JP2005203236A - Operation characteristic detecting method and operation characteristic detecting device of fuel cell - Google Patents

Operation characteristic detecting method and operation characteristic detecting device of fuel cell Download PDF

Info

Publication number
JP2005203236A
JP2005203236A JP2004008474A JP2004008474A JP2005203236A JP 2005203236 A JP2005203236 A JP 2005203236A JP 2004008474 A JP2004008474 A JP 2004008474A JP 2004008474 A JP2004008474 A JP 2004008474A JP 2005203236 A JP2005203236 A JP 2005203236A
Authority
JP
Japan
Prior art keywords
oxidant gas
fuel gas
fuel
gas
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004008474A
Other languages
Japanese (ja)
Inventor
Osamu Sakai
修 酒井
Eiichi Yasumoto
栄一 安本
Hideo Obara
英夫 小原
Kiichi Shibata
礎一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004008474A priority Critical patent/JP2005203236A/en
Publication of JP2005203236A publication Critical patent/JP2005203236A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detecting method detecting an operation characteristic of a cell in a condition near to the condition of the unit cell in a stack. <P>SOLUTION: The detection method has a step (a) changing over the exhaust/non-exhaust of fuel gas from a downstream end of a fuel gas main passage 3A' according to the pressure of the fuel gas circulating an upstream end of a fuel gas tributary passage 12 in a load state taking out current of the cell 20, a step (b) changing over the exhaust/non-exhaust of oxidant gas from the downstream end of an oxidant gas main passage 5A' according to the pressure of the oxidant gas circulating the upstream end of an oxidant gas tributary passage 11 in a load state, and a step (c) detecting an operation characteristic of the cell 20 based on the change over of the exhaust/non-exhaust of the fuel gas or the oxidant gas in steps (a) and (b). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池の動作特性検出方法及び動作特性検出装置に関する。   The present invention relates to a fuel cell operation characteristic detection method and an operation characteristic detection apparatus.

燃料電池は、燃料の供給と燃焼生成物の排出とを連続的に行い、燃料の持つ化学エネルギーを直接電気エネルギーに変換する電池である。電解質膜として固体高分子電解質膜を用いる固体高分子型燃料電池は、作動温度が低く、電力密度が高く、瞬時動作が可能である等の理由から、自動車用や、小規模なコージェネレーションシステムとなる家庭用据置型として開発が急速に進められている。   A fuel cell is a cell that continuously supplies fuel and discharges combustion products, and directly converts the chemical energy of the fuel into electrical energy. Solid polymer fuel cells that use solid polymer electrolyte membranes as electrolyte membranes are used for automobiles and small-scale cogeneration systems because of their low operating temperature, high power density, and instantaneous operation. Development is rapidly progressing as a home stationary type.

図6(a)は固体高分子型燃料電池の基本単位となる単電池の一例を模式的に示す分解斜視図、図6(b)は、組み立て後の単電池を模式的に示す斜視図、図6(c)は単電池を積層して構成した固体高分子型燃料電池を模式的に示す斜視図である。   FIG. 6A is an exploded perspective view schematically showing an example of a unit cell that is a basic unit of a polymer electrolyte fuel cell, and FIG. 6B is a perspective view schematically showing the assembled unit cell. FIG. 6C is a perspective view schematically showing a polymer electrolyte fuel cell configured by stacking unit cells.

図6(a)、(b)に示すように、単電池20は、固体高分子からなる電解質膜6と、これを挟むように配された一対の触媒層7,9と、触媒層7,9の外面に配された一対のガス拡散層8,10と、ガス拡散層8,10の外面に配された一対のセパレータ1,2とを有する。触媒層7とガス拡散層8とでアノード13を構成し、触媒層9とガス拡散層10とでカソード14を構成する。電解質膜6の両面にそれぞれアノード13とカソード14を接合し、電極電解質複合体(以下、MEAという)15を構成する。セパレータ1,2、電解質膜6には、燃料ガス供給マニフォルド孔3A、燃料ガス排出マニフォルド孔3B、酸化剤ガス供給マニフォルド孔5A、酸化剤ガス排出マニフォルド孔5Bが形成されている。なお、実際には、電解質膜6の両面の外周部にアノード13及びカソード14を囲むようにガスケットがそれぞれ配設され、各ガスケットに、燃料ガス供給マニフォルド孔3A、燃料ガス排出マニフォルド孔3B、酸化剤ガス供給マニフォルド孔5A、酸化剤ガス排出マニフォルド孔5Bが形成されているが、ここでは図示を省略している。   As shown in FIGS. 6A and 6B, the cell 20 includes an electrolyte membrane 6 made of a solid polymer, a pair of catalyst layers 7 and 9 arranged so as to sandwich the membrane, and a catalyst layer 7, 9 includes a pair of gas diffusion layers 8 and 10 disposed on the outer surface of the gas diffusion layer 9 and a pair of separators 1 and 2 disposed on the outer surface of the gas diffusion layers 8 and 10. The catalyst layer 7 and the gas diffusion layer 8 constitute an anode 13, and the catalyst layer 9 and the gas diffusion layer 10 constitute a cathode 14. An anode 13 and a cathode 14 are joined to both surfaces of the electrolyte membrane 6 to constitute an electrode electrolyte composite (hereinafter referred to as MEA) 15. The separators 1 and 2 and the electrolyte membrane 6 are formed with a fuel gas supply manifold hole 3A, a fuel gas discharge manifold hole 3B, an oxidant gas supply manifold hole 5A, and an oxidant gas discharge manifold hole 5B. Actually, gaskets are respectively disposed on the outer peripheral portions of both surfaces of the electrolyte membrane 6 so as to surround the anode 13 and the cathode 14, and the fuel gas supply manifold hole 3A, the fuel gas discharge manifold hole 3B, the oxidation gas are provided in each gasket. An agent gas supply manifold hole 5A and an oxidant gas discharge manifold hole 5B are formed, but are not shown here.

図7は、セパレータ1のガス拡散層8と接する主面を模式的に示す上面図である。図8は、セパレータ2のガス拡散層10と接する主面を模式的に示す上面図である。図7に示すように、セパレータ1の主面には、燃料ガス供給マニフォルド孔3Aと、燃料ガス排出マニフォルド孔3Bとを結ぶ燃料ガス支流路12が形成されている。図8に示すように、セパレータ2の主面には、酸化剤ガス供給マニフォルド孔5Aと酸化剤ガス排出マニフォルド孔5Bとを結ぶ酸化剤ガス支流路11が形成されている。   FIG. 7 is a top view schematically showing the main surface of the separator 1 in contact with the gas diffusion layer 8. FIG. 8 is a top view schematically showing the main surface of the separator 2 in contact with the gas diffusion layer 10. As shown in FIG. 7, a fuel gas branch passage 12 connecting the fuel gas supply manifold hole 3 </ b> A and the fuel gas discharge manifold hole 3 </ b> B is formed on the main surface of the separator 1. As shown in FIG. 8, an oxidant gas branch channel 11 connecting the oxidant gas supply manifold hole 5 </ b> A and the oxidant gas discharge manifold hole 5 </ b> B is formed on the main surface of the separator 2.

燃料電池の基本単位は単電池であるが、一つの単電池から得られる電圧は小さいため、通常、図6(c)に示すように、単電池20を何枚も積層したスタック30にして使用する。スタック30において、各単電池20の燃料ガス供給マニフォルド孔3Aが連続して燃料ガス供給マニフォルド3A’を形成し、各単電池20の燃料ガス排出マニフォルド孔3Bが連続して燃料ガス排出マニフォルド孔3B’を形成し、各単電池20の酸化剤ガス供給マニフォルド孔5Aが連続して酸化剤ガス供給マニフォルド5A’を形成し、各単電池20の酸化剤ガス排出マニフォルド孔5Bが連続して酸化剤ガス排出マニフォルド5B’を形成する。スタック30において、燃料ガス供給マニフォルド3A’の上流端から燃料ガスが供給され、燃料ガス供給マニフォルド3A’内を燃料ガスが流通するとともに、各単電池20の燃料ガス支流路12に燃料ガスが分流し、各単電池20のアノード13に燃料ガスが供給される。スタック30において、酸化剤ガス供給マニフォルド5A’の上流端から酸化剤ガスが供給され、酸化剤ガス供給マニフォルド5B’内を酸化剤ガスが流通するとともに、各単電池20の酸化剤ガス支流路11に酸化剤ガスが分流し、各単電池20のカソード14に酸化剤ガスが供給される。   The basic unit of a fuel cell is a single cell, but since the voltage obtained from one single cell is small, it is usually used as a stack 30 in which a number of single cells 20 are stacked as shown in FIG. To do. In the stack 30, the fuel gas supply manifold hole 3A of each unit cell 20 continuously forms the fuel gas supply manifold 3A ', and the fuel gas discharge manifold hole 3B of each unit cell 20 continues to the fuel gas discharge manifold hole 3B. , The oxidant gas supply manifold hole 5A of each unit cell 20 is continuously formed to form the oxidant gas supply manifold 5A ', and the oxidant gas discharge manifold hole 5B of each unit cell 20 is continuously formed of the oxidant. A gas exhaust manifold 5B 'is formed. In the stack 30, the fuel gas is supplied from the upstream end of the fuel gas supply manifold 3 </ b> A ′, the fuel gas flows through the fuel gas supply manifold 3 </ b> A ′, and the fuel gas is distributed to the fuel gas branch channel 12 of each unit cell 20. The fuel gas is supplied to the anode 13 of each unit cell 20. In the stack 30, oxidant gas is supplied from the upstream end of the oxidant gas supply manifold 5 A ′, and the oxidant gas flows through the oxidant gas supply manifold 5 B ′, and the oxidant gas branch channel 11 of each unit cell 20. Then, the oxidant gas is diverted, and the oxidant gas is supplied to the cathode 14 of each unit cell 20.

各単電池20における反応を説明する。燃料供給マニフォルド3A’から燃料ガス支流路12を介してアノード13に水素を含む燃料ガスが供給されると、触媒層7において下記の反応式(1)に示す反応が生じる。

→2H+2e (1)

上記反応式(1)において生じたプロトン(H+)は、電解質膜6を、また電子(e−)は外部回路を通ってカソード14に移動する。燃料ガス支流路12に供給される燃料ガスのうち、上記反応式(1)の反応に寄与しなかった燃料ガスは、燃料ガス排出マニフォルド3B’から排出される。
The reaction in each cell 20 will be described. When fuel gas containing hydrogen is supplied from the fuel supply manifold 3A ′ to the anode 13 via the fuel gas branch passage 12, the reaction shown in the following reaction formula (1) occurs in the catalyst layer 7.

H 2 → 2H + + 2e (1)

Proton (H +) generated in the reaction formula (1) moves through the electrolyte membrane 6 and electrons (e−) through the external circuit to the cathode 14. Of the fuel gas supplied to the fuel gas branch passage 12, the fuel gas that has not contributed to the reaction of the reaction formula (1) is discharged from the fuel gas discharge manifold 3B ′.

