JP2005203256A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2005203256A
JP2005203256A JP2004009058A JP2004009058A JP2005203256A JP 2005203256 A JP2005203256 A JP 2005203256A JP 2004009058 A JP2004009058 A JP 2004009058A JP 2004009058 A JP2004009058 A JP 2004009058A JP 2005203256 A JP2005203256 A JP 2005203256A
Authority
JP
Japan
Prior art keywords
power generation
fuel cell
shaped body
rod
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004009058A
Other languages
Japanese (ja)
Other versions
JP4470498B2 (en
Inventor
Jun Akikusa
順 秋草
Takashi Miyazawa
隆 宮澤
Masaharu Yamada
雅治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2004009058A priority Critical patent/JP4470498B2/en
Publication of JP2005203256A publication Critical patent/JP2005203256A/en
Application granted granted Critical
Publication of JP4470498B2 publication Critical patent/JP4470498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation cell in which temporary repair can be carried out easily without stopping the operation even in the case breakage happens in the cell. <P>SOLUTION: The power generation cells 5 and separators 8 are laminated alternately to constitute a fuel cell stack. Then, in the vicinity of the fuel cell stack, a rod shaped body 21 is rotatably installed, provided with a conductive member 22 along the direction of the laminated layers. In the case the breakage arises in the power generation cells 5, the rod shaped body 21 is rotated to make the conductive member 22 contact the outer peripheral part of the neighboring upper and lower separators 8, 8, to make the broken power generation cells 5 electrically short circuited. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発電セルとセパレータを交互に積層した構造を有する固体酸化物形燃料電池に関し、詳しくは、発電セルに破損が生じた場合の応急的な補修機構に関するものである。   The present invention relates to a solid oxide fuel cell having a structure in which power generation cells and separators are alternately stacked, and more particularly to an emergency repair mechanism in the event of damage to a power generation cell.

固体酸化物形燃料電池(SOFC)は第三世代の発電用燃料電池として開発が進んでいる。現在、この固体酸化物形燃料電池は、円筒型、モノリス型、及び平板積層型の3種類が提案されており、何れも酸化物イオン伝導体から成る固体電解質を両側から空気極(カソード)と燃料極(アノード)で挟み込んだ積層構造を有する。この積層体から成る発電セルを、間に燃料極集電体と空気極集電体を介在してセパレータと交互に複数積層することにより、燃料電池スタックが構成される。   Solid oxide fuel cells (SOFC) are being developed as third-generation fuel cells for power generation. Currently, three types of solid oxide fuel cells have been proposed: a cylindrical type, a monolith type, and a flat plate type, all of which have a solid electrolyte composed of an oxide ion conductor as an air electrode (cathode) from both sides. It has a laminated structure sandwiched between fuel electrodes (anodes). A fuel cell stack is configured by stacking a plurality of power generation cells composed of this laminate alternately with separators with a fuel electrode current collector and an air electrode current collector interposed therebetween.

一例として、固体電解質層はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層はNi、Co等の金属あるいはNi−YSZ、Co−YSZ等のサーメットで構成され、空気極層はLaMnO3 、LaCoO3 等で構成され、燃料極集電体はNi基合金等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体はAg基合金等のスポンジ状の多孔質焼結金属板で構成され、セパレータはステンレス等で構成される。 As an example, the solid electrolyte layer is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer is composed of a metal such as Ni or Co or a cermet such as Ni—YSZ or Co—YSZ, and the air electrode layer. Is composed of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector is composed of a sponge-like porous sintered metal plate such as a Ni-based alloy, and the air electrode current collector is a sponge-like porous material such as an Ag-based alloy. The separator is made of stainless steel or the like.

