JP2005203566A - Lamination ceramic electronic component and its manufacturing method - Google Patents

Lamination ceramic electronic component and its manufacturing method Download PDF

Info

Publication number
JP2005203566A
JP2005203566A JP2004008384A JP2004008384A JP2005203566A JP 2005203566 A JP2005203566 A JP 2005203566A JP 2004008384 A JP2004008384 A JP 2004008384A JP 2004008384 A JP2004008384 A JP 2004008384A JP 2005203566 A JP2005203566 A JP 2005203566A
Authority
JP
Japan
Prior art keywords
conductor
metal
layer
dielectric
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004008384A
Other languages
Japanese (ja)
Inventor
Tsunehiro Honda
常裕 本多
Tomohisa Tonogaki
智久 殿垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004008384A priority Critical patent/JP2005203566A/en
Publication of JP2005203566A publication Critical patent/JP2005203566A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lamination ceramic electronic component wherein plating property of a underlying electrode and terminal strength are raised by preventing formation of an oxide film in the surface of the underlying electrode, and to provide the manufacturing method of the lamination ceramic electronic component which can improve productivity without increasing a cost while obtaining desired electrical property of a dielectric. <P>SOLUTION: The component has a lamination body wherein a plurality of dielectric layers, and a plurality of inner conductors are laminated alternately; and an outer conductor which comprises an underlying conductor provided to the surface of the lamination body and a metallic layer provided on the underlying conductor, and is electrically connected to the inner conductor. The metallic element of the underlying conductor comprises at least one of Ni, and Ni alloy, and the ratio of the metallic element existing in the surface of the underlying conductor specified in the following formula (1) is 50 atomic % or more and 100 atomic % or less. The formula (1) is expressed by the ratio of the metallic element (atomic %) = ämetallic amount/(metallic amount + hydroxide amount of metal + oxide amount of metal)} ×100. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層セラミック電子部品およびその製造方法に関し、特に積層セラミックコンデンサおよびその製造方法に関する。   The present invention relates to a multilayer ceramic electronic component and a manufacturing method thereof, and more particularly to a multilayer ceramic capacitor and a manufacturing method thereof.

近年、積層セラミック電子部品のコストを低減するために、内部電極や外部電極を構成する導体にNiまたはCuなどの卑金属がよく利用されている。   In recent years, base metals such as Ni or Cu are often used for conductors constituting internal electrodes and external electrodes in order to reduce the cost of multilayer ceramic electronic components.

例えば、特許文献1では積層セラミックコンデンサを開示し、下地電極Niペースト(外部電極ペースト)を塗布した未焼成のチップ本体を大気中で400℃にて脱バインダ処理を行う。その後、還元性雰囲気中1250℃で焼成し、続いてN2雰囲気中1000℃で再酸化処理をし、チップ本体と同時に下地電極の形成を行う。その後、下地電極上に順にCuめっき、Niめっき、Snめっきを施す。Cuめっき層は下地電極とNiめっき、Snめっき層の密着性を向上させると開示されている。
特開2000−286142号公報
For example, Patent Document 1 discloses a monolithic ceramic capacitor, and an unfired chip body coated with a base electrode Ni paste (external electrode paste) is subjected to binder removal processing at 400 ° C. in the atmosphere. Thereafter, baking is performed at 1250 ° C. in a reducing atmosphere, followed by reoxidation treatment at 1000 ° C. in an N 2 atmosphere to form a base electrode simultaneously with the chip body. Thereafter, Cu plating, Ni plating, and Sn plating are sequentially applied on the base electrode. It is disclosed that the Cu plating layer improves the adhesion between the base electrode, the Ni plating, and the Sn plating layer.
JP 2000-286142 A

そもそも金属酸化物である誘電体を低酸素雰囲気または還元性雰囲気中で焼成すると、誘電体の一部が還元してしまう。そのため焼成後に、誘電体を再び酸化し酸素空孔に酸素を補充する再酸化処理を行う必要がある。   In the first place, when a dielectric that is a metal oxide is baked in a low oxygen atmosphere or a reducing atmosphere, a part of the dielectric is reduced. Therefore, after firing, it is necessary to perform a reoxidation process in which the dielectric is oxidized again and oxygen is replenished with oxygen.

特許文献1では誘電体のチップ本体と下地電極を同時に焼成し、その後再酸化処理を行っているが、この再酸化処理により下地電極の表面に酸化膜が形成されることになる。このため下地電極上に直接Niめっきをつけることができなくなる。   In Patent Document 1, a dielectric chip body and a base electrode are fired at the same time, and then a reoxidation process is performed. By this reoxidation process, an oxide film is formed on the surface of the base electrode. For this reason, it becomes impossible to apply Ni plating directly on the base electrode.

そこで、酸化膜上であっても形成できるCuめっきを施した後に、Niめっき、Snめっきを形成していた。しかし、この方法ではNiめっきの下地にCuめっきを形成する必要があるため、めっきのプロセスが複雑で高コストになる問題があった。   Therefore, Ni plating and Sn plating are formed after applying Cu plating that can be formed even on an oxide film. However, in this method, since it is necessary to form Cu plating on the base of Ni plating, there is a problem that the plating process is complicated and expensive.

また、誘電体と下地電極を同時焼成することにより得られるNi下地電極は酸化膜を介してCuめっきと接合するため密着強度が低いことも問題であった。   Another problem is that the Ni base electrode obtained by co-firing the dielectric and the base electrode is bonded to the Cu plating via the oxide film, so that the adhesion strength is low.

従って、本発明の目的は下地電極の表面に酸化膜が形成されるのを防ぎ、下地電極のめっき付き性および端子強度が高められた積層セラミック電子部品を提供することにある。さらに所望の誘電体の電気特性を得ながら、コストの増大を招くことなく生産性を向上させることのできる積層セラミック電子部品の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a multilayer ceramic electronic component in which an oxide film is prevented from being formed on the surface of the base electrode, and the plating property and terminal strength of the base electrode are enhanced. It is another object of the present invention to provide a method for manufacturing a multilayer ceramic electronic component capable of improving productivity without incurring an increase in cost while obtaining desired electrical characteristics of a dielectric.

