JP2005204888A - Model lung with function extremely similar to living body - Google Patents

Model lung with function extremely similar to living body Download PDF

Info

Publication number
JP2005204888A
JP2005204888A JP2004014215A JP2004014215A JP2005204888A JP 2005204888 A JP2005204888 A JP 2005204888A JP 2004014215 A JP2004014215 A JP 2004014215A JP 2004014215 A JP2004014215 A JP 2004014215A JP 2005204888 A JP2005204888 A JP 2005204888A
Authority
JP
Japan
Prior art keywords
oxygen
gas
carbon dioxide
water exchange
exchange means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004014215A
Other languages
Japanese (ja)
Inventor
Masaaki Inoue
政昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKY NET KK
Original Assignee
SKY NET KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKY NET KK filed Critical SKY NET KK
Priority to JP2004014215A priority Critical patent/JP2005204888A/en
Publication of JP2005204888A publication Critical patent/JP2005204888A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of conventional methods for a metabolic model lung; a method to burn a candle or alcohol is cumbersome to handle and risky and a method to dilute by nitrogen gas pours nitrogen gas that does not present, neither of which can set up oxygen intake over a wide range or is simulating relative humidity of exhalation. <P>SOLUTION: A respiratory gas connection system 4 connected to an expansion and contraction gas container 3 equipped with a simulated resistor 2 at an entrance section 1 to carry a gas holding container 3a, a carbon dioxide supply system 6, a respiratory gas circulatory system 9 connected to an oxygen/water exchange means 8 using the expansion and contraction gas container and a solid high-polymer electrolyte membrane 8a, and an air supply system 12 connected via the oxygen/water exchange means and a heating and humidifying equipment 10 are arranged. A negative electrode 8b and a positive electrode 8c, which apply direct current to the solid high-polymer electrolyte membrane, are comprised; the respiratory gas circulatory system 9 is connected to the negative electrode; and the air supply system is connected to the positive electrode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はモデル肺に関するものであり、更に詳細には、呼吸代謝の状況を示す酸素摂取と炭酸ガス産生をシミュレ−トできるとともに、相対湿度の高い呼気を作り出す機能を持った、極めて生体に類似した機能を持つモデル肺に関するものである。   The present invention relates to a model lung. More specifically, the present invention can simulate oxygen uptake and carbon dioxide production, which indicate the state of respiratory metabolism, and has a function of creating exhaled air with a high relative humidity. The model lung has the function.

従来、人体の肺モデルとしては、ゴム等の弾カ性を持ったバッグやベローズを用いるのが一般的であり、これは、肺を弾力性のある容器とみなして、送り込まれたガスを受け入れ、それを排出するという「呼吸運動」のモデルとしているもので、主として人工呼吸器の機能を評価するために使用されているものである。   Conventionally, as a lung model of the human body, it is common to use a bag or bellows with elasticity such as rubber, which accepts the gas sent in, considering the lung as an elastic container. This is a model of “breathing movement” that discharges it, and is mainly used to evaluate the function of the ventilator.

然し乍ら、本来肺は酸素を取り入れ炭酸ガスを排出するという呼吸代謝に関する重要な機能を有しているのにも拘わらず、従来のモデル肺では、代謝モデル肺としての機能は果たしていないものである。   However, the conventional model lung does not function as a metabolic model lung, although the lung originally has an important function related to respiratory metabolism of taking in oxygen and discharging carbon dioxide.

そのために、代謝モデル肺の作成が種々試みられており、一般的には、モデル肺の中でロ−ソクやアルコ−ルランプを燃焼させることにより、酸素を消費させ、炭酸ガスを産生させて、代謝モデル肺としていたが、この方法では、モデル肺の中に火が存在することにより、取扱いが煩雑であるばかりでなく、高濃度酸素を用いる場合は、爆発等の危険を伴うという欠点があり、また、酸素の消費量と炭酸ガス産生量の比は一定であり、モデル肺としての調整範囲が限定されるという課題を有していた。   For this purpose, various attempts have been made to create metabolic model lungs. In general, burning a candle or an alcohol lamp in the model lungs consumes oxygen and produces carbon dioxide, Although this model was a metabolic model lung, this method has the disadvantage that handling is complicated due to the presence of fire in the model lung, and there is a risk of explosion when using high-concentration oxygen. Moreover, the ratio of the consumption of oxygen and the amount of carbon dioxide production is constant, and the adjustment range as a model lung is limited.

