JP2005205343A - Method for electrolytic antistaining treatment of liuquid - Google Patents

Method for electrolytic antistaining treatment of liuquid Download PDF

Info

Publication number
JP2005205343A
JP2005205343A JP2004015910A JP2004015910A JP2005205343A JP 2005205343 A JP2005205343 A JP 2005205343A JP 2004015910 A JP2004015910 A JP 2004015910A JP 2004015910 A JP2004015910 A JP 2004015910A JP 2005205343 A JP2005205343 A JP 2005205343A
Authority
JP
Japan
Prior art keywords
potential
anode
cathode
detected
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004015910A
Other languages
Japanese (ja)
Inventor
Katsuro Kishima
勝郎 貴島
Masaoki Shiga
正恩 志賀
Timo Laurila
ラウリラ ティモ
Korhonen Janne
コルホネン ヤンネ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SAVCOR KK
Original Assignee
NIPPON SAVCOR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SAVCOR KK filed Critical NIPPON SAVCOR KK
Priority to JP2004015910A priority Critical patent/JP2005205343A/en
Publication of JP2005205343A publication Critical patent/JP2005205343A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the electrolytic antistaining treatment of a liquid capable of keeping a constant antistaining effect even in a large-sized cell over a long period of time. <P>SOLUTION: The potentials of negative and positive reaction electrodes 6 and 7 are detected by potential detecting electrodes 8 and 9 and the reaction in the reaction electrodes 6 and 7 is analyzed from the transition of the detected potentials to control the polarity switching timing of the anode and the cathode corresponding to an analytic result. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、塩分を含む液体を陽極と陰極による電気化学的反応により防汚処理する電解防汚処理方法に関する。   The present invention relates to an electrolytic antifouling treatment method in which a liquid containing salt is antifouled by an electrochemical reaction between an anode and a cathode.

陽極と陰極とによる電気化学反応により水生生物の殺菌を行う場合、水に塩分が含まれていると、一般的に、次のようなハロゲン生物破壊(殺菌)が生ずることは周知である。   When aquatic organisms are sterilized by an electrochemical reaction between an anode and a cathode, it is well known that the following halogen biodestruction (sterilization) generally occurs when water contains salt.

Cl- → Cl2 + 2e-
Cl2+H2O → HClO + HCl
HClO+H2O → OCl- + H3
Cl - → Cl 2 + 2e -
Cl 2 + H 2 O → HClO + HCl
HClO + H 2 O → OCl + H 3 O

このような生物破壊効果は、ppmレベルの濃度中で次亜塩素酸塩の酸化作用により生ずる。同様に、一定の有害な金属イオンの放出、例えば水流中のCuやAgイオンは、付着した有機物の成長に影響を与え、その成長を抑制する。金属イオンは、次亜塩素酸塩より少ない濃度、すなわちppbレベル時に効果的である。   Such a biodestructive effect is caused by the oxidation action of hypochlorite in a concentration of ppm level. Similarly, the release of certain harmful metal ions, such as Cu and Ag ions in a water stream, affects the growth of attached organic matter and inhibits its growth. Metal ions are effective at lower concentrations than hypochlorite, ie at the ppb level.

通常、金属のイオン分離が金属の活性な電極を必要であるのに対し、次亜塩素酸塩又はオゾンは、不活性な陽極表面に生ずる。また、両方のケースにおいて、生物破壊効果は、化学的付加手段か、又は予備の直流電源やその他の同等の機器により電気化学的に生成することが可能である。   Normally, metal ion separation requires a metal active electrode, whereas hypochlorite or ozone occurs on the inert anode surface. Also, in both cases, the biodestructive effect can be generated electrochemically by chemical addition means, or by a spare DC power source or other equivalent device.