酸化剤供給マニフォルド5A’から酸化剤ガス支流路11を介してカソード14に酸化剤ガスが供給されると、触媒層9において、酸化剤ガス中の酸素と、アノード13から移動してきたプロトンと、電子とにより下記の反応式(2)に示す反応が生じ、水が生成される。

1/2O+2H+2e→HO (2)

反応式(2)において発生した水と、上記反応式(2)の反応に寄与しなかった酸化剤ガスは、酸化剤ガス排出マニフォルド5B’から排出される。
When oxidant gas is supplied from the oxidant supply manifold 5A ′ to the cathode 14 via the oxidant gas branch channel 11, oxygen in the oxidant gas, protons that have moved from the anode 13 in the catalyst layer 9, and The reaction shown in the following reaction formula (2) is caused by the electrons and water is generated.

1 / 2O 2 + 2H + + 2e → H 2 O (2)

The water generated in the reaction formula (2) and the oxidant gas that has not contributed to the reaction of the reaction formula (2) are discharged from the oxidant gas discharge manifold 5B ′.

各単電池20の燃料ガス排出マニフォルド3B’から排出された燃料ガスは、スタック30の燃料ガス排出マニフォルド3B’を流通し、その下流端から外部に排出される。各単電池20の酸化剤ガス排出マニフォルド5B’から排出された酸化剤ガス及び水は、スタック30の酸化剤ガス排出マニフォルド5B’を流通し、その下流端から外部に排出される。   The fuel gas discharged from the fuel gas discharge manifold 3B 'of each unit cell 20 flows through the fuel gas discharge manifold 3B' of the stack 30, and is discharged to the outside from the downstream end thereof. The oxidant gas and water discharged from the oxidant gas discharge manifold 5B 'of each unit cell 20 flow through the oxidant gas discharge manifold 5B' of the stack 30, and are discharged from the downstream end to the outside.

スタック30の上記構成により、各単電池20の燃料ガス支流路12及び酸化剤ガス支流路11のガス流通抵抗が同じ場合は、各単電池20に、同一流量および同一圧力の燃料ガス及び酸化剤ガスが配流される。   When the gas flow resistances of the fuel gas branch channel 12 and the oxidant gas branch channel 11 of each unit cell 20 are the same due to the above configuration of the stack 30, the fuel gas and the oxidant at the same flow rate and the same pressure are supplied to each unit cell 20. Gas is distributed.

固体高分子型燃料電池において、電解質膜6は含水率の増加に伴ってイオン伝導度が高くなる物性を有しているため、電解質膜6を湿潤状態に保つ必要がある。そのため、スタック30に供給するガスは加湿することが一般的である。しかしながら、過剰な湿潤状態にするとカソード14における生成水の発生も加わり、触媒層7,9やガス拡散層8,10の気孔部、燃料ガス支流路12、酸化剤ガス支流路11に液体水が滞留し、ガス流通抵抗が高くなってしまう。本明細書では触媒層7,9やガス拡散層8,10の気孔部での液体水の滞留が要因であるガス流通抵抗も含めて燃料ガス支流路12のガス流通抵抗及び酸化剤ガス支流路11のガス流通抵抗という。ガス流通抵抗が高くなることにより、電池性能が極端に劣化する状態を「フラッディング」という。フラッディングを生じさせないためには、電解質膜6を適度な湿潤状態に保ちつつ、過剰な水分が安全かつ速やかに除去されるように運転することが必要である。   In the polymer electrolyte fuel cell, the electrolyte membrane 6 has a physical property that increases the ionic conductivity as the water content increases, so that it is necessary to keep the electrolyte membrane 6 in a wet state. Therefore, the gas supplied to the stack 30 is generally humidified. However, when the wet state is excessive, generation of generated water in the cathode 14 is also added, so that liquid water flows into the pores of the catalyst layers 7 and 9 and the gas diffusion layers 8 and 10, the fuel gas branch channel 12, and the oxidant gas branch channel 11. It stays and gas distribution resistance becomes high. In the present specification, the gas flow resistance of the fuel gas branch flow path 12 and the oxidant gas branch flow path including the gas flow resistance caused by the retention of liquid water in the pores of the catalyst layers 7 and 9 and the gas diffusion layers 8 and 10 are described. 11 gas flow resistance. A state in which battery performance is extremely deteriorated due to an increase in gas flow resistance is called “flooding”. In order to prevent flooding, it is necessary to operate the electrolyte membrane 6 so that excess water is removed safely and promptly while keeping the electrolyte membrane 6 in an appropriate wet state.

しかしながら、単電池20には個体差があり、同一スタック30内での使用であっても、特定の単電池20においてのみガス流通抵抗が増大してしまうことがある。ガス流通抵抗が増大した単電池20においては、ガスの流入量が相対的に少なくなる。図9(a)はいずれの単電池20においてもガス流通抵抗の極端な増大が生じていないスタック30におけるガスの流通の様子を、図9(b)は特定の単電池20aにおいてガス流通抵抗の極端な増大が生じた場合のスタック30におけるガスの流通の様子を模式的に示す図である。図9において、矢印の長さは、ガスの流入量を相対的に表す。図9(a)に示すように、いずれの単電池20においてもガス流通抵抗の極端な増大が生じていない場合は、各単電池20に供給されるガスの流量は同一である。一方、図9(b)に示すように、特定の単電池20aにおいてガス流通抵抗の極端な増大が生じると、単電池20aへのガスの流入量は他の単電池20と比較して少なくなる。   However, the unit cells 20 have individual differences, and even when used in the same stack 30, the gas flow resistance may increase only in the specific unit cells 20. In the unit cell 20 with increased gas flow resistance, the amount of gas inflow is relatively small. FIG. 9A shows the state of gas flow in the stack 30 in which no significant increase in gas flow resistance has occurred in any unit cell 20, and FIG. 9B shows the gas flow resistance in a specific unit cell 20a. It is a figure which shows typically the mode of distribution | circulation of the gas in the stack 30 when extreme increase arises. In FIG. 9, the length of the arrow relatively represents the inflow amount of gas. As shown in FIG. 9A, when the gas flow resistance is not extremely increased in any unit cell 20, the flow rate of the gas supplied to each unit cell 20 is the same. On the other hand, as shown in FIG. 9B, when the gas flow resistance is extremely increased in a specific unit cell 20a, the amount of gas flowing into the unit cell 20a is smaller than that of other unit cells 20. .

各単電池20での消費ガス量は一定なので、ガス流入量の少なくなった単電池20aでは、他の単電池20と比較してガス流入量に対する消費ガス量であるガス利用率が上昇し、電圧低下が生じる。そして、ガス利用率が上昇すると、ガス流通抵抗の増大が加速し、極端な電圧低下が生じ、フラッディングが起こる。その結果、固体高分子型燃料電池全体のエネルギー効率が低下してしまう。   Since the amount of gas consumed in each unit cell 20 is constant, in the unit cell 20a in which the amount of gas inflow is reduced, the gas utilization rate that is the amount of gas consumed relative to the amount of gas inflow increases compared to the other unit cells 20, A voltage drop occurs. And if a gas utilization rate rises, the increase in gas distribution resistance will accelerate, an extreme voltage drop will arise, and flooding will occur. As a result, the energy efficiency of the entire polymer electrolyte fuel cell is lowered.

各単電池の電圧のばらつきを抑制する方法として、各単電池へ供給される及び/又は各単電池から排出されるガスの流量、圧力及び/又は加湿量を単電池毎に変化させる燃料電池の運転方法が開示されている(例えば、特許文献1参照)
特開2000−251913号公報
As a method of suppressing the voltage variation of each unit cell, a fuel cell that changes the flow rate, pressure and / or humidification amount of gas supplied to and / or discharged from each unit cell for each unit cell. An operation method is disclosed (for example, refer to Patent Document 1).
JP 2000-251913 A

しかしながら、上記のような運転方法は、運転中のスタックでのガス流量、圧力及び/又は加湿量を検出する必要があり非常に煩雑である。   However, the above-described operation method is very complicated because it is necessary to detect the gas flow rate, pressure and / or humidification amount in the stack during operation.

単電池間でのフラッディングの起こりやすさの差は、各単電池の製造工程やスタックを組み立てる工程等で生じうる。この内、フラッディングの起こりやすさの差が生じる大きな要因は、各単電池の製造工程にあると考えられている。   Differences in the likelihood of flooding between the cells can occur in the manufacturing process of each cell, the process of assembling the stack, and the like. Among these, it is considered that the major factor causing the difference in the likelihood of flooding is the manufacturing process of each unit cell.

固体高分子型燃料電池において、上述のように特定の単電池に生じたフラッディングによるエネルギー効率の低下を防ぐためには、製造工程においてすでにフラッディングが生じやすい要因が発生している単電池を、スタック内に組み込まないようにすることが最も好ましい。したがって、スタックに組み込む前に、フラッディングが生じやすい要因が発生している単電池であるか否かを検出することができ、このような単電池を除外してスタックを製造することが望ましい。単電池をスタックに組み込んだ後では、不都合が生じた単電池を取り除くために煩雑な作業を要し好ましくない。   In a polymer electrolyte fuel cell, in order to prevent a decrease in energy efficiency due to flooding generated in a specific unit cell as described above, a unit cell in which a factor that is likely to cause flooding in the manufacturing process has already been generated. Most preferably, it is not incorporated into the. Therefore, it is possible to detect whether or not the cell has a factor that is likely to cause flooding before being incorporated into the stack, and it is desirable to manufacture the stack without such a cell. After the unit cell is incorporated in the stack, it is not preferable because a complicated operation is required to remove the unit cell in which inconvenience has occurred.

スタックでは、単電池内のガス流通抵抗に応じて単電池に供給されるガス量が変化する。これまで、単電池の状態で発電特性を検出する方法は知られていたものの、常にガス供給量が一定であり、スタック内での単電池を摸擬しているとはいえなかった。   In the stack, the amount of gas supplied to the cell changes according to the gas flow resistance in the cell. Until now, although the method of detecting the power generation characteristics in the state of the unit cell has been known, the gas supply amount is always constant, and it cannot be said that the unit cell in the stack is simulated.

本発明は、スタック内での単電池の状態に近い条件で、単電池の動作特性を検出することができる検出方法及び検出装置を提供することを目的とする。   An object of this invention is to provide the detection method and detection apparatus which can detect the operating characteristic of a single cell on the conditions close | similar to the state of the single cell in a stack.