固体酸化物形燃料電池では、反応用のガスとして空気極側に酸化剤ガス(酸素) が、燃料極側に燃料ガス (H2 、CO、CH4 等) が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるよう、何れも多孔質の層とされている。
空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で空気極から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極に向かって固体電解質層内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2 O、CO2 等)を生じ、燃料極に電子を放出する。この電子を別ルートの外部回路にて起電力として取り出すことができる。
In the solid oxide fuel cell, an oxidant gas (oxygen) is supplied to the air electrode side and a fuel gas (H 2 , CO, CH 4, etc.) is supplied to the fuel electrode side as a reaction gas. The air electrode and the fuel electrode are both porous layers so that the gas can reach the interface with the solid electrolyte.
Oxygen supplied to the air electrode side passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. At this part, electrons are received from the air electrode and ionized to oxide ions (O 2− ). Is done. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and emit electrons to the fuel electrode. This electron can be taken out as an electromotive force in an external circuit of another route.

ところで、固体酸化物形燃料電池は、起動時(発電開始時)に燃料電池モジュールの内部を所定の運転温度700〜1000℃の高温に昇温する必要がある。このため、起動時は、電池モジュール全体の均熱を保ちながら徐々に昇温していかないと発電セル面内に温度分布が生じ、その際の熱応力で発電セルが破損(クラック)する場合がある。この現象は運転停止時の降温過程においても起こり得るものである。   By the way, it is necessary for the solid oxide fuel cell to raise the temperature of the inside of the fuel cell module to a high temperature of a predetermined operation temperature of 700 to 1000 ° C. at the time of start-up (at the start of power generation). For this reason, at the time of start-up, if the temperature is not gradually raised while maintaining the uniform temperature of the entire battery module, a temperature distribution will be generated in the surface of the power generation cell, and the power generation cell may be damaged (cracked) by the thermal stress at that time is there. This phenomenon can also occur during the temperature drop process when the operation is stopped.

上記したように、セパレータを介在して多数の発電セルを積層した直列型燃料電池では、多数の発電セルの内の1つでも破損すると、その部分の抵抗が増大して発電性能の低下を招くことになり、発電セルの破損状態によっては、発電の継続が不能となる。
破損した発電セルを取り除いて新しい発電セルと交換する補修作業は極めて煩雑であるため復旧までに長い時間を必要とし、その間、電力の供給が停止されることになる。
そこで、出願人らは、先の出願で、発電セルに破損が生じた場合の応急的な補修方法を提案した。(特許文献1参照)
特開2003−109651号公報
As described above, in a series fuel cell in which a large number of power generation cells are stacked with separators interposed therebetween, if any one of the large number of power generation cells is damaged, the resistance of the portion increases and the power generation performance is degraded. In other words, depending on the damaged state of the power generation cell, power generation cannot be continued.
The repair work of removing the damaged power generation cell and replacing it with a new power generation cell is extremely complicated and requires a long time until recovery, during which power supply is stopped.
Therefore, the applicants proposed an emergency repair method in the case where the power generation cell is damaged in the previous application. (See Patent Document 1)
JP 2003-109651 A

上記開示技術では、運転中に発電セルに破損が生じた時、破損した発電セル両側のセパレータの外周部を導電部材で囲むようにしてその発電セルを短絡するというものである。この補修作業により、破損した発電セル以外の発電セルでの発電を継続して電力供給を行うことができるようになり、長時間に亘る発電停止を回避することができる。   In the above disclosed technique, when a power generation cell is damaged during operation, the power generation cell is short-circuited by surrounding the outer peripheral portions of the separators on both sides of the damaged power generation cell with a conductive member. By this repair work, it becomes possible to continue power generation in the power generation cells other than the damaged power generation cell and to supply power, thereby avoiding a power generation stop for a long time.

ところが、上記補修方法では、破損した発電セルに応急処理を施すために燃料電池の運転を一旦停止する必要があった。運転時700〜1000℃といった高温下にある燃料電池を、温度分布が生じないよう徐々に降温するには多くの時間を要することになる。また、補修後、燃料電池の運転を再開するための昇温にも降温の時と同様に多くの時間を要することになる。   However, in the above repair method, it is necessary to temporarily stop the operation of the fuel cell in order to perform an emergency process on the damaged power generation cell. It takes a lot of time to gradually lower the temperature of the fuel cell at a high temperature of 700 to 1000 ° C. so that temperature distribution does not occur. In addition, after the repair, it takes much time to raise the temperature for resuming the operation of the fuel cell as in the case of the temperature drop.