特許文献1(特開2002−143859号公報)には、水中構造物の防汚面を耐食性金属材料により構成し、この防汚面に対して水中において対極(電極)を対向させ、或いは更にこれら防汚面と対極との間に基準電位を与えるための参照電極を配置し、+1.5V vs.SCE以下の正電位と−0.1〜−10V vs.の負電位とが防汚面に交互に周期的に印加されるように、防汚面と対極との間に正負の電圧を交互に、しかも正電位の印加時間t1よりも負電位の印加時間t2の方を長くして周期的に印加することによって、防汚面の腐食防止、水性生物の付着防止、殺菌を図るようにした水中構造物の防汚方法が開示されている。   In Patent Document 1 (Japanese Patent Laid-Open No. 2002-143859), an antifouling surface of an underwater structure is made of a corrosion-resistant metal material, and a counter electrode (electrode) is opposed to the antifouling surface in water, or further A reference electrode for providing a reference potential is disposed between the antifouling surface and the counter electrode, and a positive potential of +1.5 V vs. SCE or less and a negative potential of −0.1 to −10 V vs. are provided on the antifouling surface. In order to alternately apply periodically, positive and negative voltages are alternately applied between the antifouling surface and the counter electrode, and the negative potential application time t2 is longer than the positive potential application time t1 and periodically. An antifouling method for an underwater structure is disclosed in which antifouling surfaces are prevented from being corroded, aquatic organisms are prevented from adhering and sterilized by applying to the water.

この特許文献1の技術では、水中微生物の殺菌には正電位を印加する必要があるが、その反面、正電位の印加は、金属材料の腐食を加速させることになるとの観点から、防汚面と対極との間に正負の電圧を交互に印加しているが、その際に印加時間をt2>t1とするのは、Cr、Fe等の溶出量がより減少するためであり、また正電位を+1.5V vs.SCE以下とするのは、正電位がこの値を越えると、電極からの金属の溶出量が増大し、かつ塩素が発生するおそれがあるためであり、負電位を−0.1〜−1.0V vs.SCEとするのは、負電位が−0.1V vs.SCEより高い(負の値が小さい)と菌体離脱の効果が不十分になり、負電位が−1.0V vs.SCEより低い(負の値が大きい)と、水素の発生やこれにより電極周辺のpHが変化するおそれがあるためである。   In the technique of Patent Document 1, it is necessary to apply a positive potential to sterilize the microorganisms in the water. On the other hand, the application of the positive potential accelerates the corrosion of the metal material. The positive and negative voltages are alternately applied between the positive electrode and the counter electrode, and the application time is set to t2> t1 at this time because the elution amount of Cr, Fe, etc. is further reduced, and the positive potential Is set to +1.5 V vs. SCE or less because if the positive potential exceeds this value, the amount of metal elution from the electrode increases and chlorine may be generated. .1 to -1.0V vs. SCE is that the negative potential is higher than -0.1V vs. SCE (small negative value), the effect of detachment of cells becomes insufficient, and the negative potential is- If it is lower than 1.0V vs. SCE (large negative value), hydrogen generation and the pH around the electrode This is because it may change.

特許文献2(特開平9−248554号公報)には、水中に浸漬した導電性基材に、電解質の分解が起こらない正電位を印加することにより導電性基材表面に直接的又は間接的に接触した水生生物の細胞を殺菌する工程と、電解質の分解が起こらない正電位よりも高い正電位を印加することにより水生生物、その一部の細胞、殺菌された水生生物の細胞及び/又はその破壊物や有機物を殺菌及び/又は脱離する工程と、負電位を印加することにより導電性基材に付着した水生生物の細胞およびスケールを脱離する工程とを組み合わせることにより、水生生物の細胞を殺菌したり、付着した細胞やその分解物を被防汚面である導電性基材表面から脱離させる防汚方法が開示されている。   In Patent Document 2 (Japanese Patent Laid-Open No. 9-248554), a positive potential that does not cause decomposition of the electrolyte is applied directly or indirectly to the surface of the conductive substrate by applying it to the conductive substrate immersed in water. Sterilizing the aquatic cells that have come into contact, and applying a positive potential higher than the positive potential at which electrolyte decomposition does not occur, thereby aquatic organisms, some of them, sterilized aquatic organism cells and / or By combining the process of disinfecting and / or detaching destructive materials and organic substances with the process of detaching aquatic organism cells and scales attached to the conductive substrate by applying a negative potential, aquatic organism cells An antifouling method for disinfecting cells and detaching adhering cells and their degradation products from the surface of the conductive substrate that is the antifouling surface is disclosed.