本発明の積層セラミック電子部品は、複数の誘電体層と複数の内部導体が交互に積層された積層体と、前記積層体の表面に設けられた下地導体と、該下地導体の上に設けられた金属層とを含む、前記内部導体と電気的に接続される外部導体を備え、前記下地導体の金属成分はNi、Ni合金のうち少なくとも1つを含み、下記の式(1)で規定される前記下地導体の表面に存在する前記金属成分の割合が、50原子%以上100原子%以下であることを特徴とする。   The multilayer ceramic electronic component of the present invention includes a multilayer body in which a plurality of dielectric layers and a plurality of internal conductors are alternately stacked, a base conductor provided on the surface of the multilayer body, and a base conductor provided on the base conductor. And an outer conductor electrically connected to the inner conductor, wherein the metal component of the base conductor includes at least one of Ni and Ni alloy, and is defined by the following formula (1): The ratio of the metal component present on the surface of the underlying conductor is from 50 atomic% to 100 atomic%.

金属成分の割合(原子%)={金属量/(金属量+金属の水酸化物量+金属の酸化物量)}×100・・・式(1)
そして、前記金属層は複数のめっき層を含むものが好ましい。
Ratio of metal component (atomic%) = {metal amount / (metal amount + metal hydroxide amount + metal oxide amount)} × 100 (1)
The metal layer preferably includes a plurality of plating layers.

また、前記複数のめっき層はNiめっき層およびSnめっき層を含み、前記Niめっき層が前記下地導体上に設けられ、前記Snめっき層が前記Niめっき層上に設けられているものが好ましい。   The plurality of plating layers preferably include a Ni plating layer and a Sn plating layer, wherein the Ni plating layer is provided on the base conductor, and the Sn plating layer is provided on the Ni plating layer.

また、前記下地導体は誘電体材料を含み、該誘電体材料は前記誘電体層を構成する誘電体材料と略同じであることが好ましい。   Moreover, it is preferable that the said base conductor contains a dielectric material, and this dielectric material is substantially the same as the dielectric material which comprises the said dielectric material layer.

また、本発明の積層セラミック電子部品の製造方法は、複数の誘電体層と複数の内部導体を含み、前記内部導体に電気的に接続した、Ni、Ni合金のうち少なくとも1つの金属成分を含む下地導体が表面に形成された、セラミック積層体を得る工程と、酸素分圧が前記下地導体を構成する金属成分と該金属成分の酸化物との平衡酸素分圧より高い雰囲気中で、前記セラミック積層体を熱処理して前記誘電体層を酸化させる工程と、前記誘電体層を酸化させた後、酸素分圧が前記下地導体を構成する金属成分と該金属成分の酸化物との平衡酸素分圧より低い雰囲気中で、かつ、前記誘電体層が還元されず、前記金属成分の酸化物が金属に還元される温度において、前記セラミック積層体を熱処理して前記下地導体を還元する工程と、前記下地導体上に金属層を設けることにより外部導体を形成し、前記内部導体と前記外部導体とを電気的に接続する工程と、を備えることを特徴としている。   The method for manufacturing a multilayer ceramic electronic component of the present invention includes a plurality of dielectric layers and a plurality of internal conductors, and includes at least one metal component of Ni and Ni alloy electrically connected to the internal conductors. A step of obtaining a ceramic laminate having a base conductor formed on the surface thereof, and the ceramic in an atmosphere in which an oxygen partial pressure is higher than an equilibrium oxygen partial pressure of a metal component constituting the base conductor and an oxide of the metal component; A step of oxidizing the dielectric layer by heat-treating the laminate, and after oxidizing the dielectric layer, an oxygen partial pressure is an equilibrium oxygen content of a metal component constituting the base conductor and an oxide of the metal component Reducing the underlying conductor by heat-treating the ceramic laminate at a temperature lower than the pressure and at a temperature at which the dielectric layer is not reduced and the oxide of the metal component is reduced to a metal; The base The outer conductor is formed by providing a metal layer on the body, is characterized by comprising a step of electrically connecting the said inner conductor an outer conductor.

そして、前記複数の誘電体層と複数の内部導体を含み、下地導体が表面に形成されたセラミック積層体は、複数の誘電体材料層と内部導体材料層を含む未焼成の積層体を用意し、前記積層体の表面に前記内部導体材料層に接続される下地導体材料層を設けた後、焼成することにより得るのが好ましい。   The ceramic laminate including the plurality of dielectric layers and the plurality of inner conductors and having the base conductor formed on the surface is prepared as an unfired laminate including the plurality of dielectric material layers and the inner conductor material layer. It is preferable to obtain the substrate by firing after providing a base conductor material layer connected to the inner conductor material layer on the surface of the laminate.

また、前記誘電体層を酸化させる工程および前記下地導体を還元する工程を1つの炉において連続して行ってもよい。   Further, the step of oxidizing the dielectric layer and the step of reducing the base conductor may be continuously performed in one furnace.

また、前記誘電体層を酸化させる工程を第1の炉で行い、前記下地導体を還元する工程を前記第1の炉よりも冷却速度が速い第2の炉において行ってもよい。   Further, the step of oxidizing the dielectric layer may be performed in a first furnace, and the step of reducing the base conductor may be performed in a second furnace having a cooling rate higher than that of the first furnace.

本発明の積層セラミック電子部品では、下地導体の表面に存在するNi、Ni合金のうち少なくとも1つの金属成分の割合が50原子%以上100原子%以下であって、この金属の酸化物および金属の水酸化物の割合が50原子%未満に制限されているため、下地導体と金属層との密着強度が向上する。   In the multilayer ceramic electronic component of the present invention, the proportion of at least one metal component of Ni and Ni alloy existing on the surface of the underlying conductor is 50 atomic% or more and 100 atomic% or less. Since the proportion of hydroxide is limited to less than 50 atomic%, the adhesion strength between the underlying conductor and the metal layer is improved.

したがって、Ni、Ni合金のうち少なくとも1つの金属成分を含む下地導体上にCuめっき層を介在させることなく直接Niめっき層を形成した場合、下地導体とNiめっき層との密着強度を向上させ、かつコストを低減させることができる。   Therefore, when the Ni plating layer is directly formed on the underlying conductor containing at least one metal component among Ni and Ni alloy without interposing the Cu plating layer, the adhesion strength between the underlying conductor and the Ni plating layer is improved. In addition, the cost can be reduced.