このように、開示技術による補修方法は、破損した発電セルの交換作業に比べて燃料電池自体の補修時間は短縮できるものの、運転環境を設定するための多くの時間を要するという欠点が有り、まだ改善すべき点が残されていた。   Thus, although the repair method according to the disclosed technology can shorten the repair time of the fuel cell itself as compared with the replacement work of the damaged power generation cell, there is a disadvantage that it takes a lot of time to set the operating environment, There were still points to be improved.

本発明は、このような従来の問題点に鑑みて成されたもので、発電セルに破損が生じた場合に、運転を停止せず応急的な補修が行えるようにした固体酸化物形燃料電池を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and in the event that a power generation cell is damaged, a solid oxide fuel cell capable of performing emergency repair without stopping operation. The purpose is to provide.

すなわち、請求項1に記載の本発明は、発電セルとセパレータを交互に積層して燃料電池スタックを構成すると共に、当該燃料電池スタックの内部に反応用ガスを供給して発電反応を生じさせる固体酸化物形燃料電池において、前記燃料電池スタックの積層方向に沿って導電部材を設けた棒状体を回動自在に配設すると共に、当該棒状体の回動により、前記導電部材を隣接する両セパレータに接触し、所定の発電セルを電気的に短絡するように構成したことを特徴としている。
本構成では、破損した発電セルは燃料電池外からの操作により短絡することができるため、補修作業に伴う発電の停止が回避できる。
That is, according to the first aspect of the present invention, a fuel cell stack is configured by alternately stacking power generation cells and separators, and a solid gas that generates a power generation reaction by supplying a reaction gas into the fuel cell stack. In the oxide fuel cell, a rod-shaped body provided with a conductive member is rotatably disposed along the stacking direction of the fuel cell stack, and the conductive members are separated from each other by rotating the rod-shaped body. The predetermined power generation cell is configured to be electrically short-circuited.
In this configuration, since the damaged power generation cell can be short-circuited by an operation from outside the fuel cell, it is possible to avoid the stop of power generation due to repair work.

また、請求項2に記載の本発明は、請求項1に記載の固体酸化物形燃料電池におおいて、前記棒状体に導電部材を複数設け、当該棒状体の回動角度に応じて短絡する発電セルを選択可能としたことを特徴としている。
本構成では、一体の棒状体(補修機構)で複数の補修箇所を任意に選択できるため、補修作業は簡単であり、作業時間は短くて済む。
The present invention according to claim 2 provides the solid oxide fuel cell according to claim 1, wherein a plurality of conductive members are provided on the rod-shaped body, and a short circuit occurs according to the rotation angle of the rod-shaped body. It is characterized in that the power generation cell can be selected.
In this configuration, since a plurality of repair locations can be arbitrarily selected with an integral rod-like body (repair mechanism), the repair work is simple and the work time is short.

また、請求項3に記載の本発明は、請求項1または請求項2の何れかに記載の固体酸化物形燃料電池において、前記棒状体は、発電セルをユニット単位で短絡可能な導電部材を備えることを特徴としている。
本構成では、ユニット単位での短絡であるから、補修機構を簡略化でき、且つ、補修作業は簡単であるから作業時間は短くて済む。
Further, the present invention according to claim 3 is the solid oxide fuel cell according to claim 1 or 2, wherein the rod-shaped body is a conductive member capable of short-circuiting the power generation cells in units. It is characterized by providing.
In this configuration, since the unit is a short circuit, the repair mechanism can be simplified, and the repair work is simple, so the work time is short.