上記目的を達成するために、本発明は、電解質膜の片面に接合されたアノードと、前記電解質膜の他面に接合されたカソードと、前記アノード及び前記カソードの外面に配置された一対のセパレータとを有する燃料電池の動作特性検出方法であって、燃料ガス本流路を構成する貫通孔と、酸化剤ガス本流路を構成する貫通孔と、上流端が前記燃料ガス本流路に接続され前記アノードに燃料ガスを導く燃料ガス支流路と、上流端が前記酸化剤ガス本流路に接続され前記カソードに酸化剤ガスを導く酸化剤ガス支流路とを前記燃料電池に具備し、前記燃料ガス本流路の上流端から前記燃料ガス支流路に燃料ガスを流通させ、前記酸化剤ガス本流路の上流端から前記酸化剤ガス支流路に酸化剤ガスを流通させ、前記燃料電池から電流を取り出した負荷状態で、前記燃料ガス支流路の上流端を流通する燃料ガスの圧力に応じて、前記燃料ガス本流路の下流端からの燃料ガスの排出/非排出の切り替えを行うステップ(a)と、前記負荷状態で、前記酸化剤ガス支流路の上流端を流通する酸化剤ガスの圧力に応じて、前記酸化剤ガス本流路の下流端からの酸化剤ガスの排出/非排出の切り替えを行うステップ(b)と、前記ステップ(a)および(b)での燃料ガスまたは酸化剤ガスの排出/非排出の切り替えに基づいて前記燃料電池の動作特性を検出するステップ(c)とを有する。   To achieve the above object, the present invention provides an anode bonded to one surface of an electrolyte membrane, a cathode bonded to the other surface of the electrolyte membrane, and a pair of separators disposed on the anode and the outer surface of the cathode. A method for detecting operating characteristics of a fuel cell, comprising: a through-hole constituting a fuel gas main passage; a through-hole constituting an oxidant gas main passage; and an upstream end connected to the fuel gas main passage. The fuel cell includes a fuel gas branch channel that guides the fuel gas to the fuel cell, and an oxidant gas branch channel that has an upstream end connected to the oxidant gas main channel and guides the oxidant gas to the cathode. The fuel gas is circulated from the upstream end of the fuel gas to the fuel gas branch channel, the oxidant gas is circulated from the upstream end of the oxidant gas main channel to the oxidant gas branch channel, and a current is taken out from the fuel cell. A step (a) of switching the discharge / non-discharge of the fuel gas from the downstream end of the fuel gas main flow path according to the pressure of the fuel gas flowing through the upstream end of the fuel gas branch flow path in the state; A step of switching between discharge / non-discharge of the oxidant gas from the downstream end of the oxidant gas main flow path in accordance with the pressure of the oxidant gas flowing through the upstream end of the oxidant gas branch flow path in a loaded state ( b) and a step (c) of detecting operating characteristics of the fuel cell on the basis of switching between discharge / non-discharge of the fuel gas or oxidant gas in the steps (a) and (b).

ステップ(a)において、供給された燃料ガスは、前記圧力に応じて燃料ガス支流路以外の流路から排出されることがあり、同じくステップ(b)において、供給された酸化剤ガスは、前記圧力に応じて酸化剤ガス支流路以外の流路から排出されることがある。燃料ガス支流路及び酸化剤ガス支流路以外に、ガスを排出させる他の流路があるという条件は、スタック内の単電池と同じ条件である。尚、本発明では他の流路へは、燃料ガス支流路及び酸化剤ガス支流路を流通する流体の圧力に応じて流通される。   In step (a), the supplied fuel gas may be discharged from a flow path other than the fuel gas branch flow path according to the pressure. Similarly, in step (b), the supplied oxidant gas is Depending on the pressure, it may be discharged from a channel other than the oxidant gas branch channel. In addition to the fuel gas branch channel and the oxidant gas branch channel, the condition that there is another channel for discharging the gas is the same as that of the single cells in the stack. In the present invention, other channels are circulated according to the pressure of the fluid flowing through the fuel gas branch channel and the oxidant gas branch channel.

ステップ(a)において、前記燃料ガス支流路の上流端を流通する燃料ガスの圧力が所定値を超えた場合に非排出から排出に切り替え、ステップ(b)において、前記酸化剤ガス支流路の上流端を流通する酸化剤ガスの圧力が所定値を超えた場合に非排出から排出に切り替えることが望ましい。燃料ガス支流路あるいは、酸化剤ガス支流路の上流端を流通するガスの圧力が所定値を超えたか否か、容易に確認することができるからである。   In step (a), when the pressure of the fuel gas flowing through the upstream end of the fuel gas branch passage exceeds a predetermined value, switching from non-discharge to discharge is performed, and in step (b), upstream of the oxidant gas branch passage. It is desirable to switch from non-discharge to discharge when the pressure of the oxidant gas flowing through the end exceeds a predetermined value. This is because it can be easily confirmed whether or not the pressure of the gas flowing through the upstream end of the fuel gas branch channel or the oxidant gas branch channel exceeds a predetermined value.

また、本発明は、電解質膜の片面に接合されたアノードと、前記電解質膜の他面に接合されたカソードと、前記アノード及び前記カソードの外面に配置された一対のセパレータとを有し、前記アノードに燃料ガスを導く燃料ガス支流路と、前記カソードに酸化剤ガスを導く酸化剤ガス支流路とが形成された燃料電池の動作特性検出方法であって、燃料ガス本流路と、酸化剤ガス本流路とを用い、前記燃料ガス支流路の上流端を前記燃料ガス本流路に接続し、前記酸化剤ガス支流路の上流端を前記酸化剤ガス本流路に接続するステップ(a)と、前記燃料ガス本流路の上流端から前記燃料ガス支流路に燃料ガスを流通させ、前記酸化剤ガス本流路の上流端から前記酸化剤ガス支流路に酸化剤ガスを流通させ、前記燃料電池から電流を取り出した負荷状態で、前記燃料ガス支流路の上流端を流通する燃料ガスの圧力に応じて、前記燃料ガス本流路の下流端からの燃料ガスの排出/非排出の切り替えを行うステップ(b)と、前記負荷状態で、前記酸化剤ガス支流路の上流端を流通する酸化剤ガスの圧力に応じて、前記酸化剤ガス本流路の下流端からの酸化剤ガスの排出/非排出の切り替えを行うステップ(c)と、前記ステップ(b)および(c)での燃料ガスまたは酸化剤ガスの排出/非排出の切り替えに基づいて前記燃料電池の動作特性を検出するステップ(d)とを有する。   The present invention also includes an anode bonded to one surface of the electrolyte membrane, a cathode bonded to the other surface of the electrolyte membrane, and a pair of separators disposed on the outer surface of the anode and the cathode, A method for detecting operating characteristics of a fuel cell comprising a fuel gas branch channel for introducing fuel gas to an anode and an oxidant gas branch channel for leading an oxidant gas to the cathode, the fuel gas main channel, and an oxidant gas Using the main channel, connecting the upstream end of the fuel gas branch channel to the fuel gas main channel, and connecting the upstream end of the oxidant gas branch channel to the oxidant gas main channel; A fuel gas is circulated from the upstream end of the fuel gas main channel to the fuel gas branch channel, an oxidant gas is circulated from the upstream end of the oxidant gas main channel to the oxidant gas branch channel, and current is supplied from the fuel cell. Removed A step (b) of switching between discharge / non-discharge of the fuel gas from the downstream end of the fuel gas main flow path according to the pressure of the fuel gas flowing through the upstream end of the fuel gas branch flow path in a loaded state; A step of switching between discharge / non-discharge of the oxidant gas from the downstream end of the oxidant gas main flow path in accordance with the pressure of the oxidant gas flowing through the upstream end of the oxidant gas branch flow path in the load state (C) and a step (d) of detecting operating characteristics of the fuel cell based on the switching of discharge / non-discharge of the fuel gas or oxidant gas in the steps (b) and (c).

本検出方法によると、燃料ガス本流路及び酸化剤ガス本流路を内部に備えていない単電池で、スタックに組み込んだ際に外部燃料ガス本流路及び外部酸化剤ガス本流路から燃料ガス及び酸化剤ガスを直接取得する構成の単電池であっても、スタックに組み込む前に、スタック内での状態を模擬した状態で動作特性を検出することができる。   According to this detection method, a unit cell that does not have a fuel gas main flow channel and an oxidant gas main flow channel inside, and the fuel gas and oxidant from the external fuel gas main flow channel and external oxidant gas main flow channel when incorporated in a stack. Even a single cell configured to directly acquire gas can detect the operating characteristics in a state simulating the state in the stack before being incorporated into the stack.

また、本発明は、電解質膜の片面に接合されたアノードと、前記電解質膜の他面に接合されたカソードと、前記アノード及び前記カソードの外面に配置された一対のセパレータとを有し、燃料ガス本流路を構成する貫通孔と、酸化剤ガス本流路を構成する貫通孔と、上流端が前記燃料ガス本流路に接続され前記アノードに燃料ガスを導く燃料ガス支流路と、上流端が前記酸化剤ガス本流路に接続され前記カソードに酸化剤ガスを導く酸化剤ガス支流路と、が形成された燃料電池の動作特性検出装置であって、前記燃料ガス本流路に燃料ガスを供給する燃料ガス供給手段と、前記酸化剤ガス本流路に酸化剤ガスを供給する酸化剤ガス供給手段と、前記燃料電池から電流を取り出す電子負荷と、前記燃料ガス支流路の上流端を流通する燃料ガスの圧力に応じて前記燃料ガス本流路の下流端からの燃料ガスの排出/非排出の切り替えを行う燃料ガス本流路開閉手段と、前記酸化剤ガス支流路の上流端を流通する酸化剤ガスの圧力に応じて前記酸化剤ガス本流路の下流端から酸化剤ガスの排出/非排出の切り替えを行う酸化剤ガス本流路開閉手段と、を備える。このような構成の検出装置を用いると、上記検出方法を容易に行うことができる。   The present invention also includes an anode bonded to one surface of the electrolyte membrane, a cathode bonded to the other surface of the electrolyte membrane, and a pair of separators disposed on the outer surface of the anode and the cathode, A through-hole constituting a gas main flow path, a through-hole constituting an oxidant gas main flow path, a fuel gas branch flow path having an upstream end connected to the fuel gas main flow path and leading the fuel gas to the anode, and an upstream end being the above-mentioned An operating characteristic detecting device for a fuel cell, comprising: an oxidant gas branch channel connected to an oxidant gas main channel and leading an oxidant gas to the cathode, the fuel gas supplying fuel gas to the fuel gas main channel Gas supply means, oxidant gas supply means for supplying oxidant gas to the oxidant gas main flow path, an electronic load for taking out current from the fuel cell, and fuel gas flowing through the upstream end of the fuel gas branch flow path A fuel gas main flow path opening / closing means for switching between discharge / non-discharge of the fuel gas from the downstream end of the fuel gas main flow path according to force, and a pressure of the oxidant gas flowing through the upstream end of the oxidant gas branch flow path And an oxidant gas main flow path opening / closing means for switching the discharge / non-discharge of the oxidant gas from the downstream end of the oxidant gas main flow path. When the detection apparatus having such a configuration is used, the detection method can be easily performed.