また、本発明の積層セラミック電子部品の製造方法では、誘電体層を酸化させた後、酸素分圧が下地導体を構成する金属成分と該金属成分の酸化物との平衡酸素分圧より低い雰囲気中で、かつ、誘電体層が還元されず、金属成分の酸化物が金属に還元される温度において、セラミック積層体を熱処理して下地導体を還元するので、下地導体の金属酸化膜および金属水酸化膜の形成を防ぎ、下地導体のめっき付き性およびめっき層の密着強度を向上させることができる。   Further, in the method for manufacturing a multilayer ceramic electronic component of the present invention, after oxidizing the dielectric layer, an atmosphere in which the oxygen partial pressure is lower than the equilibrium oxygen partial pressure of the metal component constituting the underlying conductor and the oxide of the metal component And the dielectric layer is not reduced and the oxide of the metal component is reduced to the metal, the ceramic laminate is heat-treated to reduce the underlying conductor. Formation of an oxide film can be prevented, and the plating property of the base conductor and the adhesion strength of the plating layer can be improved.

そして、誘電体層を酸化させる工程および下地導体を還元する工程を1つの炉において連続して行う場合、下地導体の金属酸化膜の形成を防止するのに新たな設備を必要とせず、コストの増大を招くことなく積層セラミック電子部品を製造できる。   When the step of oxidizing the dielectric layer and the step of reducing the underlying conductor are continuously performed in one furnace, no new equipment is required to prevent the formation of the metal oxide film of the underlying conductor, and the cost is reduced. A multilayer ceramic electronic component can be manufactured without causing an increase.

また、誘電体層を酸化させる工程を第1の炉で行い、別途、下地導体を還元する工程を前記第1の炉よりも冷却速度が速い第2の炉において行う場合、還元工程にかかる処理時間を短縮でき、生産性を向上させることができる。   In addition, when the step of oxidizing the dielectric layer is performed in the first furnace and the step of reducing the underlying conductor is performed separately in the second furnace having a cooling rate faster than that of the first furnace, the process related to the reduction step Time can be shortened and productivity can be improved.

実施例1に係る積層セラミックコンデンサ1の構成およびその製造方法について図1を参照して説明する。   A configuration of the multilayer ceramic capacitor 1 according to the first embodiment and a manufacturing method thereof will be described with reference to FIG.

積層セラミックコンデンサ1は、誘電体層2aおよび内部導体3を有するセラミック積層体2と、下地導体4および金属層としてのめっき層5、6を有する外部導体10とから構成されている。   The multilayer ceramic capacitor 1 includes a ceramic multilayer body 2 having a dielectric layer 2a and an inner conductor 3, and an outer conductor 10 having a base conductor 4 and plating layers 5 and 6 as metal layers.

セラミック積層体2では、複数の誘電体層2aの間に複数の内部導体3が設けられ、誘電体層2aと内部導体3が交互に積層された構成になっている。内部導体3の端部3aはセラミック積層体2の何れかの端面に露出するように形成されている。   In the ceramic laminate 2, a plurality of internal conductors 3 are provided between a plurality of dielectric layers 2a, and the dielectric layers 2a and the internal conductors 3 are alternately laminated. The end 3 a of the inner conductor 3 is formed so as to be exposed at any end face of the ceramic laminate 2.

下地導体4はセラミック積層体2の外表面上に設けられ、セラミック積層体2の端面に露出した内部導体3の端部3aと電気的に接続されている。下地導体4は金属成分であるNiおよび/またはNi合金と、セラミック積層体2の誘電体層2aと同じ主成分の誘電体材料とを含む。   The underlying conductor 4 is provided on the outer surface of the ceramic laminate 2 and is electrically connected to the end 3 a of the internal conductor 3 exposed at the end face of the ceramic laminate 2. The base conductor 4 includes Ni and / or Ni alloy which are metal components, and a dielectric material having the same main component as the dielectric layer 2 a of the ceramic laminate 2.

下地導体4上に金属層がさらに形成されている。本実施例では下地導体4の上にNiめっき層5が設けられ、さらにNiめっき層5の上にSnめっき層6が設けられて、外部導体10を構成している。従って、内部導体3は下地導体4およびNiめっき層5,Snめっき層6を含む外部導体10に電気的に接続されている。   A metal layer is further formed on the underlying conductor 4. In the present embodiment, the Ni plating layer 5 is provided on the base conductor 4, and the Sn plating layer 6 is further provided on the Ni plating layer 5 to constitute the external conductor 10. Therefore, the inner conductor 3 is electrically connected to the outer conductor 10 including the base conductor 4 and the Ni plating layer 5 and the Sn plating layer 6.

次に、このような積層セラミックコンデンサ1の製造方法を以下に説明する。   Next, a method for manufacturing such a multilayer ceramic capacitor 1 will be described below.

まず、チタン酸バリウム(平均粒径0.3μm)を主成分とする誘電体材料層としての複数のセラミックグリーンシートに、Niを主成分とする複数の内部導体材料層としての電極ペーストを印刷した。次に、上記内部電極材料層を形成した複数のセラミックグリーンシートを積層し、カットすることにより未焼成のチップ状の積層体を得た。その後、積層体の表面を研磨するバレル処理をすることにより未焼成の積層体の端面に内部導体材料層を露出させた。この積層体のサイズは4.0mm×2.2mm×2.2mmとした。   First, an electrode paste as a plurality of internal conductor material layers mainly composed of Ni was printed on a plurality of ceramic green sheets as dielectric material layers mainly composed of barium titanate (average particle size 0.3 μm). . Next, a plurality of ceramic green sheets on which the internal electrode material layer was formed were laminated and cut to obtain an unfired chip-like laminate. Thereafter, the inner conductor material layer was exposed on the end face of the unfired laminated body by performing barrel treatment for polishing the surface of the laminated body. The size of this laminate was 4.0 mm × 2.2 mm × 2.2 mm.

次に、平均粒径1μmのNi粉体に、ワニスと、共素地材として上記セラミックグリーンシートと略同じ主成分のチタン酸バリウム(平均粒径0.3μm)を加え混練することにより下地導体材料層用の下地導体ペーストを得た。   Next, the base conductor material is prepared by adding and kneading varnish and barium titanate having the same main component as the above-mentioned ceramic green sheet (average particle size: 0.3 μm) to Ni powder having an average particle size of 1 μm. A base conductor paste for the layer was obtained.

なお、共素地材はセラミックグリーンシートと略同じ主成分の誘電体材料から構成されることが望ましい。これは後述するようにセラミックグリーンシートと下地導体ペーストを同時焼成するので、双方の焼結収縮率の相違により積層体にクラックが発生しないよう、セラミックグリーンシートの焼結収縮と、下地導体ペーストの焼結収縮を合わせるためである。また下地導体とセラミックグリーンシートからなる積層体との同時焼成による密着強度を確保するためである。   The common base material is preferably composed of a dielectric material having substantially the same main component as the ceramic green sheet. This is because the ceramic green sheet and the underlying conductor paste are fired simultaneously as will be described later, so that the ceramic green sheet does not crack due to the difference in the sintering shrinkage ratio between the ceramic green sheet and the underlying conductor paste. This is to match the sintering shrinkage. Moreover, it is for ensuring the adhesive strength by simultaneous baking with the laminated body which consists of a base conductor and a ceramic green sheet.

