate before pressure dehydration. It is important that the condition is within the double range (condition 2).

上記抄造工程において、エンドレスフェルト上での薄膜の脱水速度が5%/秒未満であると、得られる生板の見掛け密度が高くなり、また、含水率が高いことによりメーキングロールに巻き取る際の搾水の抵抗が高くなり、良質な生板が得られないために好ましくない。また、該脱水速度が30%/秒超となると、生板含水率が低くなりすぎ、目標とする生板の見掛け密度が得られず、また、層間の密着性が著しく失われ、製品を得ることができなくなるために好ましくない。また、メーキングロールに巻き取る際の薄膜の含水率が100%未満であると、得られる製品の見掛け密度が高くなり、所望の吸放湿性能が得られなくなり、また、該含水率が180%超であると、メーキングロールに巻き取る際の搾水の抵抗が高くなり、良質な生板が得られないために好ましくない。   In the paper making process, when the dehydration rate of the thin film on the endless felt is less than 5% / second, the apparent density of the green plate obtained becomes high, and when the film is wound on the making roll due to its high water content. It is not preferable because the resistance of squeezing becomes high and a good quality raw board cannot be obtained. Further, when the dehydration rate exceeds 30% / second, the raw plate moisture content becomes too low, the target raw plate apparent density cannot be obtained, and the adhesion between the layers is remarkably lost to obtain a product. This is not preferable because it cannot be performed. Further, if the moisture content of the thin film when wound on a making roll is less than 100%, the apparent density of the resulting product becomes high, and a desired moisture absorption / release performance cannot be obtained, and the moisture content is 180%. If it is super, resistance of squeezing when winding on a making roll becomes high, and a good quality green plate cannot be obtained, which is not preferable.

なお、本発明でいう抄造法は、当業界において知られる抄造法をいずれも適用することができ、例えば丸網式抄造法、長網式抄造法、フローオン式抄造法等が挙げられる。例えば丸網式抄造法は、原料スラリーを金網シリンダーで抄き上げてグリーンフィルム(薄膜)を形成し、得られたグリーンフィルムをエンドレスフェルトに移し取り、エンドレスフェルト上で脱水し、メーキングロールに所定の厚さとなるまで巻き取り、所定の厚さとなったならばメーキングロールから切り離してグリーンシート(生板)を得る方法である。また、フローオン式抄造法は、原料スラリーを直接エンドレスフェルト上に供給し、エンドレスフェルト上で脱水してグリーンフィルム(薄膜)を形成し、メーキングロールに所定の厚さとなるまで巻き取り、所定の厚さとなったならばメーキングロールから切り離してグリーンシート(生板)を得る方法である。中でも丸網式抄造法は、製造効率が高く、薄物の製造も可能であり、繊維の二次元配向がよいので、その補強性能を十分に発揮できるという点から好ましい。なお、本発明では、スラリーを抄造した後に得られる、加圧脱水前のシート状成形物を「生板」と定義する。   In addition, as the papermaking method referred to in the present invention, any papermaking method known in the art can be applied, and examples thereof include a round net type papermaking method, a long net type papermaking method, and a flow-on type papermaking method. For example, in the round net making method, the raw slurry is made with a wire mesh cylinder to form a green film (thin film), and the resulting green film is transferred to an endless felt, dehydrated on the endless felt, and applied to a making roll. The green sheet (raw board) is obtained by winding up to a thickness of 1 mm and separating from the making roll when the thickness reaches a predetermined thickness. In addition, the flow-on type papermaking method supplies raw slurry directly onto the endless felt, dehydrates it on the endless felt to form a green film (thin film), winds it up to a predetermined thickness on a making roll, When the thickness is reached, the green sheet (raw board) is obtained by separating from the making roll. Among them, the round netting method is preferable from the viewpoint that the production efficiency is high, the production of thin objects is possible, and the two-dimensional orientation of the fibers is good, so that the reinforcing performance can be sufficiently exhibited. In the present invention, a sheet-like molded product before pressure dehydration obtained after paper making of a slurry is defined as “raw plate”.