すなわち、この特許文献2の技術は、三段階の電位印加工程、つまり殺菌のための正電位の印加と、更なる殺菌及び有機物等の脱離のための、電解質の分解が起こらない正電位よりも高い正電位の印加と、被防汚面である導電性基材表面から付着物を脱離させるための負電位の印加とを、適宜に電位印加時間を調節しながら行う。   That is, the technique of Patent Document 2 is based on a three-stage potential application process, that is, the application of a positive potential for sterilization and a positive potential that does not cause decomposition of the electrolyte for further sterilization and desorption of organic substances. In addition, the application of a high positive potential and the application of a negative potential for detaching deposits from the surface of the conductive substrate that is the surface to be protected are performed while appropriately adjusting the potential application time.

これらの従来例を含めて、従来技術には、次のような問題に対する配慮が欠けている。
(1)熱やガスの過剰発生及びその放出
(2)陽極での不用な反応の生成や、電極電位の変化による電極表面での反応の変化。
(3)異極の阻害によるセル内電流の減少。陰極の反応はその表面のpHを変化させ、種々の溶解塩の化学的析出を起こす。
The conventional technology including these conventional examples lacks consideration for the following problems.
(1) Excess generation and release of heat and gas (2) Generation of unnecessary reaction at the anode and change in reaction on the electrode surface due to change in electrode potential.
(3) Reduction of current in the cell due to inhibition of heteropolarity The cathodic reaction changes the pH of the surface and causes chemical deposition of various dissolved salts.

ところで、塩分を含む液体の電気分解では、陽極及び陰極において次のような反応が時間の経過によって生ずる。図1に、陽極及び陰極の各電極表面の電気化学的電位とこれらの表面での反応の典型的な転移モデルを、零電位を基準にして示す。   By the way, in the electrolysis of a liquid containing salt, the following reaction occurs over time at the anode and the cathode. FIG. 1 shows a typical transition model of the electrochemical potential of each of the anode and cathode surfaces and the reaction at these surfaces, with reference to zero potential.

第1段階の主な反応として、陽極側では金属溶解が生ずるのに対し、陰極側では酸素還元が生じ、第2段階の主な反応として、陽極側では塩素が生成されるのに対し、陰極側では塩化物が析出し、第3段階の主な反応として、陽極側では酸素が生成されるのに対し、陰極側では水素が生成されるという対照的関係になる。そして、このような推移に伴い析出した塩化物の電極表面への堆積(スケール)が増加したり、電圧損失が増大したり、陽極と陰極間を流れる電流が減少したり、更に電極自体の劣化も進行する。   As the main reaction of the first stage, metal dissolution occurs on the anode side, while oxygen reduction occurs on the cathode side, and chlorine is generated on the anode side as the main reaction of the second stage, whereas the cathode Chloride precipitates on the side, and as a main reaction in the third stage, oxygen is produced on the anode side while hydrogen is produced on the cathode side. And with this transition, deposition (scale) of precipitated chloride on the electrode surface increases, voltage loss increases, current flowing between the anode and cathode decreases, and the electrode itself deteriorates further. Also progress.

陽極及び陰極でこのような様相になることから、目的とする防汚効果が時間の経過と共に減衰し、長期にわたる防汚効果を期待できない。小規模なセル内での防汚処理では、さほど問題にはならなくとも、大規模なセル内で一定の防汚効果を長期にわたり維持したい場合には、重大な問題である。
特開2002−143859号公報 特開平9−248554号公報
Since it becomes such an aspect in an anode and a cathode, the target antifouling effect attenuates with progress of time, and the antifouling effect over a long term cannot be expected. Antifouling treatment in a small-scale cell is a serious problem when it is not so much a problem but it is desired to maintain a certain antifouling effect for a long time in a large-scale cell.
JP 2002-143859 A JP-A-9-248554