次に、この下地導体ペーストを、未焼成の積層体の内部導体材料層が露出した端面に塗布し、下地導体材料層が設けられた生の積層体を得た。   Next, this base conductor paste was applied to the end face where the inner conductor material layer of the unfired multilayer body was exposed to obtain a raw multilayer body provided with the base conductor material layer.

次に、この積層体を大気中230℃で5時間熱処理することにより、積層体の脱バインダーを行った。   Next, this laminate was heat-treated in the atmosphere at 230 ° C. for 5 hours to remove the binder from the laminate.

次に、表1に示す条件(焼成プロファイル)で、脱バインダー後の積層体を焼成した。焼成プロファイルにおいて、1250℃を維持する温度区間では水素と窒素を導入した還元性雰囲気で、セラミックグリーンシートと内部導体材料層及び下地導体材料層を同時に焼成し、焼結を行った。その結果、複数の誘電体層2aと複数の内部導体3を含むセラミック積層体2であって、セラミック積層体2の表面にNiを含む下地導体4が形成されたセラミック積層体を得た。   Next, the laminate after debinding was fired under the conditions (firing profile) shown in Table 1. In the firing profile, the ceramic green sheet, the inner conductor material layer, and the underlying conductor material layer were simultaneously fired and sintered in a reducing atmosphere in which hydrogen and nitrogen were introduced in a temperature interval maintaining 1250 ° C. As a result, a ceramic laminate 2 including a plurality of dielectric layers 2a and a plurality of internal conductors 3 and having a base conductor 4 containing Ni formed on the surface of the ceramic laminate 2 was obtained.

Figure 2005203566
Figure 2005203566

得られたセラミック積層体は、上記のように誘電体層が還元性雰囲気で焼成されているので、誘電体から酸素が奪われ、酸素空孔が発生することになる。そこで焼結後、1000℃から600℃の降温区間では水素の導入を停止することで誘電体層2aを酸化させた。この酸化処理により酸素空孔に酸素を補充し誘電体の絶縁抵抗特性の劣化を抑えることができる。この際の炉内雰囲気は誘電体の酸素空孔に酸素を補充することが可能な酸素分圧に設定した。この酸素分圧とは誘電体(金属酸化物)とその還元生成物との平衡酸素分圧よりも高い酸素分圧であればよい。さらにより望ましくは、下地導体4に含まれるNiとNi酸化物との平衡酸素分圧よりも高い酸素分圧で誘電体層2aを酸化させるのがよい。この酸素分圧により誘電体の酸化反応速度を促進させることができるからである。   In the obtained ceramic laminate, since the dielectric layer is fired in a reducing atmosphere as described above, oxygen is deprived from the dielectric and oxygen vacancies are generated. Therefore, after sintering, the dielectric layer 2a was oxidized by stopping the introduction of hydrogen in the temperature lowering section from 1000 ° C. to 600 ° C. By this oxidation treatment, oxygen can be replenished to the oxygen vacancies and deterioration of insulation resistance characteristics of the dielectric can be suppressed. At this time, the furnace atmosphere was set to an oxygen partial pressure capable of replenishing oxygen in the oxygen vacancies of the dielectric. The oxygen partial pressure may be any oxygen partial pressure higher than the equilibrium oxygen partial pressure between the dielectric (metal oxide) and its reduction product. More preferably, the dielectric layer 2a is oxidized with an oxygen partial pressure higher than the equilibrium oxygen partial pressure of Ni and Ni oxide contained in the underlying conductor 4. This is because the oxygen partial pressure can accelerate the oxidation reaction rate of the dielectric.

上記の酸化処理においては誘電体が酸化されると同時に、Niを含む下地導体4がセラミック積層体2の表面に形成されているので、下地導体4も酸化処理に曝されることになる。つまり下地導体4の表面にNi酸化膜とその変性物であるNi水酸化膜が形成されてしまう。   In the above oxidation treatment, the dielectric is oxidized, and at the same time, the underlying conductor 4 containing Ni is formed on the surface of the ceramic laminate 2, so that the underlying conductor 4 is also exposed to the oxidation treatment. That is, a Ni oxide film and a Ni hydroxide film that is a modified product thereof are formed on the surface of the underlying conductor 4.

そこで、酸化処理後(温度区間で言えば600℃まで冷却した後)、水素の投入を再開し、炉内酸素分圧をNiとNi酸化物(例えばNiO)との平衡酸素分圧より低くした。この温度を60分間維持し、さらに200℃まで冷却しながら、炉内酸素分圧が上記平衡酸素分圧より低い状態を維持することにより下地導体4を還元した。この還元処理により下地導体4の表面に存在するNi酸化膜およびその変性物であるNi水酸化膜の割合を減少させる、或はNi酸化膜およびNi水酸化膜を除去することができる。   Therefore, after the oxidation treatment (after cooling to 600 ° C. in the temperature section), the charging of hydrogen was resumed, and the oxygen partial pressure in the furnace was made lower than the equilibrium oxygen partial pressure of Ni and Ni oxide (for example, NiO). . While maintaining this temperature for 60 minutes and further cooling to 200 ° C., the underconductor oxygen 4 was reduced by maintaining the state in which the oxygen partial pressure in the furnace was lower than the equilibrium oxygen partial pressure. By this reduction treatment, the ratio of the Ni oxide film existing on the surface of the underlying conductor 4 and the Ni hydroxide film which is a modified product thereof can be reduced, or the Ni oxide film and the Ni hydroxide film can be removed.

また、200℃〜20℃の温度区間ではNiの平衡状態がNiOとなっているが、雰囲気温度が低く、処理時間が短いため、還元された下地導体4の酸化は進行しない。   In the temperature range of 200 ° C. to 20 ° C., the equilibrium state of Ni is NiO. However, since the ambient temperature is low and the processing time is short, oxidation of the reduced underlying conductor 4 does not proceed.

還元処理後、セラミック積層体2の下地導体4上にNiめっき層5、Snめっき層6を順に設け、外部導体10を形成した。これにより内部導体3と外部導体10が電気的に接続された積層セラミックコンデンサ1が得られた。   After the reduction treatment, the Ni plating layer 5 and the Sn plating layer 6 were provided in this order on the underlying conductor 4 of the ceramic laminate 2, and the external conductor 10 was formed. Thereby, the multilayer ceramic capacitor 1 in which the inner conductor 3 and the outer conductor 10 were electrically connected was obtained.