また、別の方法として、モデル肺に炭酸ガスと窒素を流す方法が知られており、炭酸ガスは流した流量がそのまま炭酸ガス産生量のシミュレ−ションになるが、窒素は酸素濃度が希釈されて、吸気よりも呼気の酸素濃度が低くなることを利用して、酸素摂取のシミュレ−ションを行っており、この方法は、操作も簡単で調整範囲も広いものであるが、加える窒素の流量分だけ余分なガスが呼吸回路に流入することになるので、実際とは異なる条件と成るという課題を有しており、更には、酸素と空気を使用する人工呼吸器の性能評価を行う場合に使用するモデル肺であれば問題ないが、通常は窒素の存在していない状態で行われる麻酔中におけるシミュレ−ションを行う場合には、不適切なものである。   As another method, a method of flowing carbon dioxide and nitrogen to the model lung is known, and the flow rate of carbon dioxide directly simulates the amount of carbon dioxide produced, but nitrogen is diluted with oxygen concentration. In this method, the oxygen concentration in the exhaled breath is lower than that in the inhalation, and the simulation of oxygen uptake is performed. This method is easy to operate and has a wide adjustment range. As excess gas will flow into the breathing circuit, there is a problem that the condition becomes different from the actual condition, and furthermore, when evaluating the performance of a ventilator that uses oxygen and air There is no problem as long as it is a model lung to be used, but it is inappropriate when performing simulation during anesthesia, which is usually performed in the absence of nitrogen.

つまり、一つはモデル肺の中でローソクやアルコールランプを燃焼させることにより酸素を消費させて、酸素摂取のモデル肺とするもので、もう一つは比較的に巧妙な方法であるが、モデル肺の中に呼吸代謝に関わらないガス、例えば、窒素ガスを流すことにより、前記ガスで希釈されて、モデル肺中の酸素濃度を低下させるものであり、人工呼吸を行っているときであれば呼気量は一定であるので、呼気中の酸素量の割合が減少して恰も酸素摂取が行われた状態と同じ結果となるものである。   In other words, one is a model lung that consumes oxygen by burning a candle or an alcohol lamp in the model lung to make it a model lung for oxygen uptake, and the other is a relatively clever method, If the gas is not involved in respiratory metabolism, such as nitrogen gas, is diluted with the gas to reduce the oxygen concentration in the model lung, and if artificial respiration is performed Since the exhalation volume is constant, the ratio of the oxygen amount in the exhalation is decreased, and the result is the same as the state in which oxygen is ingested.

又、先に開示されている、例えば、バッグの両側面のヒダに、バッグリミッタのU字形の支持部を入れ、上端の係止部でバッグの首部を挟み、首部に人工呼吸器を接続して作動させたとき、袋部は厚さ方向に伸縮するが、側面のヒダは支持部で阻止されて膨らまず、形崩れしないため容積と圧力の関係が正常に維持されるもの(特許文献1参照)や、高電圧電源でコンデンサを充電し、スイッチを閉じることにより、対向した棒状電極に高電圧を印加し、パルスアーク放電を繰り返し起こし、空気又は乾燥空気を放電中に流し、一酸化窒素を生成し、抵抗はコンデンサ2充電中、電極の電圧を小さくするためにあり、加熱されたモリブデンに気体を通すことにより、生成された二酸化窒素を除去し、人工呼吸器に組み込むことにより、医療用一酸化窒素吸入装置となるもの(特許文献2参照)等が開示されている。
特開平10−216232号公報(第1頁) 特開2000−102616号公報(第1頁)
In addition, for example, the U-shaped support part of the bag limiter is inserted in the folds on both sides of the bag, the bag neck is sandwiched between the upper end locking parts, and a ventilator is connected to the neck. When operated, the bag portion expands and contracts in the thickness direction, but the side folds are blocked by the support portion and do not swell and do not collapse, so the relationship between volume and pressure is maintained normally (Patent Document 1) Or by charging the capacitor with a high-voltage power supply and closing the switch, applying a high voltage to the opposing rod-shaped electrode, repeatedly causing pulse arc discharge, flowing air or dry air during the discharge, and nitric oxide The resistor is for reducing the voltage of the electrode during the charging of the capacitor 2, and the generated nitrogen dioxide is removed by passing a gas through heated molybdenum, and it is incorporated into a ventilator. for That the nitric oxide inhalation device (see Patent Document 2) it has been disclosed.
Japanese Patent Laid-Open No. 10-216232 (first page) JP 2000-102616 A (first page)

然し乍ら、バッグの両側面のヒダに、バッグリミッタのU字形の支持部を入れ、上端の係止部でバッグの首部を挟み、首部に人工呼吸器を接続して作動させたとき、袋部は厚さ方向に伸縮するが、側面のヒダは支持部で阻止されて膨らまず、形崩れしないため容積と圧力の関係が正常に維持されるものでは、酸素や炭酸ガスの増減については開示されておらず、単にバッグを膨縮させて人工呼吸器に呼気吸気を行わせるものでる。   However, when the U-shaped support part of the bag limiter is put into the folds on both sides of the bag, the neck part of the bag is sandwiched by the locking part at the upper end, and the artificial respirator is connected to the neck part, the bag part is Although it expands and contracts in the thickness direction, the side folds are blocked by the support part and do not swell and do not collapse, so the relationship between volume and pressure is maintained normally. Instead, it simply expands and contracts the bag and causes the ventilator to inhale exhalation.