なお、前記条件(1)において、見掛け密度とは、得られた材料を絶乾状態(105℃で恒量となるまで乾燥した状態)まで乾燥し、乾燥後の質量(g)をその体積(cm)で除する方法により算出できる。好ましい生板の見掛け密度は、0.4〜0.6g/cmである。条件(1)において、見掛け密度が0.35g/cm未満であると、柔軟性および耐衝撃性能をともに満たす無機質抄造板が得られない。また、前記見掛け密度が0.65g/cm超であると、生板を加圧脱水し、養生・硬化して得られる無機質抄造板の見掛け密度が高くなりすぎ、吸放湿性能に適した空隙率でなくなるため好ましくない。 In the above condition (1), the apparent density means that the obtained material is dried to an absolutely dry state (a state dried to a constant weight at 105 ° C.), and the mass (g) after drying is expressed as its volume (cm It can be calculated by the method of dividing by 3 ). The apparent density of the green board is preferably 0.4 to 0.6 g / cm 3 . In condition (1), if the apparent density is less than 0.35 g / cm 3 , an inorganic papermaking sheet satisfying both flexibility and impact resistance performance cannot be obtained. Further, when the apparent density is more than 0.65 g / cm 3 , the apparent density of the inorganic papermaking plate obtained by dehydrating the raw plate, curing and curing it becomes too high, and it is suitable for moisture absorption / release performance. This is not preferable because the porosity is lost.

また、前記条件(2)において、生板を加圧脱水した後の見かけ密度が、加圧脱水前の生板の見掛け密度の1.3倍未満であると、各種材料から構成される組織の緻密化が十分になされず、製品の所望の強度が得られないばかりか、材料組織の結合力が弱いので所望の耐衝撃性能も得られない。逆に、2.0倍を超えると、材料密度が高くなりすぎ、高い曲げ強度は得られるものの、調湿建材としての適性な空隙率とならず、吸放湿性能が著しく低下してしまうばかりでなく、製品の柔軟性が損なわれ、耐衝撃性能の低下を招いてしまう。また、加圧脱水に多くの時間を要し、作業効率の低下を招き、水割れ、シワ等の原因となる。   In addition, in the condition (2), when the apparent density after pressure dehydration of the green plate is less than 1.3 times the apparent density of the green plate before pressure dehydration, Densification is not sufficiently achieved, and the desired strength of the product cannot be obtained, and the desired impact resistance performance cannot be obtained because the bonding strength of the material structure is weak. On the other hand, if it exceeds 2.0 times, the material density becomes too high and high bending strength can be obtained, but it does not become a suitable porosity as a humidity control building material, and the moisture absorption and desorption performance is significantly reduced. In addition, the flexibility of the product is impaired, and the impact resistance performance is lowered. Moreover, it takes a lot of time for dehydration under pressure, leading to a decrease in work efficiency and causing water cracking, wrinkles and the like.

生板の加圧脱水は、公知のプレス機等の加圧脱水装置を用いて行なうことができる。生板の加圧脱水条件(昇圧速度、保持圧力および保持時間等)は、加圧脱水後の生板の見掛け密度を加圧脱水前の生板の見掛け密度の1.3〜2.0倍の範囲内とするように定める必要がある。加圧脱水の条件の定め方としては、例えば、実製造に先立って、抄造を模した吸引脱水試験により、原料スラリーを5〜30%/秒で脱水して見掛け密度が0.35〜0.65g/cmの生板を作製し、これを加圧脱水試験して、加圧脱水後の生板の見掛け密度を加圧脱水前の生板の見掛け密度の1.3〜2.0倍の範囲内となるよう加圧脱水の条件を定めればよい。従って、加圧脱水の条件は、特定の範囲として限定されるものではないが、保持圧力は、概ね5〜30N/mmであり、保持圧力(N/mm)と保持時間(秒)の積は、概ね1000〜40000N/mm・秒である。 The pressure plate can be dehydrated using a pressure dehydration apparatus such as a known press machine. The pressure dehydration conditions (pressure increase speed, holding pressure, holding time, etc.) of the green plate are 1.3 to 2.0 times the apparent density of the green plate after pressure dehydration. It is necessary to set it within the range. As a method for determining the conditions for pressure dehydration, for example, prior to actual production, a raw slurry is dehydrated at 5 to 30% / second by an aspiration dehydration test simulating papermaking, and an apparent density is 0.35 to 0.00. A green plate of 65 g / cm 3 was prepared and subjected to a pressure dehydration test. The apparent density of the green plate after pressure dehydration was 1.3 to 2.0 times the apparent density of the green plate before pressure dehydration. The pressure dehydration conditions may be determined so as to be within the range. Therefore, the condition of the pressurized dehydration include, but are not limited for a particular range, the holding pressure is generally 5 to 30 N / mm 2, holding pressure (N / mm 2) and retention time (in seconds) The product is approximately 1000 to 40000 N / mm 2 · sec.