なお、上記実施例1においては上記誘電体層を酸化させる工程および下地導体を還元する工程を1つの箱型焼成炉(バッチ炉)内において連続して行った。この場合、新たな設備を必要としないので、追加のコストが発生せずに積層セラミックコンデンサを製造できる。   In Example 1, the step of oxidizing the dielectric layer and the step of reducing the underlying conductor were performed continuously in one box-type firing furnace (batch furnace). In this case, since no new equipment is required, the multilayer ceramic capacitor can be manufactured without any additional cost.

(積層セラミックコンデンサの特性評価)
表2には、上記した製造方法において、還元開始温度、酸素分圧、キープ時間を様々に変化させて得た試料が示されている。また表2には下地導体表面の金属(Ni)成分の割合、めっきの被覆率、端子強度および絶縁抵抗(IR)の測定結果が示されている。表2において、試料番号に*を付したものは本発明の範囲外のものであり、その他は本発明の範囲内のものである。
(Characteristic evaluation of multilayer ceramic capacitors)
Table 2 shows samples obtained by variously changing the reduction start temperature, the oxygen partial pressure, and the keep time in the above manufacturing method. Table 2 also shows the measurement results of the ratio of the metal (Ni) component on the surface of the underlying conductor, the plating coverage, the terminal strength, and the insulation resistance (IR). In Table 2, the sample numbers marked with * are outside the scope of the present invention, and the others are within the scope of the present invention.

Figure 2005203566
Figure 2005203566

金属(Ni)成分の測定は、めっき層が形成される前の試料について、セラミック積層体2に下地導体4が形成された状態で行った。下地導体4表面のNi、Ni水酸化物およびNi酸化物の量をX線光電子分光法により定量分析し、式(1)よりNi金属成分の割合を算出した。   The measurement of the metal (Ni) component was performed in a state where the base conductor 4 was formed on the ceramic laminate 2 for the sample before the plating layer was formed. The amounts of Ni, Ni hydroxide and Ni oxide on the surface of the underlying conductor 4 were quantitatively analyzed by X-ray photoelectron spectroscopy, and the ratio of Ni metal component was calculated from the formula (1).

金属(Ni)成分の割合(原子%)={Ni金属量/(Ni金属量+Ni水酸化物量+Ni酸化物量)}×100・・・(1)
めっきの被覆率の測定は、下地導体4上にNiめっき層5を形成した試料について行った。Niめっき層の表面を顕微鏡観察することにより、下地導体4上のNiめっき層5の被覆率を算出した。
Ratio of metal (Ni) component (atomic%) = {Ni metal amount / (Ni metal amount + Ni hydroxide amount + Ni oxide amount)} × 100 (1)
The plating coverage was measured on a sample in which the Ni plating layer 5 was formed on the base conductor 4. The coverage of the Ni plating layer 5 on the underlying conductor 4 was calculated by observing the surface of the Ni plating layer with a microscope.

外部導体の端子強度は、下地導体4にNiめっき層5およびSnめっき層6を設け、外部導体10が完成した状態で行った。積層セラミックコンデンサ1の外部導体10にリード線をはんだ付けし、端子強度試験用の試料とした。端子強度は強度試験機を用い、20mm/minの条件でリード線の両端を互いに反対方向に引っ張り、下地導体またはめっき層が剥離したときの強度を求めることにより測定した。   The terminal strength of the outer conductor was measured in a state in which the Ni conductor 5 and the Sn plating layer 6 were provided on the base conductor 4 and the outer conductor 10 was completed. A lead wire was soldered to the outer conductor 10 of the multilayer ceramic capacitor 1 to prepare a sample for a terminal strength test. The terminal strength was measured by using a strength tester and pulling both ends of the lead wire in opposite directions under the condition of 20 mm / min to obtain the strength when the underlying conductor or the plating layer was peeled off.

絶縁抵抗については、上記端子強度の測定と同様に外部導体10が形成された状態で行った。恒温槽に試料を投入後150℃に加熱し、絶縁抵抗計を用いて試料にDC20Vの電圧を60秒間印加した後の抵抗値を測定した。   The insulation resistance was performed in a state where the outer conductor 10 was formed in the same manner as the measurement of the terminal strength. The sample was put into a thermostatic chamber and then heated to 150 ° C., and an insulation resistance meter was used to measure the resistance value after applying a DC 20 V voltage to the sample for 60 seconds.

(比較例)実施例1と同様にして、まず未焼成の積層体の内部導体材料層が露出した端面に下地導体材料層が設けられた生の積層体を得た。   (Comparative Example) In the same manner as in Example 1, first, a raw laminate having an underlying conductor material layer provided on the end face where the inner conductor material layer of the unfired laminate was exposed was obtained.

次に、実施例1と同様にして積層体の脱バインダーを行った後、表3に示した条件(焼成プロファイル)で、焼成してセラミック積層体を得た。比較例では冷却時に還元処理を行っていない。   Next, the binder was removed from the laminate in the same manner as in Example 1, and then fired under the conditions (firing profile) shown in Table 3 to obtain a ceramic laminate. In the comparative example, no reduction treatment is performed during cooling.

Figure 2005203566
Figure 2005203566

そして、実施例1と同様にして、得られたセラミック積層体の表面にNiめっき層、Snめっき層を順に形成して積層セラミックコンデンサを得た。   Then, in the same manner as in Example 1, a Ni plated layer and an Sn plated layer were formed in this order on the surface of the obtained ceramic laminate to obtain a multilayer ceramic capacitor.

次に、得られた積層セラミックコンデンサについて、実施例1と同様に評価した。結果が表2に示されている。   Next, the obtained multilayer ceramic capacitor was evaluated in the same manner as in Example 1. The results are shown in Table 2.