本発明者らは、上記のような知見、つまり陽極及び陰極での反応転移及びその程度は、各電極表面での電気化学的電位と相関関係があることに鑑み、これを踏まえた制御を行うことによって、大規模なセル内であっても一定の防汚効果を長期にわたり維持できる本発明を案出し、上述した問題点を解決したものである。   The present inventors perform control based on the above knowledge, that is, the reaction transition at the anode and the cathode and the degree thereof are correlated with the electrochemical potential on the surface of each electrode. Thus, the present invention has been devised that can maintain a certain antifouling effect for a long time even in a large-scale cell, and solves the above-mentioned problems.

本発明は、塩分を含む液体を陽極と陰極による電気化学的反応により防汚処理する電解防汚処理方法であって、陽極と陰極の少なくとも一方の電位を電位検出手段にて検出し、その検出電位の推移からこれら陽極及び陰極における反応を解析し、その解析結果に応じて陽極と陰極の極性切り替えタイミングを制御することを特徴とする。   The present invention relates to an electrolytic antifouling treatment method for antifouling treatment of a salt-containing liquid by an electrochemical reaction between an anode and a cathode, wherein the potential of at least one of the anode and the cathode is detected by a potential detecting means, and the detection is performed. The reaction at the anode and the cathode is analyzed from the transition of the potential, and the polarity switching timing of the anode and the cathode is controlled according to the analysis result.

陽極側と陰極側では、図1にモデル化したような反応転移が対照的に起こり、それは各電極表面の電位を検出することで予測、つまり陽極及び陰極における反応を、検出した電位をパラメータとして監視(解析)できるので、その解析結果に応じて陽極と陰極の極性切り替えタイミングを制御すれば、電極の極性反転により両電極で反応が反転すると共に、その反転タイミングを検出電位の変化と関連させることにより、塩化物の析出や、ガス及び熱の過剰発生等による悪影響を適切に回避し、防汚処理を長期にわたり効率良く行える。   The reaction transition as modeled in FIG. 1 occurs in contrast on the anode side and the cathode side, which is predicted by detecting the potential on the surface of each electrode, that is, the reaction at the anode and cathode is detected using the detected potential as a parameter. Since monitoring (analysis) can be performed, if the polarity switching timing of the anode and the cathode is controlled according to the analysis result, the reaction is reversed at both electrodes due to the polarity reversal of the electrodes, and the reversal timing is related to the change of the detection potential. Accordingly, adverse effects due to precipitation of chloride, excessive generation of gas and heat, etc. can be appropriately avoided, and the antifouling treatment can be performed efficiently over a long period of time.

極性切り替えタイミングは、電位検出手段にて検出した検出電位が予め決めた閾値を越えたとき、極性切り替えのトリガーとしても、又は、電位検出手段にて検出した検出電位の変化率が予め決めた閾値を越えたとき、極性切り替えのトリガーとしてもよい。更に、陽極と陰極のそれぞれの電位をそれぞれの電位検出手段にて検出し、そのいずれか一方の電位又は検出電位の変化率が予め決めた閾値を越えたとき、極性切り替えのトリガーとすることも可能である。   The polarity switching timing is a threshold at which the change rate of the detected potential detected by the potential detection means is determined as a trigger for polarity switching when the detection potential detected by the potential detection means exceeds a predetermined threshold. When the value exceeds, the polarity switching trigger may be used. Furthermore, the respective potentials of the anode and the cathode are detected by the respective potential detecting means, and when the potential of either one of them or the change rate of the detected potential exceeds a predetermined threshold, it may be used as a trigger for switching the polarity. Is possible.

上記のような極性切り替えに加えて、陽極と陰極間に流れる電流も制御すれば、塩化物の析出を低減できるとともに、ガスや熱による問題も適切に回避できる。   If the current flowing between the anode and the cathode is controlled in addition to the polarity switching as described above, precipitation of chloride can be reduced, and problems due to gas and heat can be appropriately avoided.