また、本発明において、養生硬化の方法は、とくに制限されない。例えば自然養生、湿潤養生、冷却養生等、公知の手段を適用することができる。   In the present invention, the curing and curing method is not particularly limited. For example, known means such as natural curing, wet curing, and cooling curing can be applied.

現在市販されている無機質建材の材料厚さは、薄物で3mmないし4mmが下限であり、それ以下のものは実用品として未だない。また、薄物になると、ハンドリング性が著しく低下し、割れやすいのが現状である。しかし、本発明の方法にて得られた製品(無機質抄造板)は、前記条件(1)、(2)を満たすことにより、例えばさらに2mm程度の厚さまで薄くすることができ、前記の通り高い耐衝撃性能を有するため、ハンドリングによる割れ等を著しく軽減することができる。製品厚さの上限値は、とくに限定されるものではないが、丸網式抄造法では、15mm程度までが好適であり、長網式抄造法では50mm程度までが好適である。この厚さは、生板の厚さを調整することで適宜決定することができる。なお、耐衝撃性を最も良好に発現し得る厚さは、6〜12mmである。   The material thickness of the inorganic building materials currently on the market is 3 to 4 mm as a lower limit for thin materials, and those below that are not yet practical products. Further, when it is thin, the handling property is remarkably lowered and it is easy to break. However, the product (inorganic papermaking plate) obtained by the method of the present invention can be further reduced to a thickness of, for example, about 2 mm by satisfying the above conditions (1) and (2), and is high as described above. Since it has impact resistance, cracks due to handling can be significantly reduced. The upper limit value of the product thickness is not particularly limited, but is preferably about 15 mm for the round net type papermaking method, and about 50 mm for the long net type papermaking method. This thickness can be appropriately determined by adjusting the thickness of the green plate. In addition, the thickness which can express impact resistance best is 6-12 mm.

上述のようにして得られた本発明の無機質抄造板は、無機質抄造板の厚さ1mmあたりの耐衝撃エネルギーが2.0J以上を有する。ここで本発明で言う無機質抄造板の厚さ1mmあたりの耐衝撃エネルギーとは、無機質抄造板表面に所定の衝撃力を与え、その無機質抄造板が破壊(貫通)されない最大のエネルギー(J)を意味する。その際の無機質抄造板支持は一般建材として使用される木材等を用い、所定の間隔にて2辺での支持にて貼り付けた後、無機質抄造板中央部に例えば鋼球(ナス型、球型等)等を落下させることにより衝撃を与え、無機質抄造板が破壊されない最大のエネルギーを計測し、それを無機質抄造板の厚さで除することで得られた値を意味する。さらに具体的に説明すると、耐衝撃エネルギーは、中心間455mm間隔にて平行に配した二辺の木下地(サイズ50mm角×500mm長さ)上に無機質抄造板(サイズ500mm×500mm)を抄造方向と下地材が垂直になるように置き、釘(鉄丸釘 N45)にて貼り付ける。このときの釘打ち間隔は、一般施工条件範囲内で差し支えないが、150mm程度でよい。また、釘打ちの縁端距離は、本発明では22.5mmとした。それを水平な床上に置き、1kgの鋼球(ナス型、球型等)を無機質抄造板中央に向けて所定の高さから落下させる。その結果、無機質抄造板において鋼球の貫通や、著しい破壊により鋼球が支持されない状態にならない最大高さを、1cm刻みにて計測し、その無機質抄造板の厚さと併せて、無機質抄造板の厚さ1mmあたりの耐衝撃エネルギー(J)を算出する。   The inorganic papermaking plate of the present invention obtained as described above has an impact resistance energy of 2.0 J or more per 1 mm thickness of the inorganic papermaking plate. The impact energy per 1 mm thickness of the inorganic papermaking board referred to in the present invention is the maximum energy (J) that gives a predetermined impact force to the surface of the inorganic papermaking board and the inorganic papermaking board is not broken (penetrated). means. At that time, the support for the inorganic papermaking board is made of wood or the like used as a general building material, and is attached with support at two sides at a predetermined interval, and then, for example, a steel ball (eg eggplant type, ball) at the center of the inorganic papermaking board It means a value obtained by measuring the maximum energy at which the inorganic papermaking board is not destroyed, and dividing it by the thickness of the inorganic papermaking board. More specifically, the impact energy is calculated by applying an inorganic papermaking board (size: 500 mm x 500 mm) on a wooden base (size: 50 mm square x length of 500 mm) arranged in parallel at an interval of 455 mm between the centers. And place it so that the base material is vertical, and stick it with nails (iron round nails N45). The nailing interval at this time may be within the general construction condition range, but may be about 150 mm. Further, the edge distance of nailing is 22.5 mm in the present invention. It is placed on a horizontal floor and a 1 kg steel ball (eg eggplant type, sphere type) is dropped from a predetermined height toward the center of the inorganic papermaking plate. As a result, the maximum height at which the steel balls are not supported due to penetration of the steel balls or significant breakage in the inorganic papermaking plate is measured in 1 cm increments, along with the thickness of the inorganic papermaking plate, The impact energy (J) per 1 mm thickness is calculated.