まず、下地導体表面の金属(Ni)成分の割合について見ると、比較例では、酸化処理時の雰囲気は平衡酸素分圧より高い酸素分圧であり、焼成後の600℃以下の降温区間で還元処理を行っていないため、下地導体の表面にNi酸化膜が生成することを確認した。この場合の金属(Ni)成分の割合は0%であった(試料番号9)。これに対して本発明では、試料番号1〜3、5〜7に示されたように500℃〜700℃の温度で還元を開始することにより、下地導体表面に存在する金属(Ni)成分の割合を50%以上に増加させることができた。   First, looking at the ratio of the metal (Ni) component on the surface of the underlying conductor, in the comparative example, the atmosphere during the oxidation treatment is an oxygen partial pressure higher than the equilibrium oxygen partial pressure, and it is reduced in the temperature lowering section of 600 ° C. or lower after firing. Since no treatment was performed, it was confirmed that a Ni oxide film was formed on the surface of the underlying conductor. In this case, the proportion of the metal (Ni) component was 0% (Sample No. 9). In contrast, in the present invention, as shown in sample numbers 1 to 3 and 5 to 7, by starting the reduction at a temperature of 500 ° C. to 700 ° C., the metal (Ni) component present on the surface of the underlying conductor is reduced. The ratio could be increased to 50% or more.

次に、めっきの被覆率および端子強度について、比較例では、Niめっき層を直接下地導体に形成した場合、不十分なNiめっきの被覆率しか得られない。本発明では試料番号1〜3、5〜7に示すように、下地導体表面上の金属(Ni)成分の割合を増加させることができたため、めっき被覆率が90%以上であって、端子強度が12N〜15.5N程度の高い強度が得られた。よって下地導体とNiめっき層との密着強度が向上していることが分かった。従って本発明では、従来のように下地導体上にCuめっきを形成することなく、直接Niめっき層5を下地導体上に形成することが可能となった。   Next, regarding the plating coverage and terminal strength, in the comparative example, when the Ni plating layer is formed directly on the underlying conductor, only an insufficient Ni plating coverage can be obtained. In the present invention, as shown in Sample Nos. 1 to 3 and 5 to 7, the ratio of the metal (Ni) component on the surface of the underlying conductor could be increased, so that the plating coverage was 90% or more and the terminal strength However, a high strength of about 12N to 15.5N was obtained. Therefore, it was found that the adhesion strength between the base conductor and the Ni plating layer was improved. Therefore, in the present invention, the Ni plating layer 5 can be directly formed on the underlying conductor without forming Cu plating on the underlying conductor as in the prior art.

還元開始温度を600℃とし、炉内酸素分圧を変化させることにより金属(Ni)成分の割合を変化させたところ、金属(Ni)成分の割合が50%を下回るとめっきの被覆率や端子強度が大きく低下した(試料番号4)。金属(Ni)成分の割合が50原子%未満であるとめっき被覆率や端子強度が低下して好ましくない。従って金属(Ni)成分は50原子%以上100原子%以下である。   When the reduction start temperature was set to 600 ° C. and the ratio of the metal (Ni) component was changed by changing the oxygen partial pressure in the furnace, when the ratio of the metal (Ni) component was less than 50%, the plating coverage and terminal The strength was greatly reduced (Sample No. 4). When the ratio of the metal (Ni) component is less than 50 atomic%, the plating coverage and terminal strength are undesirably lowered. Therefore, the metal (Ni) component is 50 atomic% or more and 100 atomic% or less.

還元開始温度を700℃とし60分間保持した場合には、絶縁抵抗がやや低下し誘電体を低酸素雰囲気中で焼成したことの影響を受けていると言える(試料番号5)。しかしながら、絶縁抵抗の低下は実用上許容される範囲内である。   When the reduction start temperature is set to 700 ° C. and held for 60 minutes, it can be said that the insulation resistance is slightly lowered and the dielectric is baked in a low oxygen atmosphere (Sample No. 5). However, the decrease in insulation resistance is within a practically allowable range.

なお、炉内を低酸素濃度の雰囲気(下地導体を還元するときの雰囲気)にするために投入する気体の種類は本実施例に限定されるものではない。炉内に投入する気体により、下地導体を形成する金属成分と該金属成分の酸化物との平衡酸素分圧より低い酸素分圧に設定されるのであれば使用可能である。   In addition, the kind of gas input in order to make the inside of a furnace into the atmosphere of low oxygen concentration (atmosphere when reducing a base conductor) is not limited to a present Example. Any gas can be used as long as it is set to an oxygen partial pressure lower than the equilibrium oxygen partial pressure of the metal component forming the underlying conductor and the oxide of the metal component by the gas introduced into the furnace.

また、上記酸化や還元の処理を行う雰囲気圧力は本実施例に限定されない。誘電体中の酸素空孔に酸素を補充することが可能な条件、あるいは金属成分の酸化物を金属に還元することが可能な条件を満たすことができれば、大気圧よりも高い圧力の加圧雰囲気や、大気圧よりも低い圧力の減圧雰囲気中で処理することが可能である。   Further, the atmospheric pressure for performing the oxidation or reduction treatment is not limited to this embodiment. Pressurized atmosphere at a pressure higher than atmospheric pressure, provided that the oxygen vacancies in the dielectric can be replenished with oxygen, or the metal component oxide can be reduced to metal. Alternatively, the treatment can be performed in a reduced-pressure atmosphere at a pressure lower than atmospheric pressure.

以上のように、本発明は追加の新たな工程または設備を必要とせず、誘電体の電気特性に悪影響を及ぼすことなく、下地導体表面の金属酸化膜の生成を防止することにより、下地導体のめっき付き性、密着強度および端子強度を向上さることが可能な、極めて有用な方法である。   As described above, the present invention does not require an additional new process or equipment, prevents the formation of a metal oxide film on the surface of the underlying conductor without adversely affecting the electrical characteristics of the dielectric, This is an extremely useful method capable of improving the plating property, adhesion strength and terminal strength.

次に、実施例2に係る積層セラミックコンデンサの製造方法について説明する。   Next, a method for manufacturing a multilayer ceramic capacitor according to Example 2 will be described.

実施例1と同様にして作製した、下地導体ペーストを塗布した未焼成の積層体を表3に示した条件で第1の炉である箱型焼成炉を用いて焼成した。その後、箱型焼成炉よりも冷却速度の速い第2の炉であるトンネル型焼成炉を用い、表4に示した温度条件で還元処理を行った。   An unfired laminated body coated with the base conductor paste, produced in the same manner as in Example 1, was fired using the box furnace as the first furnace under the conditions shown in Table 3. Then, the reduction process was performed on the temperature conditions shown in Table 4 using the tunnel-type baking furnace which is a 2nd furnace whose cooling rate is faster than a box-type baking furnace.