更に、高電圧電源でコンデンサを充電し、スイッチを閉じることにより、対向した棒状電極に高電圧を印加し、パルスアーク放電を繰り返し起こし、空気又は乾燥空気を放電中に流し、一酸化窒素を生成し、抵抗はコンデンサ充電中、電極の電圧を小さくするためにあり、加熱されたモリブデンに気体を通すことにより、生成された二酸化窒素を除去し、人工呼吸器に組み込むことにより、医療用一酸化窒素吸入装置となるものでは、本来存在しない窒素ガスを流すものであり、麻酔中の状態をシミュレートしたい場合に本来存在しない窒素ガスを流すことに成り、酸素摂取量を広い範囲にわたって容易に設定することができないものである。   Furthermore, by charging the capacitor with a high-voltage power supply and closing the switch, a high voltage is applied to the opposing rod-shaped electrodes, pulse arc discharge is repeatedly generated, and air or dry air is allowed to flow during the discharge, generating nitric oxide. The resistor is used to reduce the voltage of the electrode during charging of the capacitor. By passing a gas through heated molybdenum, the generated nitrogen dioxide is removed and incorporated into a ventilator for medical monoxide. In the case of a nitrogen inhaler, nitrogen gas that does not exist is flowed, and if you want to simulate the state during anesthesia, you will flow nitrogen gas that does not exist originally, and you can easily set the oxygen intake over a wide range It is something that cannot be done.

つまり、従来の技術の代謝モデル肺のローソクやアルコールランブを燃やす方法は、取扱いが煩雑であると共に、高酸素濃度において使用する場合は、爆発等の大きな危険を伴うもので、又、窒素ガスで希釈する方法は、呼気量が増加してしまうと共に、麻酔中の状態を正確にシミュレートしたい場合に本来存在しない窒素ガスを流すことに成り、どちらの方法も酸素摂取量を広い範囲にわたって容易に設定することができず、更には、実際の呼気は相対湿度100%であるが、これを全くシミュレートしていない等の課題を有しているものである。   In other words, the conventional methods of burning metabolic model lung candles and alcohol lamps are cumbersome to handle, and when used at high oxygen concentrations, there is a great risk of explosion, etc. The method of dilution increases the exhalation volume, and when you want to accurately simulate the state during anesthesia, you flow nitrogen gas that does not exist originally. Both methods make it easy to reduce oxygen intake over a wide range. In addition, although the actual exhalation is 100% relative humidity, there is a problem that this is not simulated at all.

本発明の極めて生体に類似した機能を持つモデル肺は、前述の課題に鑑み、鋭意研鑽の結果、入口部に模擬抵抗器を設けて膨縮自在とするガス収容容体を備えた膨縮ガス容体と接続させた呼吸ガス接続系と、膨縮ガス容体に炭酸ガスを供給するために炭酸ガス供給手段と接続させた炭酸ガス供給系と、膨縮ガス容体とポンプを介装して固体高分子電解膜を用いた酸素/水交換手段と接続させた呼吸ガス循環系と、酸素/水交換手段と加温加湿器を介装して空気供給手段と接続させた空気供給系とを配設し、酸素/水交換手段は固体高分子電解膜の両側に電源からの直流電流を印加する陰極電極と陽極電極を備え、呼吸ガス循環系を酸素/水交換手段の陰極電極側に接続すると共に、空気供給系を酸素/水交換手段の陽極電極側に接続させたものである。   In view of the above-mentioned problems, the model lung having a function very similar to that of the living body of the present invention is an expanded / contracted gas container provided with a gas containing container that can be expanded / contracted by providing a simulated resistor at the inlet as a result of earnest study. A breathing gas connection system connected to the carbon dioxide, a carbon dioxide supply system connected to a carbon dioxide supply means for supplying carbon dioxide to the expansion / contraction gas container, a solid polymer through the expansion / contraction gas container and a pump A breathing gas circulation system connected to oxygen / water exchange means using an electrolytic membrane, and an air supply system connected to air supply means via an oxygen / water exchange means and a heating humidifier are provided. The oxygen / water exchange means includes a cathode electrode and an anode electrode for applying a direct current from a power source on both sides of the solid polymer electrolyte membrane, and connects the respiratory gas circulation system to the cathode electrode side of the oxygen / water exchange means, An air supply system connected to the anode electrode side of the oxygen / water exchange means It is.