また、本発明の無機質抄造板は、23℃−75%RHから23℃−53%RHの間での吸放湿量が30g/m以上となる。前記温湿度条件は、JIS A 1470記載の吸放湿性能測定(湿度応答法:中湿域での吸放湿性能試験)に基づくものである。 In the inorganic papermaking plate of the present invention, the moisture absorption and desorption amount between 23 ° C.-75% RH and 23 ° C.-53% RH is 30 g / m 2 or more. The temperature / humidity conditions are based on moisture absorption / release performance measurement (humidity response method: moisture absorption / release performance test in medium humidity range) described in JIS A 1470.

更に、本発明の無機質抄造板は、高い曲げ強度、すなわち10N/mm以上の曲げ強度を有する。また、本発明のセメント質抄造板は、優れたネジ保持力、すなわち無機質抄造板の材料厚さ1mmあたり20N以上のネジ保持力を有する。ここで本発明でいう曲げ強度とは、JIS A 1408により測定された値を意味する。また、ネジ保持力は、JIS B 1112の「十字穴付き木ねじ」の4,2に規定された皿木ネジであり、呼び径4.1mmで長さ38mmの木ネジを気乾状態の材料にねじ込み、その材料を固定したまま木ネジを引き抜く際の最大引張り荷重を測定する方法によって得られた値を意味する。 Furthermore, the inorganic papermaking plate of the present invention has a high bending strength, that is, a bending strength of 10 N / mm 2 or more. Moreover, the cementitious papermaking board of the present invention has an excellent screw holding power, that is, a screw holding power of 20 N or more per 1 mm of material thickness of the inorganic papermaking board. Here, the bending strength referred to in the present invention means a value measured according to JIS A 1408. The screw holding force is a countersunk screw specified in JIS B 1112 “Cross-Hole Wood Screw” 4 and 2. Screw a wood screw with a nominal diameter of 4.1 mm and a length of 38 mm into an air-dried material. The value obtained by the method of measuring the maximum tensile load when the wood screw is pulled out with the material fixed.

以下、本発明を実施例および比較例によりさらに説明する。
(実施例1〜7、比較例1〜9、参考例10〜11)
使用材料:
(1) ケイ酸カルシウム水和物:種類 トバモライト(スラリー状態、固形分濃度=1 0質量%)
(2) 普通ポルトランドセメント:太平洋セメント社製、比表面積3300cm/g
(3) 炭酸カルシウム:有恒鉱業社製 TM−1号
(4) 木質パルプ:繊維長3.5mm、繊維径30μm
(5) ポリビニルアルコール繊維:繊維長4.0mm、繊維径27μm
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.
(Examples 1-7, Comparative Examples 1-9, Reference Examples 10-11)
Materials used:
(1) Calcium silicate hydrate: Type Tobermorite (slurry, solid content = 10% by mass)
(2) Ordinary Portland cement: Taiheiyo Cement, specific surface area 3300 cm 2 / g
(3) Calcium carbonate: TM-1 No. (4), manufactured by Yuesu Mining Co., Ltd. (4) Wood pulp: fiber length 3.5 mm, fiber diameter 30 μm
(5) Polyvinyl alcohol fiber: fiber length 4.0 mm, fiber diameter 27 μm