例えば、前記燃料ガス本流路開閉手段は、一端が前記燃料ガス本流路の下流端に接続され、他端からの一定の長さが水中もしくは水銀中に浸漬されている筒状の管から構成することができ、前記酸化剤ガス本流路開閉手段は、一端が前記酸化剤ガス本流路の下流端に接続され、他端からの一定の長さが水中もしくは水銀中に浸漬されている筒状の管から構成することができる。このような構成によると、水中もしくは水銀中に浸漬されている筒状の管の液界面に浸漬部分の長さに対応した圧力がかかると、管内を流体が流通し、水中もしくは水銀中に気泡が発生する。したがって、気泡の発生の有無により前記管の下流端からの流体の排出が許容されている状態か否か容易に検出することができる。   For example, the fuel gas main channel opening / closing means is composed of a cylindrical tube having one end connected to the downstream end of the fuel gas main channel and a certain length from the other end immersed in water or mercury. The oxidant gas main channel opening / closing means has a cylindrical shape in which one end is connected to the downstream end of the oxidant gas main channel and a certain length from the other end is immersed in water or mercury. It can consist of tubes. According to such a configuration, when a pressure corresponding to the length of the immersed portion is applied to the liquid interface of a cylindrical tube immersed in water or mercury, fluid flows through the tube and bubbles are generated in the water or mercury. Will occur. Therefore, it is possible to easily detect whether or not the discharge of fluid from the downstream end of the tube is allowed based on the presence or absence of bubbles.

本発明によると、固体高分子型燃料電池を構成する単電池について、スタックを構成する前の段階で、スタックを構成した際の動作特性に近い動作特性を検出することができるので、例えばフラッディングしやすい単電池を事前により正確に検出することができ、このような単電池を除外してスタックを製造することができるので製造効率がよい。また、エネルギー効率の高いスタックを容易に製造することができるようになる。   According to the present invention, for a unit cell constituting a solid polymer fuel cell, it is possible to detect an operation characteristic close to the operation characteristic when the stack is formed at a stage before the stack is formed. The easy unit cell can be detected more accurately in advance, and the stack can be manufactured without such a unit cell, so that the manufacturing efficiency is good. In addition, an energy efficient stack can be easily manufactured.

以下、本発明の実施の形態について図面を参照しながら説明する。
(単電池の動作特性検出装置)
図1は、本実施形態の単電池の動作特性検出装置の概略の構成を示すブロック図である。本検出装置は、単電池20を検出対象とし、燃料ガス供給手段41と、酸化剤ガス供給手段51と、燃料ガス本流路開閉手段44と、酸化剤ガス本流路開閉手段54と、単電池20から電流を取り出す電子負荷70とからなる。尚、検出対象の単電池20として、図6〜図8を用いて説明した従来技術の単電池20と同様の構成のものを用いるので、単電池の各構成要素には従来技術の単電池20と同一の符号を付し、説明を省略する。単電池20内の燃料ガス支流路12の上流端は、燃料ガス供給マニフォルド3A’に接続されている。図1においては、かかる接続点を分流点3aとする。酸化剤ガス支流路11の上流端は、酸化剤ガス供給マニフォルド5A’に接続されている。図1においては、かかる接続点を分流点5aとする。単電池20の動作特性検出の際には、燃料ガス供給手段41は燃料ガス供給マニフォルド3A’の上流端に接続され、燃料ガス本流路開閉手段44は燃料ガス供給マニフォルド3A’の下流端に接続される。また、酸化剤ガス供給手段51は酸化剤ガス供給マニフォルド5A’の上流端に接続され、酸化剤ガス本流路開閉手段54は酸化剤ガス供給マニフォルド5A’の下流端に接続される。電子負荷70は、単電池20のアノードとカソードに接続される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Single cell operating characteristic detector)
FIG. 1 is a block diagram showing a schematic configuration of an operating characteristic detection device for a single cell according to the present embodiment. This detection apparatus targets the single cell 20 as a detection target, and includes a fuel gas supply means 41, an oxidant gas supply means 51, a fuel gas main flow path opening / closing means 44, an oxidant gas main flow path opening / closing means 54, and the single battery 20. And an electronic load 70 for taking out current from. In addition, since the thing of the structure similar to the cell 20 of the prior art demonstrated using FIGS. 6-8 is used as the cell 20 of a detection object, the cell 20 of a prior art is used for each component of a cell. The same reference numerals are used and the description thereof is omitted. The upstream end of the fuel gas branch passage 12 in the unit cell 20 is connected to the fuel gas supply manifold 3A ′. In FIG. 1, such a connection point is a branch point 3a. The upstream end of the oxidant gas branch channel 11 is connected to the oxidant gas supply manifold 5A ′. In FIG. 1, such a connection point is a branch point 5a. When detecting the operating characteristics of the unit cell 20, the fuel gas supply means 41 is connected to the upstream end of the fuel gas supply manifold 3A ', and the fuel gas main flow path opening / closing means 44 is connected to the downstream end of the fuel gas supply manifold 3A'. Is done. The oxidant gas supply means 51 is connected to the upstream end of the oxidant gas supply manifold 5A ′, and the oxidant gas main flow path opening / closing means 54 is connected to the downstream end of the oxidant gas supply manifold 5A ′. The electronic load 70 is connected to the anode and cathode of the unit cell 20.

燃料ガス本流路開閉手段44が開状態である場合は、燃料ガス供給マニフォルド3A’の下流端が開放され、燃料ガス供給マニフォルド3A’の下流端からの燃料ガスの排出を許容する。一方、燃料ガス本流路開閉手段44が閉状態である場合は、燃料ガス供給マニフォルド3A’の下流端が閉鎖され、燃料ガス供給マニフォルド3A’の下流端からの燃料ガスの排出を許容しない。したがって、燃料ガス本流路開閉手段44が閉状態である場合は、燃料ガス供給手段41から供給される燃料ガスの全ては分流点3aから単電池20内の燃料ガス支流路12に流通する。燃料ガス支流路12からアノードに燃料ガスが供給され、上記反応式(1)で示した反応に寄与しない燃料ガスは、燃料ガス排出マニフォルドの下流端から排出される。   When the fuel gas main channel opening / closing means 44 is in the open state, the downstream end of the fuel gas supply manifold 3A 'is opened, and the fuel gas is allowed to be discharged from the downstream end of the fuel gas supply manifold 3A'. On the other hand, when the fuel gas main channel opening / closing means 44 is in the closed state, the downstream end of the fuel gas supply manifold 3A 'is closed, and the discharge of the fuel gas from the downstream end of the fuel gas supply manifold 3A' is not allowed. Therefore, when the fuel gas main channel opening / closing means 44 is in the closed state, all of the fuel gas supplied from the fuel gas supply means 41 flows from the branch point 3a to the fuel gas branch channel 12 in the unit cell 20. The fuel gas is supplied from the fuel gas branch channel 12 to the anode, and the fuel gas that does not contribute to the reaction shown in the reaction formula (1) is discharged from the downstream end of the fuel gas discharge manifold.

酸化剤ガス本流路開閉手段54が開状態である場合は、酸化剤ガス本流路52の下流端が開放され、酸化剤ガス供給マニフォルド5A’の下流端からの酸化剤ガスの排出を許容する。一方、酸化剤ガス本流路開閉手段54が閉状態である場合は、酸化剤ガス供給マニフォルド5A’の下流端が閉鎖され、酸化剤ガス供給マニフォルド5A’の下流端からの酸化剤ガスの排出を許容しない。したがって、酸化剤ガス本流路開閉手段54が閉状態である場合は、酸化剤ガス供給手段51から供給される酸化剤ガスの全ては分流点52bから単電池20内の酸化剤ガス支流路11に流通する。酸化剤ガス支流路11からカソードに酸化剤ガスが供給され、上記反応式(2)で示した反応に寄与しない酸化剤ガス及び生成水は、酸化剤ガス排出マニフォルドの下流端から排出される。   When the oxidant gas main flow path opening / closing means 54 is in the open state, the downstream end of the oxidant gas main flow path 52 is opened, and discharge of the oxidant gas from the downstream end of the oxidant gas supply manifold 5A 'is allowed. On the other hand, when the oxidant gas main flow path opening / closing means 54 is closed, the downstream end of the oxidant gas supply manifold 5A ′ is closed, and the oxidant gas is discharged from the downstream end of the oxidant gas supply manifold 5A ′. Not allowed. Therefore, when the oxidant gas main flow path opening / closing means 54 is closed, all of the oxidant gas supplied from the oxidant gas supply means 51 passes from the branch point 52b to the oxidant gas branch flow path 11 in the unit cell 20. Circulate. Oxidant gas is supplied from the oxidant gas branch channel 11 to the cathode, and oxidant gas and generated water that do not contribute to the reaction shown in the above reaction formula (2) are discharged from the downstream end of the oxidant gas discharge manifold.

燃料ガス本流路開閉手段44は、分流点3aを流通する燃料ガスの圧力に応じて開閉を切り替える。本実施形態では、燃料ガス供給マニフォルド3A’内の流体により、燃料ガス本流路開閉手段44にかかる圧力が一定値以下の場合は閉状態とし、前記圧力が一定値より大きい場合は開状態とする。燃料ガス本流路開閉手段44にかかる圧力は、分流点3aを流通する燃料ガスの圧力に応じて変化し、分流点3aを流通する燃料ガスの圧力は、燃料ガス支流路12のガス流通抵抗及び燃料ガス供給手段41からの供給ガス量に応じて変化する。したがって、例えば供給ガス量が一定の場合は、燃料ガス本流路開閉手段44の開閉は、燃料ガス支流路12のガス流通抵抗に応じて切り替わる。尚、燃料ガス本流路開閉手段44にかかる圧力は、分流点3aを流通する燃料ガスの圧力とほぼ同じとみなすことができる。   The fuel gas main channel opening / closing means 44 switches between opening and closing according to the pressure of the fuel gas flowing through the branch point 3a. In the present embodiment, the fluid in the fuel gas supply manifold 3A ′ is closed when the pressure applied to the fuel gas main flow path opening / closing means 44 is below a certain value, and is opened when the pressure is above a certain value. . The pressure applied to the fuel gas main channel opening / closing means 44 changes in accordance with the pressure of the fuel gas flowing through the branch point 3a, and the pressure of the fuel gas flowing through the branch point 3a depends on the gas flow resistance of the fuel gas branch channel 12 and It changes according to the amount of gas supplied from the fuel gas supply means 41. Therefore, for example, when the supply gas amount is constant, the opening and closing of the fuel gas main channel opening / closing means 44 is switched according to the gas flow resistance of the fuel gas branch channel 12. The pressure applied to the fuel gas main channel opening / closing means 44 can be regarded as substantially the same as the pressure of the fuel gas flowing through the branch point 3a.

