JP2005203071A - Optical recording medium - Google Patents

Optical recording medium Download PDF

Info

Publication number
JP2005203071A
JP2005203071A JP2004274703A JP2004274703A JP2005203071A JP 2005203071 A JP2005203071 A JP 2005203071A JP 2004274703 A JP2004274703 A JP 2004274703A JP 2004274703 A JP2004274703 A JP 2004274703A JP 2005203071 A JP2005203071 A JP 2005203071A
Authority
JP
Japan
Prior art keywords
layer
substrate
light
recording medium
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004274703A
Other languages
Japanese (ja)
Other versions
JP4232159B2 (en
Inventor
Hiroshi Tabata
浩 田畑
Naoyuki Kubo
尚之 久保
Osamu Kanbara
理 神原
Takayuki Ideno
隆之 出野
Ikuo Matsumoto
郁夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2004274703A priority Critical patent/JP4232159B2/en
Publication of JP2005203071A publication Critical patent/JP2005203071A/en
Application granted granted Critical
Publication of JP4232159B2 publication Critical patent/JP4232159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical recording medium which maintains excellent recording characteristics even under a severe environmental condition such as high temperature and high humidity and light (a fluorescent lamp, the sun light) exposure. <P>SOLUTION: The optical recording medium D is formed by bonding a signal substrate A and a dummy substrate B to each other by using an adhesive layer C. The signal substrate A is formed by layering at least a recording layer on which information is recorded by light, a reflective layer composed of Ag or an Ag alloy and a protective layer composed of an organic substance successively on a substrate 1 having a laser beam incident surface A1, the laser beam for recording and reproduction. The dummy substrate B consists of a substrate and a light shielding layer and transmittance T from an incident surface B1 to the reflection layer obtained by irradiating the dummy substrate B with light having 350 nm wavelength from the incident surface B1 side is specified to be in the range of 0%≤T≤25%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レーザ光の照射によって情報の記録、消去、再生を行う光記録媒体に関するものである。特に本発明は、光ディスク、光カードなどの光記録媒体において、高温高湿かつ光照射などの厳しい保存条件下でも、優れた記録特性を維持することが可能な光記録媒体を提供する。   The present invention relates to an optical recording medium that records, erases, and reproduces information by irradiation with a laser beam. In particular, the present invention provides an optical recording medium capable of maintaining excellent recording characteristics even under severe storage conditions such as high temperature and high humidity and light irradiation in an optical recording medium such as an optical disk and an optical card.

光記録媒体は、近年のCD−RやCD−RW、またはさらに高密度化したDVD−RW、DVD−RAM、DVD−R、Blu−rayディスクなどが挙げられる。ここで「CD」はコンパクトディスク、「DVD」はデジタル多用途ディスクをそれぞれ意味する。これらの光記録媒体は光によって記録膜を昇温させて記録マークを形成させ、その記録マークを再生媒体におけるピットと見立てて、反射率変化を用いて情報としている。光記録媒体は再生専用媒体との互換性が高いことが特徴である。   Examples of the optical recording medium include a recent CD-R, CD-RW, or higher-density DVD-RW, DVD-RAM, DVD-R, Blu-ray disc, and the like. Here, “CD” means a compact disc, and “DVD” means a digital versatile disc. In these optical recording media, the recording film is heated by light to form a recording mark, and the recording mark is regarded as pits in the reproducing medium and is used as information using a change in reflectance. The optical recording medium is characterized by high compatibility with a read-only medium.

光記録媒体の構造は、基板上に少なくとも、記録層、反射層を有している。この記録層材料には、アゾ系、シアニン系、フタロシアニン系などの有機色素や、SbTeを主成分とした相変化型の無機材料、無機材料を2層にしたものが知られている。また反射層は、反射率が高いAgやAlやAuを主成分としたものが材料として良く使われているが、高熱伝導率であること、広範囲な波長域で反射率が高いことから、とりわけAgやAg合金が最近良く使われている。しかしAgやAg合金材料は、SやOとの反応性が高いこと、光活性が高いこと、粒状結晶形成能が高いことで、高温高湿や光照射条件での保存安定性が著しく悪いといった欠点があった。 The structure of the optical recording medium has at least a recording layer and a reflective layer on a substrate. Known recording layer materials include organic dyes such as azo, cyanine, and phthalocyanine, phase change inorganic materials mainly composed of SbTe, and two layers of inorganic materials. In addition, the reflective layer, which is mainly composed of Ag, Al, or Au, which has a high reflectance, is often used as a material, but because of its high thermal conductivity and high reflectance in a wide wavelength range, Ag and Ag alloys have been frequently used recently. However, Ag and Ag alloy materials are extremely poor in storage stability under high temperature and high humidity and light irradiation conditions due to high reactivity with S and O 2 , high photoactivity, and high ability to form granular crystals. There was a drawback.