下記表1〜3に示した配合割合において、各種材料を配合し、そこに水を加えて混合し、濃度約10質量%のスラリーとし、このスラリーを丸網抄造法に施し、所定厚さの生板を得た。得られた生板をプレス機により所定の圧力にて加圧脱水した後、温度60℃で15時間養生し、硬化させ、各種抄造板を得た。得られた抄造板の見掛け密度、曲げ強度、鋼球落下における耐衝撃エネルギー、ネジ保持力並びに23℃−75%RHから23℃−53%RHの間での吸放湿量を測定した。結果を表1〜3に併せて示す。また、ケイ酸カルシウム水和物の平均粒径、木質パルプのCSF、エンドレスフェルト上での薄膜の脱水速度、メーキングロールに巻き取る際の薄膜の含水率、加圧脱水前の生板の見掛け密度、生板を加圧脱水した後の見かけ密度、抄造板の板厚も併せて表1〜3に示す。
なお、抄造板の見掛け密度は、JIS A 5430により測定した値である。
In the blending ratios shown in Tables 1 to 3 below, various materials are blended, and water is added and mixed therewith to obtain a slurry having a concentration of about 10% by mass. I got a raw board. The obtained green plate was pressure dehydrated with a press machine at a predetermined pressure, and then cured at a temperature of 60 ° C. for 15 hours and cured to obtain various papermaking plates. The apparent density, bending strength, impact energy when dropping the steel ball, screw holding force, and moisture absorption / release between 23 ° C.-75% RH and 23 ° C.-53% RH were measured. A result is combined with Tables 1-3 and shown. In addition, the average particle size of calcium silicate hydrate, CSF of wood pulp, dehydration rate of thin film on endless felt, moisture content of thin film when wound on making roll, apparent density of green board before pressure dehydration Tables 1 to 3 also show the apparent density after pressure dehydrating the green plate and the thickness of the papermaking plate.
The apparent density of the papermaking plate is a value measured according to JIS A 5430.

Figure 2005205879
Figure 2005205879

Figure 2005205879
Figure 2005205879

Figure 2005205879
Figure 2005205879

参考例10のケイ酸カルシウム板は、JIS A5430の規格品であり、参考例11の火山性ガラス質複合板は、JIS A5440の規格品である。   The calcium silicate plate of Reference Example 10 is a JIS A5430 standard product, and the volcanic glassy composite plate of Reference Example 11 is a JIS A5440 standard product.

本発明の無機質抄造板の製造方法により得られたセメント質抄造板は、によれば、施工性、柔軟性、強度、ネジ保持力等に優れるとともに、高い耐衝撃性能並びに調湿建材としての吸放湿性能を有し、一般建材としては勿論のこと、更に調湿建材として各種用途に好適に使用することができる。   The cementitious papermaking board obtained by the method for producing an inorganic papermaking board according to the present invention is excellent in workability, flexibility, strength, screw holding power, etc., and has high impact resistance and absorption as a humidity control building material. It has moisture-releasing performance and can be suitably used as a general building material, and further as a moisture-conditioning building material for various applications.

Claims (6)