酸化剤ガス本流路開閉手段54は、分流点5aを流通する酸化剤ガスの圧力に応じて開閉を切り替える。本実施形態では、酸化剤ガス供給マニフォルド5A’内の流体により、酸化剤ガス本流路開閉手段54にかかる圧力が一定値以下の場合は閉状態とし、前記圧力が一定値より大きい場合は開状態とする。酸化剤ガス本流路開閉手段54にかかる圧力は、分流点5aを流通する酸化剤ガスの圧力に応じて変化し、分流点5aを流通する酸化剤ガスの圧力は、酸化剤ガス支流路11のガス流通抵抗及び酸化剤ガス供給手段51からの供給ガス量に応じて変化する。したがって、例えば供給ガス量が一定の場合は、酸化剤ガス本流路開閉手段54の開閉は、酸化剤ガス支流路11のガス流通抵抗に応じて切り替わる。尚、酸化剤ガス本流路開閉手段54にかかる圧力は、分流点5aを流通する酸化剤ガスの圧力とほぼ同じとみなすことができる。   The oxidant gas main channel opening / closing means 54 switches between opening and closing according to the pressure of the oxidant gas flowing through the branch point 5a. In this embodiment, the fluid in the oxidant gas supply manifold 5A ′ is closed when the pressure applied to the oxidant gas main flow path opening / closing means 54 is below a certain value, and is opened when the pressure is above a certain value. And The pressure applied to the oxidant gas main flow path opening / closing means 54 changes according to the pressure of the oxidant gas flowing through the branch point 5 a, and the pressure of the oxidant gas flowing through the branch point 5 a is changed in the oxidant gas branch path 11. It varies according to the gas flow resistance and the amount of gas supplied from the oxidant gas supply means 51. Therefore, for example, when the supply gas amount is constant, the opening / closing of the oxidant gas main channel opening / closing means 54 is switched according to the gas flow resistance of the oxidant gas branch channel 11. The pressure applied to the oxidant gas main flow path opening / closing means 54 can be regarded as substantially the same as the pressure of the oxidant gas flowing through the branch point 5a.

燃料ガス供給手段41及び酸化剤ガス供給手段51は、燃料ガス支流路12及び酸化剤ガス支流路11のガス流通抵抗に関係なく、一定量のガスを供給する制御も可能であるし、所望のガス利用率となるように電子負荷70の電流値に応じてガス供給量を制御することも可能である。   The fuel gas supply means 41 and the oxidant gas supply means 51 can be controlled to supply a certain amount of gas regardless of the gas flow resistance of the fuel gas branch flow path 12 and the oxidant gas branch flow path 11, It is also possible to control the gas supply amount according to the current value of the electronic load 70 so that the gas utilization rate is obtained.

本検出装置による単電池の動作特性検出方法は、供給手段41,51からのガスの供給と、電子負荷70による電流の取得を所定時間継続させ、開閉手段44,54の動作を検出する。所定時間内に燃料ガス本流路開閉手段44もしくは酸化剤ガス本流路開閉手段54が開状態となったら、フラッディングが生じやすい単電池と判定する。尚、一般的には、燃料ガス支流路12より酸化剤ガス支流路11の方が、ガス流通抵抗の増大が生じやすい。酸化剤ガス支流路11は、カソードで生成された水の排出路ともなり、かかる水が滞留することによりガス流通抵抗を増大させるからである。燃料ガス本流路開閉手段44、及び酸化剤ガス本流路開閉手段54において切り替えが起こる圧力は、正常な単電池とフラッディングが生じやすい単電池との境界となる圧力を検出時と同一の運転条件において事前に取得し、その値に設定する。   In the method for detecting the operating characteristics of a single cell by this detection device, the supply of gas from the supply means 41 and 51 and the acquisition of current by the electronic load 70 are continued for a predetermined time, and the operation of the opening and closing means 44 and 54 is detected. If the fuel gas main flow path opening / closing means 44 or the oxidant gas main flow path opening / closing means 54 is opened within a predetermined time, it is determined that the battery is likely to be flooded. In general, the oxidant gas branch channel 11 is more likely to increase the gas flow resistance than the fuel gas branch channel 12. This is because the oxidant gas branch channel 11 also serves as a discharge channel for the water generated at the cathode, and increases the gas flow resistance when the water stays. The pressure at which switching occurs in the fuel gas main channel opening / closing means 44 and the oxidant gas main channel opening / closing means 54 is performed under the same operating conditions as those at the time of detecting the pressure at the boundary between a normal unit cell and a unit cell in which flooding is likely to occur. Obtain in advance and set to that value.

図示しないが、例えば単電池20の電圧等の発電特性を検出する発電特性検出手段を設けることも可能である。発電特性検出手段によると、フラッディングが生じていること、すなわち電池性能が極端に落ちていることを直接確認することができる。   Although not shown, it is also possible to provide a power generation characteristic detecting means for detecting power generation characteristics such as the voltage of the unit cell 20, for example. According to the power generation characteristic detecting means, it can be directly confirmed that flooding has occurred, that is, that the battery performance has been extremely lowered.

本実施形態では、燃料ガス供給マニフォルド3A’と酸化剤ガス供給マニフォルド5A’が内部に形成されている単電池20が検出対象である場合の検出装置の構成を示したが、外部の燃料ガス供給マニフォルド及び酸化剤ガス供給マニフォルドから、内部の燃料ガス支流路、酸化剤ガス支流路に直接ガスを導く構成の単電池を検出対象とすることもできる。この場合、検出装置において、燃料ガス供給マニフォルド及び酸化剤ガス供給マニフォルドを備えた構成とする。
(単電池の動作特性検出装置の具体的な構成例)
図2は、本実施形態における単電池の動作特性検出装置の構成を概略的に示す斜視図であり、特に燃料本流路開閉手段、空気本流路開閉手段の具体的な構成を示す。
図2に示すように、燃料ガス本流路開閉手段44は、燃料ガス供給マニフォルド3A’の下流端に接続された燃料ガス流通管42と、精製水が注入され水平に配置されたメスシリンダー43からなる。メスシリンダー43においては、燃料ガス流通管42の下流端から一部分が、その中心軸が鉛直方向となるように水中に浸漬されている。燃料ガス流通管42の浸漬部分の鉛直方向の長さをLa(mm)、メスシリンダー43の水面の高さをHa(mm)、燃料ガス流通管44内の水面の高さをha(mm)、Ha(mm)とha(mm)との差をPa(mm)とする。メスシリンダー43においては、燃料ガス流通管42内の水面にLa(mmaq)より大きな圧力がかかると、気泡が発生する。すなわち、燃料ガス流通管42の下流端が開放され、燃料ガス供給マニフォルド3A’の下流端から燃料ガスが排出される。
In the present embodiment, the configuration of the detection device in the case where the unit cell 20 in which the fuel gas supply manifold 3A ′ and the oxidant gas supply manifold 5A ′ are formed is the detection target is shown. A unit cell having a configuration in which the gas is directly led from the manifold and the oxidant gas supply manifold to the internal fuel gas branch channel and the oxidant gas branch channel can be set as a detection target. In this case, the detection device is configured to include a fuel gas supply manifold and an oxidant gas supply manifold.
(Specific configuration example of single cell operating characteristic detection device)
FIG. 2 is a perspective view schematically showing the configuration of the unit cell operating characteristic detection apparatus according to the present embodiment, and particularly shows the specific configuration of the fuel main channel opening / closing means and the air main channel opening / closing means.
As shown in FIG. 2, the fuel gas main channel opening / closing means 44 includes a fuel gas circulation pipe 42 connected to the downstream end of the fuel gas supply manifold 3A ′, and a graduated cylinder 43 in which purified water is injected and arranged horizontally. Become. In the graduated cylinder 43, a part from the downstream end of the fuel gas circulation pipe 42 is immersed in water so that the central axis thereof is in the vertical direction. The vertical length of the immersed portion of the fuel gas distribution pipe 42 is La (mm), the height of the water surface of the graduated cylinder 43 is Ha (mm), and the height of the water surface in the fuel gas distribution pipe 44 is ha (mm). The difference between Ha (mm) and ha (mm) is Pa (mm). In the graduated cylinder 43, when a pressure greater than La (mmaq) is applied to the water surface in the fuel gas flow pipe 42, bubbles are generated. That is, the downstream end of the fuel gas circulation pipe 42 is opened, and the fuel gas is discharged from the downstream end of the fuel gas supply manifold 3A ′.

図2に示すように、酸化剤ガス本流路開閉手段54は、酸化剤ガス供給マニフォルド5A’の下流端に接続された酸化剤ガス流通管52と、精製水が注入され水平に配置されたメスシリンダー53からなる。メスシリンダー53では、酸化剤ガス流通管52の下流端から一部分が、その中心軸が鉛直方向となるように水中に浸漬されている。酸化剤ガス流通管52の浸漬部分の鉛直方向の長さをLc(mm)、メスシリンダー53の水面の高さをHc(mm)、燃料ガス流通管54内の水面の高さをhc(mm)、Hc(mm)とhc(mm)との差をPc(mm)とする。メスシリンダー53においては、酸化剤ガス流通管52内の水面にLc(mmaq)より大きな圧力がかかると、気泡が発生する。すなわち、酸化剤ガス流通管52の下流端が開放され、酸化剤ガス供給マニフォルド5A’の下流端から酸化剤ガスが排出される。   As shown in FIG. 2, the oxidant gas main flow path opening / closing means 54 includes an oxidant gas flow pipe 52 connected to the downstream end of the oxidant gas supply manifold 5A ′, and a female that is horizontally injected with purified water. It consists of a cylinder 53. In the graduated cylinder 53, a part from the downstream end of the oxidant gas flow pipe 52 is immersed in water so that the central axis thereof is in the vertical direction. The vertical length of the immersed portion of the oxidant gas flow pipe 52 is Lc (mm), the height of the water surface of the graduated cylinder 53 is Hc (mm), and the height of the water surface in the fuel gas flow pipe 54 is hc (mm). ), And the difference between Hc (mm) and hc (mm) is Pc (mm). In the graduated cylinder 53, when a pressure greater than Lc (mmaq) is applied to the water surface in the oxidant gas flow pipe 52, bubbles are generated. That is, the downstream end of the oxidant gas flow pipe 52 is opened, and the oxidant gas is discharged from the downstream end of the oxidant gas supply manifold 5A '.

尚、メスシリンダー43,53内の液状物質は精製水に限定されることはなく、燃料ガス流通管42及び酸化剤ガス流通管52の水面にかかる圧力が測定できる物質であればよく、例えば水銀を用いることができる。   The liquid substance in the graduated cylinders 43 and 53 is not limited to purified water, and may be any substance that can measure the pressure applied to the water surface of the fuel gas circulation pipe 42 and the oxidant gas circulation pipe 52, such as mercury. Can be used.

本実施形態では、供給手段からのガスの供給と、電子負荷70による電流の取得を所定時間継続し、所定時間内に、メスシリンダー43,53から気泡が発生したか否かでフラッディングが生じやすい単電池か否かの検出を行うが、Pa、Pcの経時変化を追うことにより、単電池20内のガス流通抵抗の変化を検出することができ、また、最初に気泡が発生した後も気泡の発生の程度を検出することによりフラッディングの進行の程度を検出することができる。また、あわせて、単電池の電圧変化を検出してもよい。   In this embodiment, the supply of gas from the supply means and the acquisition of current by the electronic load 70 are continued for a predetermined time, and flooding is likely to occur depending on whether or not bubbles are generated from the graduated cylinders 43 and 53 within the predetermined time. Whether or not the battery is a cell is detected. By following changes in Pa and Pc over time, a change in the gas flow resistance in the battery 20 can be detected. By detecting the degree of occurrence of flooding, the degree of progress of flooding can be detected. In addition, the voltage change of the unit cell may be detected.