本発明の極めて生体に類似した機能を持つモデル肺は取扱いが簡単であり、安全性が高く、酸素摂取量の設定を広い範囲にわたって容易に設定でき、相対湿度の高い呼気ガスを作り出すことができる極めて生体に類似した機能を持つモデル肺を提供するもので、代謝モニタの校正が容易に且つ正確に行えると共に、麻酔のトレーニングを行うための患者シミュレーター用のモデル肺として、或いは、その他の研究用として代謝に関するシミュレションを行うことができるもので、画期的で実用性の高い発明である。   The model lung of the present invention having a function similar to that of a living body is easy to handle, highly safe, can easily set oxygen intake over a wide range, and can produce exhaled gas with high relative humidity. Providing a model lung with functions very similar to those of a living body. The calibration of the metabolic monitor can be performed easily and accurately, and as a model lung for a patient simulator for anesthesia training, or for other research. It is an epoch-making and highly practical invention.

本発明は極めてモデル肺に関するものであり、更に詳細には、呼吸代謝の状況を示す酸素摂取と炭酸ガス産生をシミュレ−トできるとともに、相対湿度の高い呼気を作り出す機能を持った、極めて生体に類似した機能を持つモデル肺に関するものであり、入口部1に模擬抵抗器2を設けて膨縮自在とするガス収容容体3aを備えた膨縮ガス容体3と接続させた呼気吸気を循環させる呼吸ガス接続系4と、該膨縮ガス容体3に炭酸ガスを供給するために炭酸ガス供給手段5と接続させた炭酸ガス供給系6と、前記膨縮ガス容体3とポンプ7を介装して固体高分子電解膜8aを用いた酸素/水交換手段8と接続させた呼吸ガス循環系9と、前記酸素/水交換手段8と加温加湿器10を介装して空気供給手段11と接続させた空気供給系12とを配設し、前記酸素/水交換手段8は固体高分子電解膜8aの両側に電源8dからの直流電流を印加する陰極電極8bと陽極電極8cを備え、前記呼吸ガス循環系9を前記酸素/水交換手段8の陰極電極8b側に接続すると共に、前記空気供給系12を前記酸素/水交換手段8の陽極電極8c側に接続させたものである。   The present invention relates to a model lung. More specifically, the present invention can simulate oxygen uptake and carbon dioxide production indicating the state of respiratory metabolism, and has a function of creating exhaled breath with a high relative humidity. This relates to a model lung having a similar function, and is provided with a simulated resistor 2 at the inlet portion 1 to circulate the exhaled inspiratory gas connected to the expansion / contraction gas container 3 having a gas storage container 3a that can be expanded and contracted. A gas connection system 4, a carbon dioxide supply system 6 connected to a carbon dioxide supply means 5 for supplying carbon dioxide to the expansion / contraction gas container 3, and the expansion / contraction gas container 3 and the pump 7 are interposed. Respiratory gas circulation system 9 connected to oxygen / water exchange means 8 using solid polymer electrolyte membrane 8a, and oxygen supply / water exchange means 8 and heating / humidifier 10 are connected to air supply means 11 Air supply system 12 The oxygen / water exchanging means 8 includes a cathode electrode 8b and an anode electrode 8c for applying a direct current from a power source 8d on both sides of the solid polymer electrolyte membrane 8a. The air supply system 12 is connected to the anode electrode 8 c side of the oxygen / water exchange means 8 while being connected to the cathode electrode 8 b side of the means 8.

以下、本発明の極めて生体に類似した機能を持つモデル肺の実施例の図面を用いて詳細に説明すると、図1は本発明の極めて生体に類似した機能を持つモデル肺の実施例の概要を説明するための概要図である。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a model lung having an extremely similar function to a living body of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an overview of an embodiment of a model lung having a very similar function to a living body of the present invention. It is a schematic diagram for demonstrating.

即ち、本発明の極めて生体に類似した機能を持つモデル肺の呼吸ガス接続系4は、図1に図示する如く、酸素摂取と炭酸ガス産生とをシミュレートできる機能を評価するための人工呼吸器Aと後述する膨縮ガス容体3の入口部1とを人体の喉を想定する空気流を狭めた模擬抵抗器2を設けて接続させたもので、人工呼吸器Aの呼気又は吸気を模擬抵抗器2を通過して後述する膨縮ガス容体3との間で行き来させるもので、模擬抵抗器2は内径の異なるものを付け替えることにより、広い範囲の調整を可能とするものである。   That is, the model lung respiratory gas connection system 4 having a function very similar to a living body of the present invention is, as shown in FIG. 1, a ventilator for evaluating the function of simulating oxygen uptake and carbon dioxide production. A is connected to the inlet portion 1 of the expansion / contraction gas container 3 to be described later by providing a simulated resistor 2 with a narrowed air flow assuming the throat of the human body, and simulates exhalation or inspiration of the ventilator A The simulated resistor 2 can be adjusted in a wide range by changing the inner diameter of the simulated resistor 2 through the container 2 and the expansion / contraction gas container 3 described later.