以上説明したように、本発明によれば、破損した燃料電池スタックの補修作業は燃料電池の運転を継続したままの状態で行えるため、従来のように補修作業のために長時間に亘って電力の供給が停止されることはない。また、補修作業は外部からの操作で行えるため、作業は極めて簡単であり、且つ、短時間で行える。   As described above, according to the present invention, the repair work of the damaged fuel cell stack can be performed while the fuel cell is continuously operated. Will not be stopped. Further, since the repair work can be performed by an external operation, the work is extremely simple and can be performed in a short time.

以下、本発明の実施形態を図1〜図5に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は固体酸化物形燃料電池の要部を示す分解断面図、図2は同、要部の分解斜視図、図3は燃料電池スタックの補修状態を示す説明図、図4は補修機構を示す図、図5は図3とは別の補修機構を示す図である。   1 is an exploded cross-sectional view showing the main part of the solid oxide fuel cell, FIG. 2 is an exploded perspective view of the main part, FIG. 3 is an explanatory view showing a repaired state of the fuel cell stack, and FIG. 4 is a repair mechanism. FIG. 5 shows a repair mechanism different from that shown in FIG.

まず、本発明が適用された固体酸化物形燃料電池の構成を図1、図2に基づいて説明する。
図1、図2において、符号1は燃料電池スタックを示す。この燃料電池スタック1は、固体電解質層2の両面に燃料極層3と空気極層4を配した発電セル5と、燃料極層3の外側に配した燃料極集電体6と、空気極層4の外側に配した空気極集電体7と、各集電体6、7の外側に配したセパレータ8とで単セル10を構成すると共に、この単セル10を多数積層して構成される筒状体である。尚、これら単セル10を構成する各要素は、従来と同様のものが使用できる。
First, the configuration of a solid oxide fuel cell to which the present invention is applied will be described with reference to FIGS.
1 and 2, reference numeral 1 denotes a fuel cell stack. The fuel cell stack 1 includes a power generation cell 5 in which a fuel electrode layer 3 and an air electrode layer 4 are disposed on both surfaces of a solid electrolyte layer 2, a fuel electrode current collector 6 disposed outside the fuel electrode layer 3, an air electrode The air electrode current collector 7 arranged outside the layer 4 and the separator 8 arranged outside the current collectors 6 and 7 constitute a single cell 10 and a plurality of the single cells 10 are stacked. It is a cylindrical body. In addition, the same thing can be used for each element which comprises these single cells 10 as before.

セパレータ8は、発電セル5間を電気的に接続すると共に、発電セル5に対してガスを供給する機能を有するもので、燃料ガスをセパレータ8の外周面から導入してセパレータ8の燃料極集電体6に対向する面から吐出させる燃料通路11と、酸化剤ガスをセパレータ8の外周面から導入してセパレータ8の空気極集電体7に対向する面から吐出させる酸化剤通路12とを有している。ただし、両端のセパレータ8(8A、8B)は、通路11、12の何れかを有する。   The separator 8 has a function of electrically connecting the power generation cells 5 and supplying gas to the power generation cells 5. The fuel gas is introduced from the outer peripheral surface of the separator 8 to collect the fuel electrode of the separator 8. A fuel passage 11 that is discharged from a surface facing the electric body 6 and an oxidant passage 12 that introduces an oxidant gas from the outer peripheral surface of the separator 8 and discharges the gas from the surface facing the air electrode current collector 7 of the separator 8. Have. However, the separators 8 (8A, 8B) at both ends have either the passages 11 and 12.