固体高分子型燃料電池を構成する単電池を製造し、その後、図2に示す検出装置を用いて、単電池の動作特性を検出した。
(単電池の製造)
まず、アノード13用の触媒ペーストを作製した。平均粒径が30nmのカーボン粉末(AKZO社製、ケッチェンブラック)を、塩化白金酸と塩化ルテニウム酸とを溶解した水溶液に浸漬したのち、これを還元処理することで、カーボン粉末に白金−ルテニウムを担持させた。このとき、白金粒子とルテニウム粒子との平均粒径はともに約3nmで、カーボン粉末に対する白金粒子とルテニウム粒子の担持率は、それぞれ30重量%及び24重量%とした。この触媒担持カーボン粉末を水素イオン伝導性高分子電解質であるパーフルオロスルホン酸の50重量%アルコール溶液(旭硝子社製、フレミオン溶液)中に分散させ、スラリー化した。これをアノード13用の触媒ペーストとした。この触媒ペースト中のパーフルオロスルホン酸とカーボン粉末との重量混合比は、1.6:1.0とした。
A unit cell constituting the polymer electrolyte fuel cell was manufactured, and then the operating characteristics of the unit cell were detected using the detection apparatus shown in FIG.
(Manufacture of single cells)
First, a catalyst paste for the anode 13 was produced. Carbon powder having an average particle size of 30 nm (manufactured by AKZO, Ketjen Black) is immersed in an aqueous solution in which chloroplatinic acid and ruthenium chlorate are dissolved, and then subjected to reduction treatment, whereby platinum-ruthenium is added to the carbon powder. Was supported. At this time, the average particle diameters of the platinum particles and the ruthenium particles were both about 3 nm, and the loading ratio of the platinum particles and the ruthenium particles with respect to the carbon powder was 30 wt% and 24 wt%, respectively. This catalyst-supported carbon powder was dispersed in a 50% by weight alcohol solution of perfluorosulfonic acid (Flemion solution, manufactured by Asahi Glass Co., Ltd.), which is a hydrogen ion conductive polymer electrolyte, and slurried. This was used as a catalyst paste for the anode 13. The weight mixing ratio of perfluorosulfonic acid and carbon powder in the catalyst paste was 1.6: 1.0.

次に、カソード14用の触媒ペーストを作製した。平均粒径が30nmのカーボン粉末(AKZO社製、ケッチェンブラック)を、塩化白金酸を溶解した水溶液に浸漬したのち、これを還元処理することで、カーボン粉末に白金を担持させた。このとき、白金粒子の平均粒径は約3nmで、カーボン粉末に対する白金粒子の担持率は、50重量%とした。この触媒担持カーボン粉末を水素イオン伝導性高分子電解質であるパーフルオロスルホン酸の50重量%アルコール溶液(旭硝子社製、フレミオン溶液)中に分散させ、スラリー化した。これをカソード14用の触媒ペーストとした。この触媒ペースト中のパーフルオロスルホン酸とカーボン粉末との重量混合比は、1.0:1.0とした。   Next, a catalyst paste for the cathode 14 was produced. Carbon powder with an average particle size of 30 nm (manufactured by AKZO, Ketjen Black) was immersed in an aqueous solution in which chloroplatinic acid was dissolved, and then this was subjected to reduction treatment, whereby platinum was supported on the carbon powder. At this time, the average particle diameter of the platinum particles was about 3 nm, and the loading ratio of the platinum particles to the carbon powder was 50% by weight. This catalyst-supported carbon powder was dispersed in a 50% by weight alcohol solution of perfluorosulfonic acid (Flemion solution, manufactured by Asahi Glass Co., Ltd.), which is a hydrogen ion conductive polymer electrolyte, and slurried. This was used as a catalyst paste for the cathode 14. The weight mixing ratio of perfluorosulfonic acid and carbon powder in the catalyst paste was 1.0: 1.0.

これらの触媒担持カーボンを含むスラリーをポリプロピレン製フィルム基材に乾燥させて触媒層7,9とし、高分子電解質膜(デュポン社製、Nafion112)6の両面にそれぞれホットプレスにより転写し、触媒層付き電解質膜とした。触媒層7,9は10cm角で、電極面積100cmとした。 Slurry containing these catalyst-supporting carbons is dried on a polypropylene film substrate to form catalyst layers 7 and 9, which are transferred to both sides of a polymer electrolyte membrane (Nafion 112, manufactured by DuPont) by hot pressing, with a catalyst layer. An electrolyte membrane was obtained. The catalyst layers 7 and 9 were 10 cm square, and the electrode area was 100 cm 2 .

PAN(ポリアクリロニトリル)を原料とする平織のカーボンクロス(日本カーボン社製、GF−20−31E)を基材に用い、このカーボンクロスに導電性撥水層を塗工し、ガス拡散層8,10とした。導電性撥水層について説明する。界面活性剤(Triton−X)を添加した水にアセチレンブラック(電気化学工業社製)の顆粒を分散させた後、ポリテトラフルオロエチレン(PTFE)の水性ディスパージョン(ダイキン社製、D−1)を加えてよく混練したものを導電性撥水層スラリーとした。このスラリーの重量組成比は、水:アセチレングラック:PTFE:界面活性剤=40:10:3:1とした。このスラリーを前記カーボンクロスに塗工した後、電気炉で300℃、3時間焼成して界面活性剤を除去させつつ導電性撥水層をカーボンクロスに固着させ、ガス拡散層8,10とした。このガス拡散層8,10を触媒層7,9より周囲1mmずつ大きな10.2cm角に切断した。   A plain weave carbon cloth (manufactured by Nippon Carbon Co., Ltd., GF-20-31E) made of PAN (polyacrylonitrile) as a base material is coated with a conductive water-repellent layer. It was set to 10. The conductive water repellent layer will be described. After dispersing granules of acetylene black (manufactured by Denki Kagaku Kogyo) in water to which a surfactant (Triton-X) has been added, an aqueous dispersion of polytetrafluoroethylene (PTFE) (manufactured by Daikin, D-1) And kneaded well to make a conductive water-repellent layer slurry. The weight composition ratio of this slurry was water: acetylene rack: PTFE: surfactant = 40: 10: 3: 1. After coating the slurry on the carbon cloth, the conductive water-repellent layer was fixed to the carbon cloth while removing the surfactant by baking at 300 ° C. for 3 hours in an electric furnace to form gas diffusion layers 8 and 10. . The gas diffusion layers 8 and 10 were cut into 10.2 cm square larger than the catalyst layers 7 and 9 by 1 mm in circumference.

次に、触媒付電解質膜の両面に一対のガス拡散層8,10を導電性撥水層が触媒反応層7,9と接するように結着し、さらにガス拡散層8,10の周囲にパイントゴム製のガスケットを配置して、100℃、10kgf/cm、5分ホットプレスしMEA15とした。 Next, a pair of gas diffusion layers 8 and 10 are bonded to both surfaces of the catalyst-attached electrolyte membrane so that the conductive water-repellent layer is in contact with the catalyst reaction layers 7 and 9, and the pint rubber is provided around the gas diffusion layers 8 and 10. A manufactured gasket was placed and hot pressed at 100 ° C., 10 kgf / cm 2 for 5 minutes to obtain MEA15.

セパレータ1,2は、厚み3mmの樹脂含浸黒鉛板に切削加工でガス流路11,12を施したものを用いた。図示しないが、アノード13側のセパレータ1のガス流路12は、リブ幅1.0mm、溝幅1.0mmの3本の流路からなるサーペンタイプ流路、カソード側のセパレータ2のガス流路はリブ幅1.0mm、溝幅1.0mmの6本の流路からなるサーペンタイプ流路とした。   The separators 1 and 2 were obtained by applying gas flow paths 11 and 12 to a resin-impregnated graphite plate having a thickness of 3 mm by cutting. Although not shown, the gas flow path 12 of the separator 1 on the anode 13 side is a serpen type flow path composed of three flow paths having a rib width of 1.0 mm and a groove width of 1.0 mm, and the gas flow path of the separator 2 on the cathode side. Was a serpen type flow path comprising 6 flow paths with a rib width of 1.0 mm and a groove width of 1.0 mm.

MEA15をセパレータ1,2、集電板、絶縁板、端板の順に挟持し、10kgf/cm2の締結圧で締結し単電池20とした。
(単電池の動作特性検出)
本検出においては、燃料ガスとして水素ガスを用い、酸化剤ガスとして空気を用いた。尚、単電池の動作特性を検出する前に、図3に示す検出装置を用いて、電子負荷70により取得する電流密度0.15A/cm、水素ガス利用率60%〜80%の条件下で、燃料ガス供給マニフォルド3A’の下流端にかかる圧力を、圧力計(長野計器(株)製KL−71)45を用いて測定した。水素ガス利用率は5%毎変化させた。30枚の単電池20の前記圧力を測定し、その平均値より略10%高い値を表1に示す。各水素ガス利用率において、平均値より略10%高い圧力が図2に示す燃料ガス流通管42の水面にかかっている場合は、フラッディングが生じている状態であるとみなすことができる。同じく、図3に示す検出装置を用いて、電子負荷70により取得する電流密度0.15A/cm、空気利用率60%〜80%の条件下で、空気ガス供給マニフォルド5A’の下流端にかかる圧力を、圧力計55を用いて測定した。空気利用率は5%毎変化させた。30枚の単電池20の前記圧力を測定し、その平均値より略10%高い値を表2に示す。各空気利用率において、平均値より略10%高い圧力が図2に示す空気流通管52の水面にかかっている場合は、フラッディングが生じている状態であるとみなすことができる。
The MEA 15 was sandwiched in the order of the separators 1 and 2, the current collector plate, the insulating plate, and the end plate, and fastened with a fastening pressure of 10 kgf / cm 2 to obtain a unit cell 20.
(Detection of cell operating characteristics)
In this detection, hydrogen gas was used as the fuel gas, and air was used as the oxidant gas. Before detecting the operating characteristics of the unit cell, using the detection device shown in FIG. 3, the current density obtained by the electronic load 70 is 0.15 A / cm 2 and the hydrogen gas utilization rate is 60% to 80%. Then, the pressure applied to the downstream end of the fuel gas supply manifold 3A ′ was measured using a pressure gauge (KL-71 manufactured by Nagano Keiki Co., Ltd.) 45. The hydrogen gas utilization rate was changed every 5%. The pressures of 30 unit cells 20 were measured, and Table 1 shows values that are approximately 10% higher than the average value. In each hydrogen gas utilization rate, when a pressure approximately 10% higher than the average value is applied to the water surface of the fuel gas circulation pipe 42 shown in FIG. 2, it can be considered that flooding has occurred. Similarly, at the downstream end of the air gas supply manifold 5A ′ using the detection device shown in FIG. 3 under the conditions of a current density of 0.15 A / cm 2 acquired by the electronic load 70 and an air utilization rate of 60% to 80%. Such pressure was measured using a pressure gauge 55. The air utilization rate was changed every 5%. The pressures of the 30 single cells 20 were measured, and Table 2 shows values that are approximately 10% higher than the average value. In each air utilization rate, when a pressure approximately 10% higher than the average value is applied to the water surface of the air circulation pipe 52 shown in FIG. 2, it can be considered that flooding has occurred.