そして、膨縮ガス容体3は実施例では一端辺をヒンジ3bを介して枢動可能に接続された2枚の板状部材3c.3cの間に膨縮自在とする蛇腹部を有したガス収容容体3aを間装させ、2枚の板状部材3c.3cの他端辺を伸縮自在なコイルスプリング3dを接続させているものであり、人工呼吸器Aから呼気が送られた膨張時はコイルスプリング3dの弾性に抗して膨張し、人工呼吸器Aが吸気に成る縮小時はコイルスプリング3dの弾性によって縮小するものであり、加えて、コイルスプリング3dの位置を一端辺方向又は他端辺方向に移動させることにより、ガス収容容体3aの膨縮の圧力の調整を可能とするもので、これにより、肺の柔軟性を示す肺コンプライアンスを模擬することができるものである。   In the embodiment, the expansion / contraction gas container 3 is composed of two plate-like members 3c. Gas accommodating container 3a having an accordion portion that can be expanded and contracted between 3c, and two plate-like members 3c. The other end of 3c is connected to a retractable coil spring 3d. When exhalation is sent from ventilator A, it expands against the elasticity of coil spring 3d, and ventilator A Is reduced by the elasticity of the coil spring 3d, and in addition, the position of the coil spring 3d is moved in one end side direction or the other end side direction to expand or contract the gas containing container 3a. The pressure can be adjusted, thereby simulating lung compliance indicating the flexibility of the lung.

次に、炭酸ガス供給系6は膨縮ガス容体3のガス収容容体3aに炭酸ガスを供給するために炭酸ガス供給手段5と接続させたもので、つまり、炭酸ガス供給手段5は実施例では炭酸ガスボンベであり、膨縮ガス容体3と炭酸ガス供給手段5との間には流量計6a、及び、開閉バルブ6bを介装しているものである。   Next, the carbon dioxide supply system 6 is connected to the carbon dioxide supply means 5 in order to supply the carbon dioxide gas to the gas containing container 3a of the expansion / contraction gas container 3, that is, the carbon dioxide supply means 5 is used in the embodiment. This is a carbon dioxide cylinder, and a flow meter 6a and an opening / closing valve 6b are interposed between the expansion / contraction gas container 3 and the carbon dioxide supply means 5.

次いで、呼吸ガス循環系9は膨縮ガス容体3のガス収容容体3aと後述する固体高分子電解膜8aを用いた酸素/水交換手段8とを2本の接続管で接続させているものであり、つまり、一方の接続管にはポンプ7を介装してガス収容容体3aのガスを酸素/水交換手段8に流入させると共に、他方の接続管で酸素/水交換手段8からガス収容容体3aにガスを送気させて常時循環させるものである。   Next, the breathing gas circulation system 9 is formed by connecting the gas containing container 3a of the expansion / contraction gas container 3 and the oxygen / water exchange means 8 using the solid polymer electrolyte membrane 8a described later by two connecting pipes. Yes, that is, the gas in the gas storage container 3a flows into the oxygen / water exchange means 8 via the pump 7 in one connection pipe, and the gas storage container from the oxygen / water exchange means 8 in the other connection pipe. The gas is supplied to 3a and continuously circulated.

更に、空気供給系12は後述する酸素/水交換手段8と空気供給手段11とを接続させたものであり、空気供給手段11は実施例ではコンプレッサーであり、酸素/水交換手段8と空気供給手段11との間には加温加湿器10を介装しており、更には、加温加湿器10と空気供給手段11と間には流量計12aと開閉バルブ12bを介装しているものである。   Further, the air supply system 12 is connected to an oxygen / water exchange means 8 and an air supply means 11 described later, and the air supply means 11 is a compressor in the embodiment, and the oxygen / water exchange means 8 and the air supply. A heating humidifier 10 is interposed between the means 11 and a flow meter 12a and an open / close valve 12b are interposed between the heating humidifier 10 and the air supply means 11. It is.

つまり、加温加湿器10は空気供給手段11で供給される空気を人間の呼吸に即して体温まで加温するとともに、人間の呼吸に即して相対湿度100%に加湿するものである。   That is, the warming humidifier 10 warms the air supplied by the air supply means 11 to body temperature in accordance with human breathing and humidifies to 100% relative humidity in accordance with human breathing.