具体的な適用例としては、陽極及び陰極を船体のバラスト水タンク内に設置し、バラスト水を防汚処理することが挙げられる。   As a specific application example, an anode and a cathode are installed in a ballast water tank of a hull, and the ballast water is subjected to an antifouling treatment.

本発明によれば、陽極と陰極の少なくとも一方の電位を検出して、その検出電位の推移からこれら陽極及び陰極における反応を解析し、つまり陽極及び陰極での反応転移及びその程度を解析し、その解析結果に応じて陽極と陰極の極性切り替えタイミングを制御するので、陽極と陰極のそれぞれで図1のように起こる反応転移を抑制して、反応転移に起因する上述したような各種の問題を一掃できる。すなわち、塩化物の析出や、ガス及び熱の過剰発生等による悪影響を適切に回避し、防汚処理を長期にわたり効率良く行える。   According to the present invention, the potential of at least one of the anode and the cathode is detected, and the reaction at the anode and the cathode is analyzed from the transition of the detected potential, that is, the reaction transition and the degree at the anode and the cathode are analyzed, Since the polarity switching timing of the anode and the cathode is controlled according to the analysis result, the reaction transition that occurs in each of the anode and the cathode is suppressed as shown in FIG. Can be wiped out. That is, adverse effects due to precipitation of chlorides, excessive generation of gas and heat, etc. can be appropriately avoided, and antifouling treatment can be performed efficiently over a long period of time.

次に、本発明の実施例を図面に基づいて詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図2は本発明の概要を示すシステム構成図で、塩分を含む液体1が入ったセル2内に反応器3が設置されている。この反応器3は、ケーブル4を介してセル外の制御・電源ユニット5に接続され、制御・電源ユニット5により電源供給されるとともに制御される。セル2は防汚対象となるもので、例えば船体のバラスト水タンクなどである。バラスト水タンクの場合には、その内部にサーキュレーションポンプが設置されている。   FIG. 2 is a system configuration diagram showing an outline of the present invention, in which a reactor 3 is installed in a cell 2 containing a liquid 1 containing salt. This reactor 3 is connected to a control / power supply unit 5 outside the cell via a cable 4, and is supplied with power and controlled by the control / power supply unit 5. The cell 2 is a target for antifouling, and is, for example, a ballast water tank of a hull. In the case of a ballast water tank, a circulation pump is installed inside.

反応器3内には、液体1が入り込めるようになっており、その内部には、図3に示すように陰陽両極となる2つの反応用電極6・7が配置されているとともに、これら電極6・7のそれぞれに対して、その表面電位を無接触で検出する電位検出手段として電位検出用電極8・9が対向配置されている。反応用電極6・7には、制御・電源ユニット5から正負の電圧が印加されるとともに、電位検出用電極8・9による検出電位に基づいて制御・電源ユニット5にて次のように制御される。   In the reactor 3, the liquid 1 can enter. Inside the reactor, as shown in FIG. 3, two reaction electrodes 6 and 7 serving as negative and positive electrodes are arranged. The potential detection electrodes 8 and 9 are opposed to each of 7 as potential detection means for detecting the surface potential without contact. Positive and negative voltages are applied to the reaction electrodes 6 and 7 from the control / power supply unit 5, and are controlled by the control / power supply unit 5 as follows based on the detected potentials by the potential detection electrodes 8 and 9. The

制御・電源ユニット5にはコンピュータが組み込まれており、電位検出用電極8・9により反応用電極6・7のそれぞれの電位を検出すると、その検出電位をパラメータとして、その推移から、陽極と陰極となる反応用電極6・7での図1に示したような反応をコンピュータ解析することができる。制御・電源ユニット5は、その解析結果から反応用電極6・7の極性を交互に切り替えるとともに、その極性切り替えタイミングを制御し、更に電流も制御する。   A computer is incorporated in the control / power supply unit 5, and when the potentials of the reaction electrodes 6 and 7 are detected by the potential detection electrodes 8 and 9, the detected potential is used as a parameter, and the anode and the cathode The reaction shown in FIG. 1 at the reaction electrodes 6 and 7 can be analyzed by computer. The control / power supply unit 5 alternately switches the polarities of the reaction electrodes 6 and 7 from the analysis result, controls the polarity switching timing, and further controls the current.