Figure 2005203236
Figure 2005203236

Figure 2005203236
次に、図2に示す検出装置を用いて、検出対象の単電池の動作特性、具体的にはフラッディングが生じやすいか否かを検出した。詳細な検出条件は、負荷70により取り出す電流密度を0.15A/cm、燃料ガス供給マニフォルド3A’の上流端から、露点65℃、水素ガス利用率が70%となるように水素ガスを供給した。そして、Laは水素ガス利用率が70%のときの表1の値である850mmとした。酸化剤ガス供給マニフォルド5A’の上流端から、露点70℃、空気利用率が70%となるように空気を供給した。そして、Lcは空気利用率が70%のときの表2の値である375(mm)とした。上記条件にて、水素ガス及び空気ガスの供給と負荷による電流の取得を15分間継続して行い、いずれのメスシリンダー43,53からも気泡が発生しなかった単電池はフラッディングが生じにくい良好品であると判定した。尚、いずれかのメスシリンダー43,53から気泡が発生した単電池20については、気泡が発生した時点で検出を終了し、フラッディングが生じやすい不良品であると判定した。
Figure 2005203236
Next, using the detection apparatus shown in FIG. 2, it was detected whether or not the operating characteristics of the single cell to be detected, specifically, whether flooding is likely to occur. The detailed detection condition is that the current density taken out by the load 70 is 0.15 A / cm 2 , and the hydrogen gas is supplied from the upstream end of the fuel gas supply manifold 3 A ′ so that the dew point is 65 ° C. and the hydrogen gas utilization rate is 70%. did. La was 850 mm, which is the value in Table 1 when the hydrogen gas utilization rate was 70%. Air was supplied from the upstream end of the oxidant gas supply manifold 5A ′ so that the dew point was 70 ° C. and the air utilization rate was 70%. Lc was set to 375 (mm) which is the value in Table 2 when the air utilization rate was 70%. Under the above conditions, supply of hydrogen gas and air gas and acquisition of current by load are continued for 15 minutes, and the unit cell in which no bubbles are generated from any of the graduated cylinders 43, 53 is a good product that is less prone to flooding. It was determined that In addition, about the cell 20 which the bubble generate | occur | produced from either graduated cylinder 43,53, the detection was complete | finished when the bubble generate | occur | produced, and it determined with it being a defective product which is easy to produce flooding.

上記検出において、良好品であると判定された単電池を20枚用いてスタックを製造し、スタックの発電特性を検出した。ここで検出した発電特性は、スタック内の各単電池の電圧の経時変化である。詳細な検出条件は、負荷により取り出す電流密度を0.15A/cm、燃料ガス供給マニフォルド3A’の上流端から、水素ガス利用率が70%となるように露点65℃の水素ガスを供給した。酸化剤ガス供給マニフォルド5A’の上流端から、空気利用率が70%となるように露点70℃の空気を供給した。 In the above detection, a stack was manufactured using 20 single cells determined to be good, and the power generation characteristics of the stack were detected. The power generation characteristic detected here is a change with time of the voltage of each unit cell in the stack. As detailed detection conditions, the current density taken out by the load was 0.15 A / cm 2 , and hydrogen gas having a dew point of 65 ° C. was supplied from the upstream end of the fuel gas supply manifold 3 A ′ so that the hydrogen gas utilization rate would be 70%. . Air having a dew point of 70 ° C. was supplied from the upstream end of the oxidant gas supply manifold 5A ′ so that the air utilization rate would be 70%.

図4に結果を示す。図4からわかるように、20時間経過しても、いずれの単電池からも電圧の低下は観測されなかった。すなわち、スタックにおける電池性能の低下は観測されなかった。   The results are shown in FIG. As can be seen from FIG. 4, no voltage drop was observed from any single cell even after 20 hours. That is, no decrease in battery performance in the stack was observed.

尚、比較例として、上記単電池の動作特性検出を行っていない単電池を無作為で20枚選びスタックを構成し、かかるスタックについて、上記と同様の条件で発電特性を検出した。図5に結果を示す。図5からわかるように、20枚の単電池中二つの単電池でフラッディングが発生したことがわかる。   As a comparative example, a stack was selected by randomly selecting 20 unit cells for which the operation characteristics of the unit cell were not detected, and the power generation characteristics of the stack were detected under the same conditions as described above. The results are shown in FIG. As can be seen from FIG. 5, flooding occurred in two of the 20 cells.

この試験において、電圧の急激な低下が観測された単電池を取り出し、図2に示す検出装置を用いて空気利用率を変化させながら測定したところ、空気利用率75%においてシリンダー53内に気泡が発生した。   In this test, a single cell in which a sudden drop in voltage was observed was taken out and measured using the detection device shown in FIG. 2 while changing the air utilization rate. As a result, bubbles were found in the cylinder 53 at an air utilization rate of 75%. Occurred.

本発明は、固体高分子型燃料電池を製造する際に有用である。予めフラッディングが生じやすい単電池を除いてスタックを製造することができるので、エネルギー効率の高い固体高分子型燃料電池を煩雑な作業を行うことなく製造することができる。   The present invention is useful when manufacturing a polymer electrolyte fuel cell. Since the stack can be manufactured excluding the single cells that are likely to be flooded in advance, it is possible to manufacture a polymer electrolyte fuel cell with high energy efficiency without performing complicated operations.

本実施形態の単電池の動作特性検出装置の概略の構成を示すブロック図。The block diagram which shows the structure of the outline of the operating characteristic detection apparatus of the cell of this embodiment. 本実施形態の単電池の動作特性検出装置の概略の構成を示す斜視図。The perspective view which shows the structure of the outline of the operating characteristic detection apparatus of the cell of this embodiment. 単電池内の圧力検出方法を示す図である。It is a figure which shows the pressure detection method in a cell. 実施例のスタックの電圧検出結果を示す図。The figure which shows the voltage detection result of the stack | stuck of an Example. 比較例のスタックの電圧検出結果を示す図。The figure which shows the voltage detection result of the stack of a comparative example. 固体高分子型燃料電池及びそれを構成する単電池の構成を模式的に示す図。The figure which shows typically the structure of a polymer electrolyte fuel cell and the single cell which comprises it. 燃料ガス支流路が形成されたセパレータの主面を示す上面図。The top view which shows the main surface of the separator in which the fuel gas branch flow path was formed. 酸化剤ガス支流路が形成されたセパレータの主面を示す上面図。The top view which shows the main surface of the separator in which the oxidizing gas branch flow path was formed. (a)いずれの単電池においてもガス流通抵抗が増大していないスタック、(b)一つの単電池においてガス流通抵抗が増大しているスタックにおけるガスの流通の様子を模式的に示す図。(A) The figure which shows typically the mode of the distribution | circulation of the gas in the stack in which gas distribution resistance has not increased in any unit cell, and (b) the stack in which gas distribution resistance has increased in one unit cell.

符号の説明Explanation of symbols

1,2 セパレータ
3A 燃料ガス供給マニフォルド孔
3A’ 燃料ガス供給マニフォルド
3B 燃料ガス排出マニフォルド孔
3B’ 燃料ガス排出マニフォルド
5A 酸化剤ガス供給マニフォルド孔
5A’ 酸化剤ガス供給マニフォルド
5B 酸化剤ガス排出マニフォルド孔
5B’ 酸化剤ガス排出マニフォルド
7,9 触媒層
8,10 ガス拡散層
11 酸化剤ガス支流路
12 燃料ガス支流路
13 アノード
14 カソード
15 MEA
20 単電池
30 スタック
41 燃料ガス供給手段
42 燃料ガス流通管
43 メスシリンダー
44 燃料ガス本流路開閉手段
51 酸化剤ガス供給手段
52 酸化剤ガス流通管
53 メスシリンダー
54 酸化剤ガス本流路開閉手段
70 電子負荷
1, 2 separator
3A Fuel gas supply manifold hole 3A 'Fuel gas supply manifold 3B Fuel gas discharge manifold hole 3B' Fuel gas discharge manifold 5A Oxidant gas supply manifold hole 5A 'Oxidant gas supply manifold 5B Oxidant gas discharge manifold hole 5B' Oxidant gas Exhaust manifold 7,9 Catalyst layer 8,10 Gas diffusion layer 11 Oxidant gas branch channel 12 Fuel gas branch channel 13 Anode 14 Cathode 15 MEA
20 unit cell 30 stack 41 fuel gas supply means 42 fuel gas distribution pipe 43 graduated cylinder 44 fuel gas main flow path opening / closing means 51 oxidant gas supply means 52 oxidant gas flow pipe 53 graduated cylinder 54 oxidant gas main flow path opening / closing means 70 electron load

Claims (5)