Figure 2005203566
Figure 2005203566

還元後得られたセラミック積層体の下地導体の表面にNiめっき層、Snめっき層を順に形成し積層セラミックコンデンサ(試料番号8)を得た。そして実施例1と同様に特性評価を行った。結果が表2に示されている。実施例2の積層セラミックコンデンサも実施例1と同様の効果を得られることが分かる。   A Ni plating layer and an Sn plating layer were formed in this order on the surface of the underlying conductor of the ceramic laminate obtained after the reduction to obtain a multilayer ceramic capacitor (Sample No. 8). The characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2. It can be seen that the multilayer ceramic capacitor of Example 2 can achieve the same effect as that of Example 1.

未焼成の積層体と下地導体とを同時焼成し、酸化処理、還元処理を冷却速度が遅い大型の箱型焼成炉で一括して行う場合には、還元雰囲気中で冷却するのに、追加の設備によるコストはかからないものの、還元処理に長時間が必要となる。本実施例のように、誘電体と下地導体とを同時に焼成する炉と、別途下地導体の金属酸化膜の除去を行う炉とを設けて区別し、冷却速度が速い炉を用いて還元処理を実施することにより生産性を向上させることができる。   When the unfired laminate and the underlying conductor are fired at the same time, and oxidation treatment and reduction treatment are performed collectively in a large box-type firing furnace with a slow cooling rate, additional cooling can be performed in a reducing atmosphere. Although there is no cost for equipment, a long time is required for the reduction treatment. As in this example, a furnace for simultaneously firing the dielectric and the underlying conductor and a furnace for removing the metal oxide film of the underlying conductor are separately provided, and the reduction treatment is performed using a furnace with a high cooling rate. By implementing it, productivity can be improved.

大型の箱型焼成炉は、投入された積層体がトンネル炉のように炉内を移動するものではなく、炉内に熱が閉じ込められる構造を有しているので、焼成炉の熱容量が大きく、炉内温度の設定温度への追従性がよくない。そのため焼成後に炉内の温度を急速に冷却するには不向きな構造である。そこで大型の箱型焼成炉では酸化処理まで行い、冷却の途中の段階で積層体を取り出し、トンネル炉に投入する。トンネル炉は炉内の温度が下降するように温度勾配をつけた複数の温度区間を有する構造で、積層体は搬送装置に載置され、搬送装置により積層体を設定温度の高い区間から低い区間へ連続して通過させるので、炉内温度の冷却速度を速めることができる。そのため還元処理にかかる時間を短縮できる。   The large box-type firing furnace has a structure in which the stacked laminate does not move in the furnace like a tunnel furnace, and heat is confined in the furnace, so the heat capacity of the firing furnace is large, The followability of the furnace temperature to the set temperature is not good. Therefore, this structure is not suitable for rapidly cooling the temperature in the furnace after firing. Therefore, in a large box-type baking furnace, an oxidation process is performed, and the laminated body is taken out in the middle of cooling and put into a tunnel furnace. A tunnel furnace has a structure having a plurality of temperature sections with a temperature gradient so that the temperature in the furnace is lowered, and the stacked body is placed on a transfer device, and the stacked body is moved from a section having a high set temperature to a low section by the transfer device. Therefore, the cooling rate of the furnace temperature can be increased. Therefore, the time required for the reduction process can be shortened.

なお、上記実施例では下地導体とセラミックグリーンシートからなる積層体は同時に焼成されたが、焼成工程はこれに限定されるものではない。例えば、セラミックグリーンシートの積層体を焼成し、その後焼結した積層体に下地導体を焼き付け、めっき層を設け外部導体としてもよい。下地導体を焼結した積層体に後付けする場合においても、上述の還元処理により下地導体に生成された金属酸化膜、金属水酸化膜を除去できる。   In addition, in the said Example, although the laminated body which consists of a base conductor and a ceramic green sheet was baked simultaneously, a baking process is not limited to this. For example, a laminated body of ceramic green sheets may be fired, and then a base conductor may be baked on the sintered laminated body, and a plating layer may be provided as an external conductor. Even when the base conductor is retrofitted to the sintered laminate, the metal oxide film and metal hydroxide film generated on the base conductor by the above-described reduction treatment can be removed.

また、金属層はNiめっき層、Snめっき層の場合が示されたが、これに限定されるものではない。Niめっき層以外にはCuめっき層の場合にも同様の効果を得ることができる。   Moreover, although the case where a metal layer was a Ni plating layer and a Sn plating layer was shown, it is not limited to this. In the case of a Cu plating layer other than the Ni plating layer, the same effect can be obtained.

また、本実施例では金属層は複数のめっき層としたが、これに限定されるものではなく、少なくとも1層のめっき層が形成されていればよい。   In this embodiment, the metal layer is a plurality of plating layers. However, the present invention is not limited to this, and it is sufficient that at least one plating layer is formed.

本発明の第1実施例に係る積層セラミックコンデンサを示す断面図。1 is a cross-sectional view showing a multilayer ceramic capacitor according to a first embodiment of the present invention.

符号の説明Explanation of symbols

1 積層セラミックコンデンサ
2 セラミック積層体
3 内部導体
4 下地導体
5 Niめっき層
6 Snめっき層
10 外部導体
DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor 2 Ceramic multilayer body 3 Inner conductor 4 Base conductor 5 Ni plating layer 6 Sn plating layer 10 Outer conductor

Claims (8)