特許第1709731号公報(特許文献1)では有機物系保護層を反射層の上に塗布形成し、反射層を空気などの雰囲気から遮断することで、高温高湿条件での反射層の腐食を抑制することを提案している。本発明者で検討した結果、高温高湿条件での保存安定性は高かったものの、反射層にAgまたはAg合金を用いた場合には、記録面とは逆側からの反射層面に照射する光(蛍光灯や太陽光など)で記録特性の劣化が見られ、保存安定性が十分とはいい難かった。   In Japanese Patent No. 1709731 (Patent Document 1), an organic protective layer is applied and formed on the reflective layer, and the reflective layer is shielded from the atmosphere such as air, thereby suppressing corrosion of the reflective layer under high temperature and high humidity conditions. Propose to do. As a result of investigation by the present inventor, although the storage stability was high under high temperature and high humidity conditions, when Ag or an Ag alloy was used for the reflective layer, the light irradiated on the reflective layer surface from the opposite side to the recording surface Deterioration of recording characteristics was observed with fluorescent lamps and sunlight, and it was difficult to say that the storage stability was sufficient.

また高温高湿条件下での保存安定性の向上を目的として、特開平7−201075号公報(特許文献2)では、AgまたはAg合金反射層と有機物保護層との間に、防食層を使用することを提案している。この公報には反射層の腐食を抑制する目的で、AgまたはAg合金反射層の上に耐食性の高い防食層を積層させた媒体構造が記載されている。しかし、特許文献2の実施例として記載されているような防食層がAl、Cu、またはそれらの合金を用いた場合では、高温高湿条件下でAgまたはAg合金反射層との界面で剥離を生じ、その後の光照射で記録特性が悪化し、高温高湿条件と光照射条件の両方の保存安定性を保つことができないことが本発明者の検討で判明した。   Further, for the purpose of improving the storage stability under high temperature and high humidity conditions, Japanese Patent Application Laid-Open No. 7-201075 (Patent Document 2) uses an anticorrosion layer between the Ag or Ag alloy reflective layer and the organic protective layer. Propose to do. This publication describes a medium structure in which an anticorrosion layer having high corrosion resistance is laminated on an Ag or Ag alloy reflection layer for the purpose of suppressing corrosion of the reflection layer. However, when the anticorrosion layer described in the example of Patent Document 2 uses Al, Cu, or an alloy thereof, peeling occurs at the interface with the Ag or Ag alloy reflective layer under high temperature and high humidity conditions. Inventor's examination revealed that the recording characteristics deteriorate due to the subsequent light irradiation, and the storage stability under both the high temperature and high humidity condition and the light irradiation condition cannot be maintained.

特許第1709731号公報Japanese Patent No. 1709731 特開平7−201075号公報JP-A-7-201075

前述したように、反射層材料はAgまたはAg合金が好ましいが、この材料の反射層と有機物保護層が積層された条件で、反射層に光照射すると保存安定性が著しく悪くなるといった欠点があった。さらに防食層があっても、防食層材料によっては高温高湿条件と光照射条件の両方で保存安定性を両立することが難しかった。そこで本発明は、前記した問題を解決するために創案されたものであり、高温高湿かつ光照射等の厳しい保存条件でも、優れた記録特性を維持することを可能とする光記録媒体を提供することを目的とする。   As described above, the reflective layer material is preferably Ag or an Ag alloy. However, when the reflective layer of this material is laminated with the organic protective layer, there is a drawback that the storage stability is remarkably deteriorated when the reflective layer is irradiated with light. It was. Further, even if there is an anticorrosion layer, depending on the anticorrosion layer material, it has been difficult to achieve both storage stability under both high temperature and high humidity conditions and light irradiation conditions. Therefore, the present invention was devised to solve the above-described problems, and provides an optical recording medium that can maintain excellent recording characteristics even under severe storage conditions such as high temperature and high humidity and light irradiation. The purpose is to do.