そして、酸素/水交換手段8は固体高分子電解膜8aを用いているもので、固体高分子電解膜8aは、例えば、Perfluorosulfonic acid膜であり、該固体高分子電解膜8aの両側に夫々多孔膜とした陰極電極8bと陽極電極8cを備え、該陰極電極8bと陽極電極8cとを電源8dに接続して直流電流を印加するものである。   The oxygen / water exchanging means 8 uses a solid polymer electrolyte membrane 8a. The solid polymer electrolyte membrane 8a is, for example, a perfluorosulfonic acid membrane, and is porous on both sides of the solid polymer electrolyte membrane 8a. A cathode electrode 8b and an anode electrode 8c are used as a film, and the cathode electrode 8b and the anode electrode 8c are connected to a power source 8d to apply a direct current.

次に、酸素/水交換手段8の陰極電極8b側には呼吸ガス循環系9を接続し、酸素/水交換手段8の陽極電極8c側には空気供給系12を接続させているものである。   Next, a respiratory gas circulation system 9 is connected to the cathode electrode 8b side of the oxygen / water exchange means 8, and an air supply system 12 is connected to the anode electrode 8c side of the oxygen / water exchange means 8. .

つまり、固体高分子電解膜8aの両側の陰極電極8bと陽極電極8cとの間に直流電圧を印加することにより、固体高分子電解膜8aをプロトン(H+)が移動するものであり、これにより、陰極電極8b側の湿度が上昇するとともに酸素濃度が減少するものである。   That is, by applying a DC voltage between the cathode electrode 8b and the anode electrode 8c on both sides of the solid polymer electrolyte membrane 8a, protons (H +) move through the solid polymer electrolyte membrane 8a. As the humidity on the cathode electrode 8b side increases, the oxygen concentration decreases.

そして、プロトン(H+)の移動量はクーロン量(電流×時間)に比例するものであり、固体高分子電解膜8aの面積が大きいほどプロトン(H+)の移動量は多く成り、最大限の酸素摂取量を設定できる面積の固体高分子電解膜8aを使用し、電流を調整することにより、広い範囲にわたって正確に希望する酸素摂取量を設定できるものである。   The amount of movement of protons (H +) is proportional to the amount of coulomb (current × time). The larger the area of the solid polymer electrolyte membrane 8a, the larger the amount of movement of protons (H +). By using the solid polymer electrolyte membrane 8a having an area capable of setting the intake amount and adjusting the current, the desired oxygen intake amount can be accurately set over a wide range.

本発明の極めて生体に類似した機能を持つモデル肺は、酸素摂取と炭酸ガス産生とをシミュレートできる機能を評価するための人工呼吸器Aからの呼気又は吸気を膨縮自在とする膨縮ガス容体3のガス収容容体3aに呼吸ガス接続系4により移送され、呼気又は吸気が入口部1から移送されることにより膨縮ガス容体3のガス収容容体3aは膨縮するものであり、膨縮ガス容体3のガス収容容体3aに移送された呼気又は吸気は酸素/水交換手段8の陰極電極8b側に接続された呼気側と吸気側との呼吸ガス循環系9により、呼吸ガス循環系9に介装されたポンプ7で循環されるものである。   The model lung having a function very similar to that of a living body according to the present invention is an inflation / decompression gas that allows exhalation or inhalation from the ventilator A to evaluate the function capable of simulating oxygen uptake and carbon dioxide production. The gas containing container 3a of the expansion / contraction gas container 3 is expanded and contracted by being transferred to the gas storage container 3a of the container 3 by the breathing gas connection system 4, and exhaled air or inspiration is transferred from the inlet portion 1. Exhaled air or inhaled air that has been transferred to the gas containing container 3a of the gas container 3 is connected to the cathode electrode 8b side of the oxygen / water exchanging means 8 by the breathing gas circulation system 9 between the expiration side and the inspiration side. It is circulated by a pump 7 interposed between the two.

次いで、酸素/水交換手段8の陽極電極8c側には空気供給系12を接続させており、空気供給手段11から空気が送られるものであるが、送られる空気には加温加湿器10によって充分な温度と湿度が加えられるものである。   Next, an air supply system 12 is connected to the anode 8c side of the oxygen / water exchange means 8, and air is sent from the air supply means 11, and the air to be sent is sent by a heating humidifier 10. Sufficient temperature and humidity can be added.

更に、酸素/水交換手段8の固体高分子電解膜8aの両側の陰極電極8bと陽極電極8cには電源8dからの直流電流が印加されており、直流電流が印加されることで、後述する数式にように、固体高分子電解膜8aをプロトン(H+)が移動するもので、プロトン(H+)の移動に伴い、陰極電極8b側の湿度が上昇するとともに酸素濃度が減少するものである。   Further, a direct current from the power source 8d is applied to the cathode electrode 8b and the anode electrode 8c on both sides of the solid polymer electrolyte membrane 8a of the oxygen / water exchange means 8, and the direct current is applied, which will be described later. As expressed by the mathematical formula, protons (H +) move through the solid polymer electrolyte membrane 8a. As the proton (H +) moves, the humidity on the cathode electrode 8b side increases and the oxygen concentration decreases.