また、図1に示すように、燃料電池スタック1の側方には、各セパレータ8の燃料通路11に接続管13を通して燃料ガスを供給する燃料用マニホールド15と、各セパレータ8の酸化剤通路12に接続管14を通して酸化剤ガスを供給する酸化剤用マニホールド16とが、発電セル5の積層方向に延在して設けられている。
符号11は、内壁に断熱材を配した円筒状のハウジングであって、その内部に上記構成の燃料電池スタック1を配設することにより、固体酸化物形燃料電池が構成される。
As shown in FIG. 1, on the side of the fuel cell stack 1, a fuel manifold 15 that supplies fuel gas to the fuel passages 11 of the separators 8 through the connection pipes 13, and an oxidant passage 12 of each separator 8. An oxidant manifold 16 for supplying an oxidant gas through the connection pipe 14 extends in the stacking direction of the power generation cells 5.
Reference numeral 11 denotes a cylindrical housing in which a heat insulating material is arranged on the inner wall, and a solid oxide fuel cell is configured by disposing the fuel cell stack 1 having the above configuration therein.

ところで、本実施形態では、図2に示すように、燃料電池スタック1の近傍に、発電セル5が破損した場合の応急的な補修機構20が設けてある。図3はその要部拡大を示している。本実施形態の補修機構20は、セラミック等の絶縁性材料で構成した棒状体21と、この棒状体21に設けたステンレス等の導電性部材で構成される短絡部22とで構成され、燃料電池スタック1の近傍に積層方向に沿って配設されている。   By the way, in this embodiment, as shown in FIG. 2, the emergency repair mechanism 20 when the power generation cell 5 is damaged is provided in the vicinity of the fuel cell stack 1. FIG. 3 shows the enlarged main part. The repair mechanism 20 of the present embodiment is composed of a rod-like body 21 made of an insulating material such as ceramic, and a short-circuit portion 22 made of a conductive member such as stainless steel provided on the rod-like body 21, and is a fuel cell. It is disposed in the vicinity of the stack 1 along the stacking direction.

この棒状体21は、回動自在であって、その一端部を固体酸化物形燃料電池のハウジング30より外部に突出させて、外部操作にて棒状体21を回動できるようになっている。棒状体21を回動することにより、この棒状体21の短絡部22を隣接する上下両セパレータ8、8の外周部に接触させたり離したりさせることができる。   The rod-shaped body 21 is freely rotatable, and one end portion thereof protrudes from the housing 30 of the solid oxide fuel cell so that the rod-shaped body 21 can be rotated by an external operation. By rotating the rod-shaped body 21, the short-circuit portion 22 of the rod-shaped body 21 can be brought into contact with or separated from the outer peripheral portions of the adjacent upper and lower separators 8, 8.

上記構成の補修機構20では、運転中に燃料電池スタック1を構成する多数の発電セル5の内の1つが破損した場合、この破損した発電セル5の両端に配置される一対のセパレータ8、8間を補修機構20の短絡部22で電気的に短絡することにより、不良となった発電セル5を電気的に除外して他の正常な発電セル5で発電を継続することができる。この場合、正常な発電セル5で発生した電流は、破損個所ではこの導電性の短絡部22を通して流れるため、負荷側には継続的に電力供給が成されることになる。   In the repair mechanism 20 having the above-described configuration, when one of the many power generation cells 5 constituting the fuel cell stack 1 is damaged during operation, the pair of separators 8 and 8 disposed at both ends of the damaged power generation cell 5. By electrically short-circuiting the gap with the short-circuit portion 22 of the repair mechanism 20, the defective power generation cell 5 can be electrically excluded and power generation can be continued with another normal power generation cell 5. In this case, since the current generated in the normal power generation cell 5 flows through the conductive short-circuit portion 22 at the damaged portion, power is continuously supplied to the load side.

本実施形態では、短絡部22を矢印形状としたが、セパレータ8の外周部に効果的に接触できる形状であれば良く、これに限定されるものではなく、セパレータ8との接触面積を多くするために短絡部22の厚みを厚くするのが好ましい。 また、短絡箇所(補修箇所)での電力損失を極力少なくするため、本実施形態では、短絡部22がセパレータ8と接触する部分に電子伝導性の優れる銀メッシュ等を溶着している。   In this embodiment, although the short-circuit part 22 was made into the arrow shape, it should just be a shape which can contact the outer peripheral part of the separator 8 effectively, It is not limited to this, The contact area with the separator 8 is increased. Therefore, it is preferable to increase the thickness of the short-circuit portion 22. Moreover, in order to reduce the power loss at the short circuit location (repair location) as much as possible, in this embodiment, a silver mesh or the like having excellent electronic conductivity is welded to the portion where the short circuit portion 22 contacts the separator 8.