極性切り替えタイミングの制御は、電位検出用電極8・9の一方又は両方の検出電位の推移を見て、(1)検出電位が予め決めた閾値を越えたときをもって極性切り替えのトリガーとする場合と、(2)検出電位の変化率が予め決めた閾値を越えたときをもって極性切り替えのトリガーとする場合と、(3)その両方の閾値を越えたときをもって極性切り替えのトリガーとする場合とがある。図4にそのタイミングチャートを示し、T1時間及びT2時間(T1≠T2)での切り替えは上記の(1)の場合、T3時間(T1≠T2≠T3)での切り替えは(2)の場合を示している。   The polarity switching timing is controlled by looking at the transition of the detection potential of one or both of the potential detection electrodes 8 and 9, and (1) when the detection potential exceeds a predetermined threshold as a trigger for polarity switching. (2) When the detection potential change rate exceeds a predetermined threshold, the polarity switching trigger may be used, and (3) When both the threshold values are exceeded, the polarity switching trigger may be used. . The timing chart is shown in FIG. 4. The switching at T1 time and T2 time (T1 ≠ T2) is in the case of (1) above, and the switching at T3 time (T1 ≠ T2 ≠ T3) is in the case of (2). Show.

図5は(1)の場合の制御フローチャートで、ステップS1で陽極側の検出電位に対する閾値を設定しておいてから、ステップS2で陽極側の検出電位を取り込み、ステップS3でその検出電位が閾値を越えたか否か判断し、越えたらステップS4で極性切り替えのトリガーを発する。   FIG. 5 is a control flowchart in the case of (1). After setting a threshold for the anode-side detection potential in step S1, the anode-side detection potential is captured in step S2, and in step S3, the detection potential is set to the threshold. In step S4, a polarity switching trigger is issued.

図6は(2)の場合の制御フローチャートで、ステップS11で陰極側の検出電位の変化率に対する閾値を設定しておいてから、ステップS12で陰極側の検出電位を取り込み、ステップS13でその検出電位を記憶し、ステップS14で陰極側の検出電位の変化率を計算し、ステップS15でその変化率が閾値を越えたか否か判断し、越えたらステップS16で極性切り替えのトリガーを発する。   FIG. 6 is a control flowchart in the case of (2). After setting a threshold for the rate of change of the detection potential on the cathode side in step S11, the detection potential on the cathode side is captured in step S12, and the detection is performed in step S13. The potential is stored, and the rate of change of the detection potential on the cathode side is calculated in step S14. In step S15, it is determined whether or not the rate of change exceeds the threshold value. If exceeded, a trigger for switching polarity is issued in step S16.

なお、制御・電源ユニット5は、検出電位の推移から両反応用電極6・7に対してこのような極性切り替え制御を行うとともに、電流の制御も行う。   The control / power supply unit 5 performs such polarity switching control on both reaction electrodes 6 and 7 from the transition of the detected potential and also controls the current.

以上、本発明の一実施例について説明したが、電位検出用電極8・9は一方の電極側だけに設けて、片方の電極だけの電位を検出してもよく、また電位検出用電極8・9に代えて既製の表面電位センサ等を用いてもよい。更に、反応用電極6・7の電位を検出し、その検出電位をパラメータとして制御したが、それに加えて、温度やpH等をそれぞれのセンサで検出し、温度やpH等もパラメータとして利用すれば、より精度の高い制御が行える。   Although one embodiment of the present invention has been described above, the potential detection electrodes 8 and 9 may be provided only on one electrode side to detect the potential of only one of the electrodes. Instead of 9, a ready-made surface potential sensor or the like may be used. Furthermore, the potential of the reaction electrodes 6 and 7 was detected and the detected potential was controlled as a parameter. In addition to that, if the temperature, pH, etc. were detected by each sensor and the temperature, pH, etc. were also used as parameters, Therefore, more accurate control can be performed.