複数の誘電体層と複数の内部導体が交互に積層された積層体と、
前記積層体の表面に設けられた下地導体と、該下地導体の上に設けられた金属層とを含む、前記内部導体と電気的に接続される外部導体を備え、
前記下地導体の金属成分はNi、Ni合金のうち少なくとも1つを含み、
下記の式(1)で規定される前記下地導体の表面に存在する前記金属成分の割合が、50原子%以上100原子%以下であることを特徴とする積層セラミック電子部品。
金属成分の割合(原子%)={金属量/(金属量+金属の水酸化物量+金属の酸化物量)}×100・・・式(1)
A laminate in which a plurality of dielectric layers and a plurality of internal conductors are alternately laminated;
An outer conductor electrically connected to the inner conductor, including a base conductor provided on the surface of the multilayer body and a metal layer provided on the base conductor;
The metal component of the base conductor includes at least one of Ni and Ni alloy,
A multilayer ceramic electronic component, wherein a ratio of the metal component present on the surface of the base conductor defined by the following formula (1) is 50 atomic% or more and 100 atomic% or less.
Ratio of metal component (atomic%) = {metal amount / (metal amount + metal hydroxide amount + metal oxide amount)} × 100 (1)
前記金属層は複数のめっき層を含む、請求項1に記載の積層セラミック電子部品。   The multilayer ceramic electronic component according to claim 1, wherein the metal layer includes a plurality of plating layers. 前記複数のめっき層はNiめっき層およびSnめっき層を含み、前記Niめっき層が前記下地導体上に設けられ、前記Snめっき層が前記Niめっき層上に設けられている、請求項2に記載の積層セラミック電子部品。   The plurality of plating layers include a Ni plating layer and a Sn plating layer, the Ni plating layer is provided on the base conductor, and the Sn plating layer is provided on the Ni plating layer. Multilayer ceramic electronic components. 前記下地導体は誘電体材料を含み、該誘電体材料は前記誘電体層を構成する誘電体材料と略同じである、請求項1に記載の積層セラミック電子部品。   The multilayer ceramic electronic component according to claim 1, wherein the base conductor includes a dielectric material, and the dielectric material is substantially the same as the dielectric material constituting the dielectric layer. 複数の誘電体層と複数の内部導体を含み、前記内部導体に電気的に接続した、Ni、Ni合金のうち少なくとも1つの金属成分を含む下地導体が表面に形成された、セラミック積層体を得る工程と、
酸素分圧が前記下地導体を構成する金属成分と該金属成分の酸化物との平衡酸素分圧より高い雰囲気中で、前記セラミック積層体を熱処理して前記誘電体層を酸化させる工程と、
前記誘電体層を酸化させた後、酸素分圧が前記下地導体を構成する金属成分と該金属成分の酸化物との平衡酸素分圧より低い雰囲気中で、かつ、前記誘電体層が還元されず、前記金属成分の酸化物が金属に還元される温度において、前記セラミック積層体を熱処理して前記下地導体を還元する工程と、
前記下地導体上に金属層を設けることにより外部導体を形成し、前記内部導体と前記外部導体とを電気的に接続する工程と、
を備えることを特徴とする積層セラミック電子部品の製造方法。
A ceramic laminate including a plurality of dielectric layers and a plurality of internal conductors and having a base conductor containing at least one metal component of Ni and Ni alloy formed on the surface and electrically connected to the internal conductors is obtained. Process,
A step of oxidizing the dielectric layer by heat-treating the ceramic laminate in an atmosphere in which an oxygen partial pressure is higher than an equilibrium oxygen partial pressure of a metal component constituting the base conductor and an oxide of the metal component;
After oxidizing the dielectric layer, the dielectric layer is reduced in an atmosphere where the oxygen partial pressure is lower than the equilibrium oxygen partial pressure of the metal component constituting the base conductor and the oxide of the metal component. Without reducing the underlying conductor by heat treating the ceramic laminate at a temperature at which the oxide of the metal component is reduced to metal,
Forming an outer conductor by providing a metal layer on the underlying conductor, and electrically connecting the inner conductor and the outer conductor;
A method for producing a multilayer ceramic electronic component comprising:
前記複数の誘電体層と複数の内部導体を含み、下地導体が表面に形成されたセラミック積層体は、
複数の誘電体材料層と内部導体材料層を含む未焼成の積層体を用意し、前記積層体の表面に前記内部導体材料層に接続される下地導体材料層を設けた後、焼成することにより得る、請求項5に記載の積層セラミック電子部品の製造方法。
The ceramic laminate including the plurality of dielectric layers and the plurality of inner conductors and having a base conductor formed on a surface thereof,
By preparing an unfired laminate including a plurality of dielectric material layers and an internal conductor material layer, and providing a base conductor material layer connected to the internal conductor material layer on the surface of the laminate, followed by firing. The manufacturing method of the multilayer ceramic electronic component of Claim 5 obtained.
前記誘電体層を酸化させる工程および前記下地導体を還元する工程を1つの炉において連続して行う、請求項5または6に記載の積層セラミック電子部品の製造方法。   The method for manufacturing a multilayer ceramic electronic component according to claim 5, wherein the step of oxidizing the dielectric layer and the step of reducing the base conductor are continuously performed in one furnace. 前記誘電体層を酸化させる工程を第1の炉で行い、前記下地導体を還元する工程を前記第1の炉よりも冷却速度が速い第2の炉において行う、請求項5または6に記載の積層セラミック電子部品の製造方法。   The step of oxidizing the dielectric layer is performed in a first furnace, and the step of reducing the base conductor is performed in a second furnace having a cooling rate higher than that of the first furnace. Manufacturing method of multilayer ceramic electronic component.
JP2004008384A 2004-01-15 2004-01-15 Lamination ceramic electronic component and its manufacturing method Pending JP2005203566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008384A JP2005203566A (en) 2004-01-15 2004-01-15 Lamination ceramic electronic component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008384A JP2005203566A (en) 2004-01-15 2004-01-15 Lamination ceramic electronic component and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005203566A true JP2005203566A (en) 2005-07-28

Family

ID=34821749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008384A Pending JP2005203566A (en) 2004-01-15 2004-01-15 Lamination ceramic electronic component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005203566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027930A (en) * 2018-08-16 2020-02-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer capacitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027930A (en) * 2018-08-16 2020-02-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer capacitors

Similar Documents

Publication Publication Date Title
JP5316642B2 (en) Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
JP4362079B2 (en) Multilayer chip capacitor and manufacturing method thereof
KR101238754B1 (en) Dielectric element and method for manufacturing the same
CN105556626B (en) Monolithic ceramic electronic component
JP5452244B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP3924286B2 (en) Manufacturing method of multilayer ceramic electronic component
JPWO2004063119A1 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP4863007B2 (en) Dielectric porcelain composition and electronic component
JP2011029272A (en) Method of manufacturing electronic component, and inspection method of electronic component
JP2005203566A (en) Lamination ceramic electronic component and its manufacturing method
JP3520075B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4515334B2 (en) Barrel plating method and electronic component manufacturing method
JP6451293B2 (en) Multilayer ceramic capacitor
JP2008230928A (en) Dielectric ceramic composition and electronic component
TWM290885U (en) Dielectric ceramic composition and electronic device
JP2003243249A (en) Laminated ceramic capacitor and its manufacturing method
JP2001015376A (en) Laminated ceramic capacitor
JPH07122456A (en) Manufacture of multilayered ceramic capacitor
JP4403733B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2001284162A (en) Conductive paste and laminated electronic component, and their manufacturing method
JPH06196352A (en) Manufacture of layered capacitor
JP5471687B2 (en) Dielectric porcelain composition and electronic component
JP3586258B2 (en) Manufacturing method of multilayer ceramic electronic component
EP4156215A1 (en) Capacitor
JP4581584B2 (en) Multilayer ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020