尚、燃料電池スタック1における発電セル5の良不良は各発電セル5の電圧より判断することができる。   The quality of the power generation cells 5 in the fuel cell stack 1 can be determined from the voltage of each power generation cell 5.

このように、本実施形態では、破損した発電セルの短絡作業は燃料電池外の操作により運転状態のままで行えるため、従来のような補修作業に伴う発電の停止が回避できる。且つ、補修作業は簡単であり、作業時間は極めて短時間で済む。   As described above, in this embodiment, since the short-circuiting operation of the damaged power generation cell can be performed in the operating state by an operation outside the fuel cell, it is possible to avoid the stoppage of power generation due to the conventional repairing operation. In addition, the repair work is simple and the work time is extremely short.

また、図4は、棒状体21の長さ方向に複数の短絡部22を設けた補修機構20を示しており、各短絡部22は棒状体21の周方向に所定の角度ずらした状態としてに形成されていおり、補修の際正常な発電セル5が同時に短絡されないようになっている。尚、これら短絡部22は絶縁性の棒状体21に取り付けてあるから各々は相互に絶縁された状態となっている。   FIG. 4 shows the repair mechanism 20 provided with a plurality of short-circuit portions 22 in the length direction of the rod-shaped body 21, and each short-circuit portion 22 is shifted by a predetermined angle in the circumferential direction of the rod-shaped body 21. It is formed so that the normal power generation cells 5 are not short-circuited at the time of repair. In addition, since these short-circuit parts 22 are attached to the insulating rod-like body 21, they are in a state of being insulated from each other.

本構成では、この棒状体21の回動角度によって短絡可能な発電セル5を任意に選択できるため、補修作業は容易になるが、棒状体21の回動操作における発電セル5の不本意な短絡事故を回避するために、この棒状体21自体を回動自在とすると共に、燃料電池スタック1より離接可能(図4中、左右矢印方向)となるように構成し、棒状体21の回動操作は燃料電池スタック1より離れた位置で行い、所定の回動角度を設定した後に、燃料電池スタック1側に接近させるようにした。   In this configuration, since the power generation cell 5 that can be short-circuited can be arbitrarily selected depending on the rotation angle of the rod-shaped body 21, repair work is facilitated. In order to avoid an accident, the rod-shaped body 21 itself is made to be rotatable, and can be separated from the fuel cell stack 1 (in the direction of the left and right arrows in FIG. 4). The operation was performed at a position away from the fuel cell stack 1, and after setting a predetermined rotation angle, the fuel cell stack 1 was approached.

また、本構成において、ハウジング30の外に突出させた棒状体21の端部に、例えば、図示しない角度計等を設置しておいて、棒状体21の回転角度に対応する発電セル5が一目で分かるようにしておくと好ましい。   Further, in this configuration, for example, an angle meter (not shown) is installed at the end of the rod-shaped body 21 protruding from the housing 30, and the power generation cell 5 corresponding to the rotation angle of the rod-shaped body 21 is at a glance. It is preferable to understand as follows.

また、図5に示すように、短絡部22による積層方向の短絡幅を大きくして、発電セル5を所定のユニット単位(図5中、ユニット1、ユニット2・・・)で短絡できるようにしても良い。この場合も、棒状体21の回動操作はハウジング30の外より操作可能であることは勿論である。ユニット単位での短絡とすることにより、補修機構20の構造を簡略化でき、且つ、補修作業もより簡単になる。尚、ユニット単位は、単セル5〜10枚分(出力数W〜1KW程度)を1ユニットとするのが良い。   Further, as shown in FIG. 5, the short-circuit width in the stacking direction by the short-circuit portion 22 is increased so that the power generation cell 5 can be short-circuited in predetermined unit units (unit 1, unit 2... In FIG. 5). May be. Also in this case, of course, the turning operation of the rod-shaped body 21 can be operated from the outside of the housing 30. By setting the short circuit in units, the structure of the repair mechanism 20 can be simplified and the repair work can be simplified. The unit unit is preferably one unit for 5 to 10 single cells (number of outputs: W to 1 KW).