陽極及び陰極の各電極表面の電気化学的電位とこれらの表面での反応の典型的な転移モデルを示すグラフである。It is a graph which shows the typical transition model of the electrochemical potential of each electrode surface of an anode and a cathode, and reaction on these surfaces. 本発明の概要を示すシステム構成図である。1 is a system configuration diagram showing an overview of the present invention. 図2に示した反応器内の電極配置を示す模式図である。It is a schematic diagram which shows the electrode arrangement | positioning in the reactor shown in FIG. 極性切り替え制御を示すタイミングチャートである。It is a timing chart which shows polarity switching control. 検出電位が予め決めた閾値を越えたときをもって極性切り替えのトリガーとする場合の制御フローチャートである。It is a control flowchart in the case of setting a trigger for polarity switching when the detected potential exceeds a predetermined threshold value. 検出電位の変化率が予め決めた閾値を越えたときをもって極性切り替えのトリガーとする場合の制御フローチャートである。It is a control flowchart in the case of setting a trigger for polarity switching when the change rate of the detected potential exceeds a predetermined threshold.

符号の説明Explanation of symbols

1 液体
2 セル
3 反応器
4 ケーブル
5 制御・電源ユニット
6・7 反応用電極
8・9 電位検出用電極
1 Liquid 2 Cell 3 Reactor 4 Cable 5 Control / power supply unit 6/7 Reaction electrode 8/9 Potential detection electrode

Claims (6)

塩分を含む液体を陽極と陰極による電気化学的反応により防汚処理する電解防汚処理方法であって、前記陽極と陰極の少なくとも一方の電位を電位検出手段にて検出し、その検出電位の推移からこれら陽極及び陰極における反応を解析し、その解析結果に応じて陽極と陰極の極性切り替えタイミングを制御することを特徴とする液体の電解防汚処理方法。   An electrolytic antifouling treatment method for antifouling treatment of a liquid containing salt by an electrochemical reaction between an anode and a cathode, wherein the potential of at least one of the anode and the cathode is detected by a potential detection means, and the transition of the detected potential The reaction at the anode and the cathode is analyzed, and the polarity switching timing of the anode and the cathode is controlled according to the analysis result. 電位検出手段にて検出した検出電位が予め決めた閾値を越えたとき、極性切り替えのトリガーとすることを特徴とする請求項1に記載の液体の電解防汚処理方法。   2. The liquid electrolytic antifouling treatment method according to claim 1, wherein when the detected potential detected by the potential detecting means exceeds a predetermined threshold value, the polarity switching is triggered. 電位検出手段にて検出した検出電位の変化率が予め決めた閾値を越えたとき、極性切り替えのトリガーとすることを特徴とする請求項1に記載の液体の電解防汚処理方法。   2. The liquid electrolytic antifouling treatment method according to claim 1, wherein when the rate of change of the detected potential detected by the potential detecting means exceeds a predetermined threshold, the polarity switching is triggered. 陽極と陰極のそれぞれの電位をそれぞれの電位検出手段にて検出し、そのいずれか一方の電位又は検出電位の変化率が予め決めた閾値を越えたとき、極性切り替えのトリガーとすることを特徴とする請求項1に記載の液体の電解防汚処理方法。   The potential of each of the anode and the cathode is detected by each potential detecting means, and when the potential of either one of them or the change rate of the detected potential exceeds a predetermined threshold, the polarity switching is triggered. The liquid electrolytic antifouling treatment method according to claim 1. 陽極と陰極間に流れる電流も制御することを特徴とする請求項1ないし4のいずれかに記載の液体の電解防汚処理方法。   The method for electrolytic antifouling treatment of liquid according to any one of claims 1 to 4, wherein the current flowing between the anode and the cathode is also controlled. 陽極及び陰極を船体のバラスト水タンク内に設置し、バラスト水を防汚処理することを特徴とする請求項1ないし5のいずれかに記載の液体の電解防汚処理方法。   6. The method for electrolytic antifouling treatment of liquid according to claim 1, wherein the anode and the cathode are installed in a ballast water tank of the hull, and the ballast water is subjected to the antifouling treatment.
JP2004015910A 2004-01-23 2004-01-23 Method for electrolytic antistaining treatment of liuquid Pending JP2005205343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015910A JP2005205343A (en) 2004-01-23 2004-01-23 Method for electrolytic antistaining treatment of liuquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015910A JP2005205343A (en) 2004-01-23 2004-01-23 Method for electrolytic antistaining treatment of liuquid