本発明は上記課題に鑑みてなされたものであり、下記する(a)〜(d)の構成を有する光記録媒体を提供する。
(a)記録光により情報を記録する光記録媒体Dにおいて、信号基板(A)と、前記信号基板上に積層した支持体(B,C)とを備え、前記信号基板は前記信号基板の底面側から前記支持体側に向かって、前記記録光が入射される第1の入射面(A1)を有する第1の基板(1)と、前記第1の基板上に少なくとも、記録層(3)、Agを含む物質からなる反射層(5)、有機物系の物質からなる保護層(6)を順次積層してなり、前記支持体の表面である第2の入射面(B1)から波長350nmである特定波長光を照射したとき、前記第2の入射面から前記反射層の表面に至るまでの範囲を構成する層の前記特定波長光の透過率Tは0%≦T≦25%であることを特徴とする光記録媒体。
(b)前記支持体は、前記第2の入射面を有するダミー基板(B)と接着層(C)とを有することを特徴とする(a)記載の光記録媒体。
(c)前記ダミー基板は、第2の基板(8)と透過率制御部材(9)とを有し、前記透過率制御部材の透過率を0から25%とすることにより、前記透過率Tを設定していることを特徴とする(b)記載の光記録媒体。
(d)前記ダミー基板は、第2の基板(8)を有し、前記第2の基板を透過率が0から25%である透過率制御部材(8,9)とすることにより、前記透過率Tを設定していることを特徴とする(b)記載の光記録媒体。
The present invention has been made in view of the above problems, and provides an optical recording medium having the following configurations (a) to (d).
(A) An optical recording medium D for recording information by recording light includes a signal substrate (A) and a support (B, C) laminated on the signal substrate, and the signal substrate is a bottom surface of the signal substrate. A first substrate (1) having a first incident surface (A1) on which the recording light is incident from the side toward the support, and at least a recording layer (3) on the first substrate; A reflective layer (5) made of a substance containing Ag and a protective layer (6) made of an organic substance are sequentially laminated, and the wavelength is 350 nm from the second incident surface (B1) which is the surface of the support. When the specific wavelength light is irradiated, the transmittance T of the specific wavelength light of the layer constituting the range from the second incident surface to the surface of the reflective layer is 0% ≦ T ≦ 25%. A characteristic optical recording medium.
(B) The optical recording medium according to (a), wherein the support includes a dummy substrate (B) having the second incident surface and an adhesive layer (C).
(C) The dummy substrate includes a second substrate (8) and a transmittance control member (9), and the transmittance T is set to 0 to 25%, whereby the transmittance T The optical recording medium according to (b), wherein
(D) The dummy substrate includes a second substrate (8), and the second substrate is a transmittance control member (8, 9) having a transmittance of 0 to 25%, whereby the transmission is performed. The optical recording medium according to (b), wherein the rate T is set.

本発明の光記録媒体によれば、高温高湿や光(蛍光灯、太陽光)などの厳しい環境条件において光記録媒体の材質が変質しやすい悪条件にあっても、優れた記録再生特性を維持することができる。   According to the optical recording medium of the present invention, excellent recording / reproducing characteristics can be obtained even under adverse conditions in which the material of the optical recording medium is easily deteriorated under severe environmental conditions such as high temperature and high humidity and light (fluorescent lamp, sunlight). Can be maintained.

以下、本発明に係る光記録媒体の実施形態について添付図面を参照して説明する。なお、以下の説明においては本発明の光記録媒体の一実施形態として相変化型光ディスクを用いて説明するが、これ以外の光ディスク、光カード等の同様な構成を有する光記録媒体についても本発明を適用可能であることは言うまでもない。   Embodiments of an optical recording medium according to the present invention will be described below with reference to the accompanying drawings. In the following description, a phase-change optical disk is used as an embodiment of the optical recording medium of the present invention. However, the present invention also applies to other optical recording media having the same configuration, such as optical disks and optical cards. It goes without saying that is applicable.