本実施形態の固体酸化物形燃料電池の要部を示す分解断面図。FIG. 3 is an exploded cross-sectional view showing a main part of the solid oxide fuel cell of the present embodiment. 同、要部の分解斜視図。The exploded perspective view of the principal part same as the above. 本実施形態の補修機構による燃料電池スタックの補修状態を示す説明図。Explanatory drawing which shows the repair state of the fuel cell stack by the repair mechanism of this embodiment. 同、補修機構を示す図。The figure which shows a repair mechanism. 本実施形態の補修機構による燃料電池スタックの補修状態を示す図3とは別の説明図。FIG. 4 is an explanatory view different from FIG. 3 showing a repaired state of the fuel cell stack by the repair mechanism of the embodiment.

符号の説明Explanation of symbols

1 燃料電池スタック
5 発電セル
8 セパレータ
21 棒状体
22 導電部材(短絡部)
DESCRIPTION OF SYMBOLS 1 Fuel cell stack 5 Power generation cell 8 Separator 21 Rod-shaped body 22 Conductive member (short-circuit part)

Claims (3)

発電セルとセパレータを交互に積層して燃料電池スタックを構成すると共に、当該燃料電池スタックの内部に反応用ガスを供給して発電反応を生じさせる固体酸化物形燃料電池において、
前記燃料電池スタックの積層方向に沿って導電部材を設けた棒状体を回動自在に配設すると共に、当該棒状体の回動により、前記導電部材を隣接する両セパレータに接触し、所定の発電セルを電気的に短絡するように構成したことを特徴とする固体酸化物形燃料電池。
In a solid oxide fuel cell in which a power generation cell and a separator are alternately stacked to constitute a fuel cell stack, and a reaction gas is supplied into the fuel cell stack to generate a power generation reaction.
A rod-shaped body provided with a conductive member is rotatably disposed along the stacking direction of the fuel cell stack, and the rod-shaped body is rotated to bring the conductive member into contact with both adjacent separators so that predetermined power generation is performed. A solid oxide fuel cell characterized in that the cell is electrically short-circuited.
前記棒状体に導電部材を複数設け、当該棒状体の回動角度に応じて短絡する発電セルを選択可能としたことを特徴とする請求項1に記載の固体酸化物形燃料電池。 2. The solid oxide fuel cell according to claim 1, wherein a plurality of conductive members are provided on the rod-shaped body, and a power generation cell that is short-circuited according to a rotation angle of the rod-shaped body can be selected. 前記棒状体は、発電セルをユニット単位で短絡可能な導電部材を備えることを特徴とする請求項1または請求項2の何れかに記載の固体酸化物形燃料電池。 3. The solid oxide fuel cell according to claim 1, wherein the rod-shaped body includes a conductive member capable of short-circuiting the power generation cell in units. 4.
JP2004009058A 2004-01-16 2004-01-16 Solid oxide fuel cell Expired - Lifetime JP4470498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009058A JP4470498B2 (en) 2004-01-16 2004-01-16 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009058A JP4470498B2 (en) 2004-01-16 2004-01-16 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2005203256A true JP2005203256A (en) 2005-07-28
JP4470498B2 JP4470498B2 (en) 2010-06-02