Figure 2005204888
Figure 2005204888

一方、炭酸ガスは人工呼吸器Aの吸気のときに炭酸ガス供給手段5から炭酸ガス供給系6により、膨縮ガス容体3のガス収容容体3aに供給されるものである。   On the other hand, carbon dioxide is supplied from the carbon dioxide supply means 5 to the gas containing container 3a of the expansion / contraction gas container 3 by the carbon dioxide supply system 6 when inhaling the ventilator A.

実施例での計測によると、水1gの移動によって1/36モルの酸素(622m?)が消費されるもので、加温加湿器10により、固体高分子電解膜8aの陽極電極8c側に充分な水分を供給することで、湿度の供給と酸素の摂取をするものであり、炭酸ガスの産生に関しては、従来通り炭酸ガス供給系6により膨縮ガス容体3のガス収容容体3に流すことによって実現できるものである。   According to the measurement in the example, 1/36 mol of oxygen (622 m?) Is consumed by the movement of 1 g of water, and the heating / humidifying device 10 is sufficient for the anode 8c side of the solid polymer electrolyte membrane 8a. By supplying a sufficient amount of water, humidity is supplied and oxygen is ingested. Carbon dioxide is produced by flowing it into the gas containing container 3 of the expansion / contraction gas container 3 by the carbon dioxide supply system 6 as usual. It can be realized.

更に、通常、極めて生体に類似した機能を持つモデル肺は酸素摂取量0〜1200m?/1分、炭酸ガス産生量0〜500m?/1分の範囲で設定できることが要求されるものであるが、これに十分に対応できるものである。   Furthermore, a model lung having a function very similar to that of a living body is usually required to be set within a range of oxygen intake 0 to 1200 m? / 1 min and carbon dioxide production 0 to 500 m? / 1 min. This is enough to cope with this.

本発明の極めて生体に類似した機能を持つモデル肺は取扱いが簡単であり、安全性が高く、酸素摂取量の設定を広い範囲にわたって容易に設定でき、相対湿度の高い呼気ガスを作り出すことができる極めて生体に類似した機能を持つモデル肺であり、代謝モニタの校正が容易に且つ正確に行えると共に、麻酔のトレーニングを行うための患者シミュレーター用のモデル肺として、或いは、その他の研究用として代謝に関するシミュレションを行うことができるものである。   The model lung of the present invention having a function similar to that of a living body is easy to handle, highly safe, can easily set oxygen intake over a wide range, and can produce exhaled gas with high relative humidity. It is a model lung with a function very similar to that of a living body, and the metabolism monitor can be easily and accurately calibrated. It can be used as a model lung for a patient simulator for anesthesia training, or for other research purposes. It can be simulated.

図1は本発明の極めて生体に類似した機能を持つモデル肺の実施例の概要を説明するための概要図である。FIG. 1 is a schematic diagram for explaining an outline of an embodiment of a model lung having a function very similar to a living body of the present invention.

符号の説明Explanation of symbols

A 人工呼吸器
1 入口部
2 模擬抵抗器
3 膨縮ガス容体
3a ガス収容容体
3b ヒンジ
3c 板状部材
3d コイルスプリング
4 呼吸ガス接続系
5 炭酸ガス供給手段
6 炭酸ガス供給系
6a 流量計
6b 開閉バルブ
7 ポンプ
8 酸素/水交換手段
8a 固体高分子電解膜
8b 陰極側電極
8c 陽極側電極
8d 電源
9 呼吸ガス循環系
10 加温加湿器
11 空気供給手段
12 空気供給系
12a 流量計
12b 開閉バルブ
A ventilator 1 inlet 2 simulated resistor 3 expansion / contraction gas container 3a gas storage container 3b hinge 3c plate member 3d coil spring 4 breathing gas connection system 5 carbon dioxide supply means 6 carbon dioxide supply system 6a flow meter 6b opening / closing valve DESCRIPTION OF SYMBOLS 7 Pump 8 Oxygen / water exchange means 8a Solid polymer electrolyte membrane 8b Cathode side electrode 8c Anode side electrode 8d Power supply 9 Respiratory gas circulation system 10 Heating humidifier 11 Air supply means 12 Air supply system 12a Flow meter 12b Open / close valve

Claims (1)