マトリックス形成用水和性原料20〜60質量%;無機質充填材1〜50質量%;補強繊維(石綿を除く)3.5〜12質量%;及び予め石灰質原料およびケイ酸質原料を水熱合成して得られるケイ酸カルシウム水和物10〜50質量%を含有してなる配合物を湿式混合してスラリーを得、得られたスラリーを抄造することにより生板を得、得られた生板を加圧脱水した後、養生硬化することからなる無機質抄造板の製造方法において、前記ケイ酸カルシウム水和物の平均粒子径は、30μm〜100μmの範囲内にあり、前記補強繊維は、濾水度がカナディアン標準フリーネスで150〜450mlの範囲内にある天然繊維3〜11質量%及び繊維長6.0〜0.2mmで、繊維径20〜50μmの範囲内にある無機繊維及び/または合成繊維0.5〜5質量%から構成され、抄造工程におけるエンドレスフェルト上での薄膜の脱水速度を5〜30%/秒の範囲内とし、且つメーキングロールに巻き取る際の薄膜の含水率を100〜180%とすることによりメーキングロールから切り離した後の生板の見掛け密度を0.35〜0.65g/cmの範囲内とし、該生板を加圧脱水し、加圧脱水後の生板の見掛け密度を加圧脱水前の生板の見掛け密度の1.3〜2.0倍の範囲内とすることを特徴とする無機質抄造板の製造方法。 Hydrothermal synthesis of a hydrated raw material for matrix formation 20 to 60% by mass; an inorganic filler 1 to 50% by mass; a reinforcing fiber (excluding asbestos) 3.5 to 12% by mass; and a calcareous raw material and a siliceous raw material in advance A mixture containing 10 to 50% by mass of calcium silicate hydrate obtained in this way is wet-mixed to obtain a slurry, and a sheet is obtained to obtain a green plate. In the manufacturing method of the inorganic papermaking board which consists of curing by curing after dehydrating under pressure, the average particle diameter of the calcium silicate hydrate is in the range of 30 μm to 100 μm, and the reinforcing fiber has a freeness. Is a Canadian standard freeness of 3 to 11% by mass of natural fibers in the range of 150 to 450 ml, fiber length of 6.0 to 0.2 mm, and inorganic fibers and / or synthetic fibers in the range of fiber diameters of 20 to 50 μm. It is comprised from 0.5 to 5% by mass, the dehydration rate of the thin film on the endless felt in the paper making process is within the range of 5 to 30% / second, and the moisture content of the thin film when wound on the making roll is 100 to The apparent density of the green plate after being separated from the making roll by setting it to 180% is within the range of 0.35 to 0.65 g / cm 3 , the green plate is pressure dehydrated, and the green plate after pressure dehydration A method for producing an inorganic papermaking board, characterized in that the apparent density is within a range of 1.3 to 2.0 times the apparent density of the green board before pressure dehydration. 抄造法が、丸網式抄造法である、請求項1記載の無機質抄造板の製造方法。   The manufacturing method of the inorganic papermaking board of Claim 1 whose papermaking method is a round net-type papermaking method. 請求項1または2記載の無機質抄造板の製造方法によって得られた無機質抄造板であって、前記無機質抄造板の曲げ強度が10N/mm以上であることを特徴とする無機質抄造板。 An inorganic papermaking plate obtained by the method for producing an inorganic papermaking plate according to claim 1, wherein the inorganic papermaking plate has a bending strength of 10 N / mm 2 or more. 請求項1または2記載の無機質抄造板の製造方法によって得られた無機質抄造板であって、前記無機質抄造板の厚さ1mmあたりのネジ保持力が20N以上であることを特徴とする無機質抄造板。   An inorganic papermaking plate obtained by the method for producing an inorganic papermaking plate according to claim 1 or 2, wherein a screw holding force per 1 mm thickness of the inorganic papermaking plate is 20 N or more. . 請求項1または2記載の無機質抄造板の製造方法によって得られた無機質抄造板であって、前記無機質抄造板の厚さ1mmあたりの耐衝撃エネルギーが2.0J以上であることを特徴とする無機質抄造板。   An inorganic papermaking board obtained by the method for producing an inorganic papermaking board according to claim 1 or 2, wherein an impact energy per 1 mm thickness of the inorganic papermaking board is 2.0 J or more. Paper board. 請求項1または2記載の無機質抄造板の製造方法によって得られた無機質抄造板であって、前記無機質抄造板の23℃−75%RHと23℃−53%RHの間での吸放湿量が30g/m以上であることを特徴とする無機質抄造板。 An inorganic papermaking plate obtained by the method for producing an inorganic papermaking plate according to claim 1 or 2, wherein the moisture absorption and desorption amount of the inorganic papermaking plate is between 23 ° C-75% RH and 23 ° C-53% RH. Is an inorganic paper-making board, characterized in that it is 30 g / m 2 or more.
JP2004222404A 2003-12-26 2004-07-29 Inorganic papermaking board and method for producing the same Active JP4468760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222404A JP4468760B2 (en) 2003-12-26 2004-07-29 Inorganic papermaking board and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003434495 2003-12-26
JP2004222404A JP4468760B2 (en) 2003-12-26 2004-07-29 Inorganic papermaking board and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005205879A true JP2005205879A (en) 2005-08-04
JP4468760B2 JP4468760B2 (en) 2010-05-26