Family

ID=34822208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009058A Expired - Lifetime JP4470498B2 (en) 2004-01-16 2004-01-16 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4470498B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287983A (en) * 2007-05-16 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell stack
JP2010186574A (en) * 2009-02-10 2010-08-26 Mitsubishi Materials Corp Flat plate type solid oxide type fuel cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184772U (en) * 1982-06-02 1983-12-08 三洋電機株式会社 air cooled fuel cell
JPS5939866U (en) * 1982-09-06 1984-03-14 三洋電機株式会社 Fuel cell
JPH0660053U (en) * 1993-01-27 1994-08-19 住友電装株式会社 Battery terminal
JP2002023706A (en) * 2000-07-07 2002-01-25 Nec Yamagata Ltd Liquid crystal driving device and method for controlling display of liquid crystal panel
JP2002056885A (en) * 2000-08-11 2002-02-22 Mitsubishi Electric Corp Device for handling defective unit cell in fuel cell and handling method using the same
JP2002319424A (en) * 2001-04-20 2002-10-31 Honda Motor Co Ltd Cell voltage measuring connection terminal member for fuel cell
JP2002358993A (en) * 2001-05-31 2002-12-13 Mitsubishi Electric Corp Laminated fuel cell and measuring method of cell voltage
JP2003109651A (en) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp Repair method for solid electrolyte fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184772U (en) * 1982-06-02 1983-12-08 三洋電機株式会社 air cooled fuel cell
JPS5939866U (en) * 1982-09-06 1984-03-14 三洋電機株式会社 Fuel cell
JPH0660053U (en) * 1993-01-27 1994-08-19 住友電装株式会社 Battery terminal
JP2002023706A (en) * 2000-07-07 2002-01-25 Nec Yamagata Ltd Liquid crystal driving device and method for controlling display of liquid crystal panel
JP2002056885A (en) * 2000-08-11 2002-02-22 Mitsubishi Electric Corp Device for handling defective unit cell in fuel cell and handling method using the same
JP2002319424A (en) * 2001-04-20 2002-10-31 Honda Motor Co Ltd Cell voltage measuring connection terminal member for fuel cell
JP2002358993A (en) * 2001-05-31 2002-12-13 Mitsubishi Electric Corp Laminated fuel cell and measuring method of cell voltage
JP2003109651A (en) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp Repair method for solid electrolyte fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287983A (en) * 2007-05-16 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell stack
JP2010186574A (en) * 2009-02-10 2010-08-26 Mitsubishi Materials Corp Flat plate type solid oxide type fuel cell

Also Published As

Publication number Publication date
JP4470498B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
US6953632B2 (en) Fuel cell stack and a method of operating the same
JP2017508254A (en) Fuel cell stack configuration
JP2004071568A (en) Fiber cooling for fuel cell
JP6873944B2 (en) Electrochemical reaction cell stack
JP2004111395A (en) Stream disruption receptacle enhanced fuel cell
US20110070518A1 (en) Unit cell of solid oxide fuel cell and stack using the same
JP2004273213A (en) Unit cell for fuel cells, its manufacturing method, and solid oxide fuel cell
JP4470498B2 (en) Solid oxide fuel cell
JP4984374B2 (en) Fuel cell
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP5125376B2 (en) Fuel cell
JP7253072B2 (en) fuel cell stack
JP7082954B2 (en) Electrochemical reaction cell stack
JP2022112590A (en) Electrochemical reaction single cell and electrochemical reaction cell stack
EP1933405A1 (en) Fuel cell and its fabrication method
US8697307B2 (en) Solid oxide fuel cell stack
JP6867852B2 (en) Current collector-electrochemical reaction single cell complex and battery chemical reaction cell stack
JP2003109651A (en) Repair method for solid electrolyte fuel cell
JP2010186574A (en) Flat plate type solid oxide type fuel cell
JP7042783B2 (en) Electrochemical reaction cell stack
JP5160811B2 (en) Solid oxide fuel cell stack
JP7213276B2 (en) Electrochemical reaction cell stack
JP7112443B2 (en) Electrochemical reaction cell stack
JP4513396B2 (en) Solid oxide fuel cell
JP5387821B2 (en) Flat type solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150