入口部に模擬抵抗器を設けて膨縮自在とするガス収容容体を備えた膨縮ガス容体と接続させた呼吸ガス接続系と、該膨縮ガス容体に炭酸ガスを供給するために炭酸ガス供給手段と接続させた炭酸ガス供給系と、前記膨縮ガス容体とポンプを介装して固体高分子電解膜を用いた酸素/水交換手段と接続させた呼気吸気を循環させる呼吸ガス循環系と、前記酸素/水交換手段と加温加湿器を介装して空気供給手段と接続させた空気供給系とを配設し、前記酸素/水交換手段は固体高分子電解膜の両側に電源からの直流電流を印加する陰極電極と陽極電極を備え、前記呼吸ガス循環系を前記酸素/水交換手段の陰極電極側に接続すると共に、前記空気供給系を前記酸素/水交換手段の陽極電極側に接続させたことを特徴とする極めて生体に類似した機能を持つモデル肺。
A breathing gas connection system connected to an expansion / contraction gas container provided with a gas containing container provided with a simulated resistor at the inlet, and carbon dioxide supply for supplying carbon dioxide to the expansion / contraction gas container A carbon dioxide gas supply system connected to the means; a breathing gas circulation system for circulating the exhaled breath connected to the oxygen / water exchange means using a solid polymer electrolyte membrane via the expansion / contraction gas container and a pump; The oxygen / water exchange means and an air supply system connected to the air supply means via a warming humidifier are provided, and the oxygen / water exchange means is connected to a power source on both sides of the solid polymer electrolyte membrane. A cathode electrode and an anode electrode for applying a direct current, and connecting the respiratory gas circulation system to the cathode electrode side of the oxygen / water exchange means, and connecting the air supply system to the anode electrode side of the oxygen / water exchange means Very similar to a living body, characterized by being connected to Model lung with Noh.
JP2004014215A 2004-01-22 2004-01-22 Model lung with function extremely similar to living body Withdrawn JP2005204888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014215A JP2005204888A (en) 2004-01-22 2004-01-22 Model lung with function extremely similar to living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014215A JP2005204888A (en) 2004-01-22 2004-01-22 Model lung with function extremely similar to living body

Publications (1)

Publication Number Publication Date
JP2005204888A true JP2005204888A (en) 2005-08-04

Family

ID=34900069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014215A Withdrawn JP2005204888A (en) 2004-01-22 2004-01-22 Model lung with function extremely similar to living body

Country Status (1)

Country Link
JP (1) JP2005204888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152152A (en) * 2006-12-19 2008-07-03 Air Water Safety Service Inc Breathing simulator
JP2011509438A (en) * 2008-01-11 2011-03-24 レールダル メディカル エー エス A device that simulates changing lung compliance
CN104464475A (en) * 2014-12-25 2015-03-25 苏州大学 Medical simulated respiratory system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152152A (en) * 2006-12-19 2008-07-03 Air Water Safety Service Inc Breathing simulator
JP2011509438A (en) * 2008-01-11 2011-03-24 レールダル メディカル エー エス A device that simulates changing lung compliance
CN104464475A (en) * 2014-12-25 2015-03-25 苏州大学 Medical simulated respiratory system

Similar Documents

Publication Publication Date Title
US6095139A (en) Ventilator suitable for miniaturization
Wagstaff et al. Performance of six types of oxygen delivery devices at varying respiratory rates
JP6138055B2 (en) Systems and devices for neonatal resuscitation and early respiratory assistance
KR200466807Y1 (en) Portable Oxygenator
CN104822408A (en) Automated ventilator with assisted compressions
JPH11137690A (en) Inhalation tube
US20110315139A1 (en) Automatic fresh gas control system
CN105963835B (en) A kind of method of VCV leak compensations
JP2005204888A (en) Model lung with function extremely similar to living body
CN207734439U (en) Portable active heating and moistening breathing circuit filter
CN101549185A (en) Electric control end-expiratory positive pressure expiratory valve
CN211188655U (en) Tracheal catheter for guiding patient without self consciousness
WO2021134374A1 (en) Medical ventilation system
Shikani et al. Experimental assessment and future applications of the Shikani tracheostomy speaking valve
JP2007520257A (en) Apparatus and method for partial gas separation
CN109223130A (en) A kind of Cardiological puncture positioning device
CN220142352U (en) Resuscitation respirator capable of adjusting double horizontal pressure
CN204932523U (en) Simple oxygen respiratory mask under a kind of rabbit autonomous respiration anesthesia
ZEBROWSKI et al. Low flow continuous positive airway pressure with a modified fresh gas reservoir
CN217246087U (en) Temperature control mixed flow breathing filter
CN211884867U (en) Artificial respiration mask for cardiology department
Roberts et al. The CompPAC and PortaPAC portable ventilators bench tests and field experience
WO2024138405A1 (en) Ventilation device, ventilation control method therefor, and storage medium
CN208097083U (en) Inlet valve and ventilator with bypass air flue
Zoorob FOUR-WAY MEDICAL VENTILATOR ADD-ON SPLITTER

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403