Publications (1)

Publication Number Publication Date
JP2005205343A true JP2005205343A (en) 2005-08-04

Family

ID=34901240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015910A Pending JP2005205343A (en) 2004-01-23 2004-01-23 Method for electrolytic antistaining treatment of liuquid

Country Status (1)

Country Link
JP (1) JP2005205343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518038A (en) * 2008-04-23 2011-06-23 青▲島▼海▲徳▼威科技有限公司 A kind of low current electrolysis sterilization algae device and method
JP2012157852A (en) * 2011-01-31 2012-08-23 Kazuhiro Hayashi Electrode purification body for sterilizing living things and bacteria of ballast water of ships, sterilizing biological community stuck to ship body and preventing sticking with electrode potential difference as motive power for causing electrochemical reaction
WO2016152398A1 (en) * 2015-03-20 2016-09-29 Toto株式会社 Sterilizing-water generation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518038A (en) * 2008-04-23 2011-06-23 青▲島▼海▲徳▼威科技有限公司 A kind of low current electrolysis sterilization algae device and method
JP2012157852A (en) * 2011-01-31 2012-08-23 Kazuhiro Hayashi Electrode purification body for sterilizing living things and bacteria of ballast water of ships, sterilizing biological community stuck to ship body and preventing sticking with electrode potential difference as motive power for causing electrochemical reaction
WO2016152398A1 (en) * 2015-03-20 2016-09-29 Toto株式会社 Sterilizing-water generation device
CN107250054A (en) * 2015-03-20 2017-10-13 Toto株式会社 degerming water generating device

Similar Documents

Publication Publication Date Title
AU2008228254B2 (en) Electrochemical cell and method for operating the same
JP4116949B2 (en) Electrochemical sterilization and sterilization method
AU2008236636B2 (en) Method and system of electrolytic treatment
JP5595213B2 (en) Disinfecting water manufacturing apparatus and disinfecting water manufacturing method
Choi et al. Design and operating parameters affecting an electrochlorination system
Pikaar et al. Electrochemical caustic generation from sewage
US20020139689A1 (en) Electrode coating and method of use in a reverse polarity electrolytic cell
CA2012435A1 (en) Halogen generation
JP2005205343A (en) Method for electrolytic antistaining treatment of liuquid
KR101054233B1 (en) Marine life attachment prevention device and seawater supply device using the same
JP4925079B2 (en) Water treatment method and water treatment apparatus
US20230026118A1 (en) Method and system for the efficient and sustainable electrochemical treatment of wastewater
JP4013486B2 (en) Cooling water slime prevention method
JP2007260492A (en) Electrolyzing method of water
WO2010091553A1 (en) Method and apparatus for electrolytically producing alkaline water and use of the alkaline water produced
KR100868980B1 (en) sewage disposal device and sewage disposal method using the same
JP2005279417A (en) Electrochemical water treatment apparatus
JP3928455B2 (en) Water treatment method for cooling water system
JP2019076813A (en) Seawater treatment method, seawater treatment apparatus, and antifouling apparatus of seawater utilization structure
JP2004344144A (en) Fish and shellfish-rearing water-purifying device
JP2024516139A (en) Method and system for wastewater treatment with in situ cleaning of electrodes - Patents.com
JP3521896B2 (en) Water treatment method for cooling water system
KR100801185B1 (en) The method of electrolysis system for sea-water, freshwater and waste-water using precision switching rectifier
EP1394119A1 (en) Method and apparatus for generating ozone by electrolysis
JP2005185206A (en) Stain-proof conductive member and method for electrochemically controlling the same member