電解質膜の片面に接合されたアノードと、前記電解質膜の他面に接合されたカソードと、前記アノード及び前記カソードの外面に配置された一対のセパレータとを有する燃料電池の動作特性検出方法であって、
燃料ガス本流路を構成する貫通孔と、酸化剤ガス本流路を構成する貫通孔と、上流端が前記燃料ガス本流路に接続され前記アノードに燃料ガスを導く燃料ガス支流路と、上流端が前記酸化剤ガス本流路に接続され前記カソードに酸化剤ガスを導く酸化剤ガス支流路とを前記燃料電池に具備し、
前記燃料ガス本流路の上流端から前記燃料ガス支流路に燃料ガスを流通させ、前記酸化剤ガス本流路の上流端から前記酸化剤ガス支流路に酸化剤ガスを流通させ、前記燃料電池から電流を取り出した負荷状態で、前記燃料ガス支流路の上流端を流通する燃料ガスの圧力に応じて、前記燃料ガス本流路の下流端からの燃料ガスの排出/非排出の切り替えを行うステップ(a)と、
前記負荷状態で、前記酸化剤ガス支流路の上流端を流通する酸化剤ガスの圧力に応じて、前記酸化剤ガス本流路の下流端からの酸化剤ガスの排出/非排出の切り替えを行うステップ(b)と、
前記ステップ(a)および(b)での燃料ガスまたは酸化剤ガスの排出/非排出の切り替えに基づいて前記燃料電池の動作特性を検出するステップ(c)と、
を有する燃料電池の動作特性検出方法。
An operating characteristic detection method for a fuel cell, comprising: an anode bonded to one surface of an electrolyte membrane; a cathode bonded to the other surface of the electrolyte membrane; and a pair of separators disposed on the anode and the outer surface of the cathode. And
A through hole constituting the fuel gas main passage, a through hole constituting the oxidant gas main passage, a fuel gas branch passage having an upstream end connected to the fuel gas main passage and leading the fuel gas to the anode, and an upstream end comprising The fuel cell comprises an oxidant gas branch channel connected to the oxidant gas main channel and leading the oxidant gas to the cathode,
A fuel gas is circulated from the upstream end of the fuel gas main channel to the fuel gas branch channel, an oxidant gas is circulated from the upstream end of the oxidant gas main channel to the oxidant gas branch channel, and a current is supplied from the fuel cell. A step (a) of switching between discharge / non-discharge of the fuel gas from the downstream end of the fuel gas main flow path in accordance with the pressure of the fuel gas flowing through the upstream end of the fuel gas branch flow path in the load state where )When,
A step of switching between discharge / non-discharge of the oxidant gas from the downstream end of the oxidant gas main flow path in accordance with the pressure of the oxidant gas flowing through the upstream end of the oxidant gas branch flow path in the load state (B) and
Detecting an operating characteristic of the fuel cell based on switching between discharge / non-discharge of the fuel gas or the oxidant gas in the steps (a) and (b);
A method for detecting operating characteristics of a fuel cell.
ステップ(a)において、前記燃料ガス支流路の上流端を流通する燃料ガスの圧力が所定値を超えた場合に非排出から排出に切り替え、
ステップ(b)において、前記酸化剤ガス支流路の上流端を流通する酸化剤ガスの圧力が所定値を超えた場合に非排出から排出に切り替える、請求項1に記載の燃料電池の動作特性検出方法。
In step (a), when the pressure of the fuel gas flowing through the upstream end of the fuel gas branch passage exceeds a predetermined value, switching from non-discharge to discharge,
2. The operation characteristic detection of the fuel cell according to claim 1, wherein in step (b), when the pressure of the oxidant gas flowing through the upstream end of the oxidant gas branch passage exceeds a predetermined value, switching from non-discharge to discharge is performed. Method.
電解質膜の片面に接合されたアノードと、前記電解質膜の他面に接合されたカソードと、前記アノード及び前記カソードの外面に配置された一対のセパレータとを有し、前記アノードに燃料ガスを導く燃料ガス支流路と、前記カソードに酸化剤ガスを導く酸化剤ガス支流路とが形成された燃料電池の動作特性検出方法であって、
燃料ガス本流路と、酸化剤ガス本流路とを用い、
前記燃料ガス支流路の上流端を前記燃料ガス本流路に接続し、前記酸化剤ガス支流路の上流端を前記酸化剤ガス本流路に接続するステップ(a)と、
前記燃料ガス本流路の上流端から前記燃料ガス支流路に燃料ガスを流通させ、前記酸化剤ガス本流路の上流端から前記酸化剤ガス支流路に酸化剤ガスを流通させ、前記燃料電池から電流を取り出した負荷状態で、前記燃料ガス支流路の上流端を流通する燃料ガスの圧力に応じて、前記燃料ガス本流路の下流端からの燃料ガスの排出/非排出の切り替えを行うステップ(b)と、
前記負荷状態で、前記酸化剤ガス支流路の上流端を流通する酸化剤ガスの圧力に応じて、前記酸化剤ガス本流路の下流端からの酸化剤ガスの排出/非排出の切り替えを行うステップ(c)と、
前記ステップ(b)および(c)での燃料ガスまたは酸化剤ガスの排出/非排出の切り替えに基づいて前記燃料電池の動作特性を検出するステップ(d)と、
を有する燃料電池の動作特性検出方法。
An anode joined to one side of the electrolyte membrane, a cathode joined to the other side of the electrolyte membrane, and a pair of separators arranged on the anode and the outer surface of the cathode, and guides fuel gas to the anode An operation characteristic detection method for a fuel cell, in which a fuel gas branch channel and an oxidant gas branch channel for guiding an oxidant gas to the cathode are formed,
Using the fuel gas main channel and the oxidant gas main channel,
Connecting the upstream end of the fuel gas branch channel to the fuel gas main channel and connecting the upstream end of the oxidant gas branch channel to the oxidant gas main channel;
A fuel gas is circulated from the upstream end of the fuel gas main channel to the fuel gas branch channel, an oxidant gas is circulated from the upstream end of the oxidant gas main channel to the oxidant gas branch channel, and a current is supplied from the fuel cell. A step (b) of switching between discharge / non-discharge of the fuel gas from the downstream end of the fuel gas main flow path in accordance with the pressure of the fuel gas flowing through the upstream end of the fuel gas branch flow path in the loaded state where )When,
A step of switching between discharge / non-discharge of the oxidant gas from the downstream end of the oxidant gas main flow path in accordance with the pressure of the oxidant gas flowing through the upstream end of the oxidant gas branch flow path in the load state (C),
Detecting an operating characteristic of the fuel cell based on switching between discharge / non-discharge of the fuel gas or oxidant gas in the steps (b) and (c);
A method for detecting operating characteristics of a fuel cell.
電解質膜の片面に接合されたアノードと、前記電解質膜の他面に接合されたカソードと、前記アノード及び前記カソードの外面に配置された一対のセパレータとを有し、燃料ガス本流路を構成する貫通孔と、酸化剤ガス本流路を構成する貫通孔と、上流端が前記燃料ガス本流路に接続され前記アノードに燃料ガスを導く燃料ガス支流路と、上流端が前記酸化剤ガス本流路に接続され前記カソードに酸化剤ガスを導く酸化剤ガス支流路と、が形成された燃料電池の動作特性検出装置であって、
前記燃料ガス本流路に燃料ガスを供給する燃料ガス供給手段と、前記酸化剤ガス本流路に酸化剤ガスを供給する酸化剤ガス供給手段と、前記燃料電池から電流を取り出す電子負荷と、前記燃料ガス支流路の上流端を流通する燃料ガスの圧力に応じて前記燃料ガス本流路の下流端からの燃料ガスの排出/非排出の切り替えを行う燃料ガス本流路開閉手段と、前記酸化剤ガス支流路の上流端を流通する酸化剤ガスの圧力に応じて前記酸化剤ガス本流路の下流端から酸化剤ガスの排出/非排出の切り替えを行う酸化剤ガス本流路開閉手段と、を備えた燃料電池の動作特性検出装置。
An anode bonded to one surface of the electrolyte membrane, a cathode bonded to the other surface of the electrolyte membrane, and a pair of separators disposed on the anode and the outer surface of the cathode constitute a fuel gas main flow path. A through-hole, a through-hole constituting an oxidant gas main flow path, a fuel gas branch flow path whose upstream end is connected to the fuel gas main flow path and guides fuel gas to the anode, and an upstream end connected to the oxidant gas main flow path An operating characteristic detection device for a fuel cell, comprising: an oxidant gas branch channel connected to guide the oxidant gas to the cathode; and
Fuel gas supply means for supplying fuel gas to the fuel gas main flow path; oxidant gas supply means for supplying oxidant gas to the oxidant gas main flow path; an electronic load for taking out current from the fuel cell; and the fuel. A fuel gas main flow path opening / closing means for switching between discharge / non-discharge of the fuel gas from the downstream end of the fuel gas main flow path according to the pressure of the fuel gas flowing through the upstream end of the gas branch flow path, and the oxidant gas branch flow And an oxidant gas main channel opening / closing means for switching between discharge / non-discharge of the oxidant gas from the downstream end of the oxidant gas main channel according to the pressure of the oxidant gas flowing through the upstream end of the passage Battery operating characteristic detection device.
前記燃料ガス本流路開閉手段は、一端が前記燃料ガス本流路の下流端に接続され、他端からの一定の長さが水中もしくは水銀中に浸漬されている筒状の管からなり、
前記酸化剤ガス本流路開閉手段は、一端が前記酸化剤ガス本流路の下流端に接続され、他端からの一定の長さが水中もしくは水銀中に浸漬されている筒状の管からなる、請求項4に記載の燃料電池の動作特性検出装置。
The fuel gas main channel opening / closing means is composed of a cylindrical tube having one end connected to the downstream end of the fuel gas main channel and a fixed length from the other end immersed in water or mercury,
The oxidant gas main channel opening / closing means is composed of a cylindrical tube having one end connected to the downstream end of the oxidant gas main channel and a certain length from the other end immersed in water or mercury. The fuel cell operating characteristic detection device according to claim 4.
JP2004008474A 2004-01-15 2004-01-15 Operation characteristic detecting method and operation characteristic detecting device of fuel cell Withdrawn JP2005203236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008474A JP2005203236A (en) 2004-01-15 2004-01-15 Operation characteristic detecting method and operation characteristic detecting device of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008474A JP2005203236A (en) 2004-01-15 2004-01-15 Operation characteristic detecting method and operation characteristic detecting device of fuel cell

Publications (1)

Publication Number Publication Date
JP2005203236A true JP2005203236A (en) 2005-07-28

Family

ID=34821798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008474A Withdrawn JP2005203236A (en) 2004-01-15 2004-01-15 Operation characteristic detecting method and operation characteristic detecting device of fuel cell

Country Status (1)

Country Link
JP (1) JP2005203236A (en)

Similar Documents

Publication Publication Date Title
US7745063B2 (en) Fuel cell stack
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
US20070287051A1 (en) Polymer electroyte membrane, membrane/electrode assembly and fuel cell using the assembly
JP2012209268A (en) Method for producing gas diffusion electrode and polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
JP2004158388A (en) Electrode for solid polymer fuel cell
KR101728206B1 (en) Separator for fuel cell and fuel cell comprising the same
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP2011071068A (en) Direct oxidation type fuel cell
JP5294550B2 (en) Membrane electrode assembly and fuel cell
JP5022707B2 (en) Solid polymer electrolyte fuel cell
JP2010244791A (en) Direct methanol fuel cell
JP2014209416A (en) Fuel cell system and method for controlling fuel cell system
JP4606038B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF OPERATING THE SAME
JP2005158298A (en) Operation method of fuel cell power generation system, and fuel cell power generation system
JP2013225398A (en) Fuel cell stack
JP2007335163A (en) Membrane catalyst layer assembly, membrane electrode assembly, and polymer-electrolyte fuel cell
JP2007128665A (en) Electrode catalyst layer for fuel cell, and manufacturing method of membrane-electrode assembly using it
JP2010021114A (en) Direct oxidation type fuel cell
KR101909709B1 (en) Membrane-Electrode Assembly with Improved Durability, Manufacturing Method Thereof and Fuel Cell Containing the Same
JP2008146859A (en) Membrane-electrode assembly and fuel cell having it
JP2004152588A (en) Electrode structure for solid polymer fuel cell
JP2006134648A (en) Electrode structure of solid polymer fuel cell
JP2007048495A (en) Gas diffusion layer for solid polymer fuel cell and solid polymer fuel cell using the same
JP2005203236A (en) Operation characteristic detecting method and operation characteristic detecting device of fuel cell
JP2005302320A (en) Inspection method of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090911