Family

ID=34914331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222404A Active JP4468760B2 (en) 2003-12-26 2004-07-29 Inorganic papermaking board and method for producing the same

Country Status (1)

Country Link
JP (1) JP4468760B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302488A (en) * 2006-05-09 2007-11-22 Nozawa Corp Composition of inorganic plate material containing high specific gravity aggregate and method of manufacturing the same
JP2014028519A (en) * 2012-07-03 2014-02-13 A & A Material Corp Humidity controlling building material, manufacturing method thereof and decorative humidity controlling building material
JP2018502232A (en) * 2014-11-20 2018-01-25 サン−ゴバン プラコ ソシエテ パル アクシオン サンプリフィエ Structural panel with improved fixing strength
CN110330305A (en) * 2019-07-15 2019-10-15 重庆大学 A kind of hydrated calcium silicate imitated wood material and preparation method thereof
WO2023080122A1 (en) 2021-11-02 2023-05-11 株式会社クラレ Porous molded plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832810B2 (en) * 2005-06-21 2011-12-07 株式会社エーアンドエーマテリアル Surface decorative inorganic paperboard

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302488A (en) * 2006-05-09 2007-11-22 Nozawa Corp Composition of inorganic plate material containing high specific gravity aggregate and method of manufacturing the same
JP2014028519A (en) * 2012-07-03 2014-02-13 A & A Material Corp Humidity controlling building material, manufacturing method thereof and decorative humidity controlling building material
JP2018502232A (en) * 2014-11-20 2018-01-25 サン−ゴバン プラコ ソシエテ パル アクシオン サンプリフィエ Structural panel with improved fixing strength
US10731343B2 (en) 2014-11-20 2020-08-04 Saint-Gobain Placo Sas Construction panel having improved fixing strength
US11447952B2 (en) 2014-11-20 2022-09-20 Saint-Gobain Placo Sas Construction panel having improved fixing strength
CN110330305A (en) * 2019-07-15 2019-10-15 重庆大学 A kind of hydrated calcium silicate imitated wood material and preparation method thereof
WO2023080122A1 (en) 2021-11-02 2023-05-11 株式会社クラレ Porous molded plate

Also Published As

Publication number Publication date
JP4468760B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
RU2484970C2 (en) High content of hydroxyethylated starch and dispersant in gypsum wall board
RU154942U1 (en) LIGHTWEIGHT GYPSUM WALL PLATE
JP4832810B2 (en) Surface decorative inorganic paperboard
JP6949008B2 (en) Sound absorbing ceiling tile
JP5392469B2 (en) Composite board
CA2616615C (en) A bearing wall board and a method of producing the same
TW201035423A (en) Panels including renewable components and methods for manufacturing same
TWI494289B (en) Inorganic board and method for manufacturing inorganic board
TWI460339B (en) Panels including renewable components and methods for manufacturing
CA2496333A1 (en) Abuse-resistant cast acoustical ceiling tile having an excellent sound absorption value
TW200848380A (en) Expanded perlite annealing process
US20050072056A1 (en) Cementitious product in panel form and manufacturing process
JP5055250B2 (en) Manufacturing method of inorganic papermaking board
JP4468760B2 (en) Inorganic papermaking board and method for producing the same
CN109020426A (en) Magnesial cementitious material and its preparation method on magnesium gelatinous material floor
RU2617819C2 (en) Gypsum plate and method of its manufacturing
WO2019065226A1 (en) Mineral board and production method therefor
JP6166965B2 (en) Method for producing moisture-conditioning building material and method for producing moisture-conditioning building material
JP2002293604A (en) Moisture-conditioning building material and its production process
JP5714923B2 (en) INORGANIC PLATE AND METHOD FOR PRODUCING INORGANIC PLATE
JP2002294979A (en) Moisture-adjusting building material having irregular pattern, and its manufacturing method
JP5007258B2 (en) Manufacturing method of inorganic papermaking board
TWI237626B (en) A durable porous article of manufacture and a process to create same
TWI439436B (en) Inorganic plate, and inorganic plate manufacturing method
JP2001132212A (en) Free-access-floor and its foundation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Ref document number: 4468760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250