(光記録媒体の構成)
図1は、光記録媒体の各実施形態の概略構成を示す図である。光記録媒体Dは、DVD−RWなどの相変化型光ディスク、光カードなどの、情報を繰り返しオーバーライト可能な媒体とする。また光記録媒体Dは図1に示すように、信号基板Aとダミー基板Bとを接着層Cで貼り合わせた構造である。ここでは更に、ダミー基板Bと接着層Cとで支持体を構成する。記録再生用のレーザ光は、信号基板Aの入射面A1(第1の入射面)より入射する。保存試験光は、ダミー基板Bの入射面B1(第2の入射面)より入射する。
(Configuration of optical recording medium)
FIG. 1 is a diagram showing a schematic configuration of each embodiment of an optical recording medium. The optical recording medium D is a medium capable of repeatedly overwriting information, such as a phase change optical disk such as a DVD-RW or an optical card. The optical recording medium D has a structure in which a signal substrate A and a dummy substrate B are bonded together with an adhesive layer C as shown in FIG. Here, the dummy substrate B and the adhesive layer C further constitute a support. The recording / reproducing laser beam is incident from the incident surface A1 (first incident surface) of the signal substrate A. The storage test light is incident from the incident surface B1 (second incident surface) of the dummy substrate B.

<光記録媒体Dの第一実施形態>
図2は、信号基板Aの第一構成例である信号基板Aaを示す図である。信号基板Aaは、基板1上に第1保護層2、記録層3、第2保護層4、反射層5、第3保護層6を順次積層した構成とする。信号基板Aaを用いた光記録媒体Dの構成を第一実施形態とする。なお、バリア層10は適宜設ける層であり、これについては後述する。
<First Embodiment of Optical Recording Medium D>
FIG. 2 is a diagram showing a signal board Aa which is a first configuration example of the signal board A. The signal substrate Aa has a configuration in which a first protective layer 2, a recording layer 3, a second protective layer 4, a reflective layer 5, and a third protective layer 6 are sequentially stacked on the substrate 1. The configuration of the optical recording medium D using the signal substrate Aa is the first embodiment. The barrier layer 10 is a layer provided as appropriate, which will be described later.

基板1の材料としては、透明な各種の合成樹脂、透明ガラスなどが使用できる。基板1は、光透過率がほぼ100%である光透過性を有することが好ましい。埃の付着や基板1の傷などの影響を避けるために、透明な基板1を用い、集光したレーザ光で基板1側から記録層3に情報を記録する。このような基板1の材料として例えば、ガラス、ポリカーボネイト、ポリメチル・メタクリレート、ポリオレフィン樹脂、エポキシ樹脂、ポリイミド樹脂などが挙げられる。特に、光学的複屈折、吸湿性が小さく、成形が容易であることからポリカーボネイト樹脂が好ましい。   As the material of the substrate 1, various transparent synthetic resins, transparent glass, and the like can be used. It is preferable that the substrate 1 has a light transmittance with a light transmittance of approximately 100%. In order to avoid the influence of dust adhesion and scratches on the substrate 1, the transparent substrate 1 is used, and information is recorded on the recording layer 3 from the substrate 1 side with the condensed laser light. Examples of the material of the substrate 1 include glass, polycarbonate, polymethyl methacrylate, polyolefin resin, epoxy resin, and polyimide resin. In particular, a polycarbonate resin is preferable because of its small optical birefringence and hygroscopicity and easy molding.

基板1の厚さは、特に限定するものではないが、DVDとの互換性を考慮すると0.01mm〜0.6mmが好ましく、なかでも0.6mmが最も好ましい(DVDの全厚は1.2mm)。これは基板1の厚さが0.01mm未満であれば、基板1の入射面A1側から収束したレーザ光で記録する場合でも、ごみの影響を受け易くなるからである。また、光記録媒体の全厚に制限がないのであれば、実用的には0.01mm〜5mmの範囲内であればよい。5mm以上であれば対物レンズの開口数を大きくすることが困難になり、照射レーザ光のスポットサイズが大きくなるため、記録密度をあげることが困難になるからである。   Although the thickness of the substrate 1 is not particularly limited, it is preferably 0.01 mm to 0.6 mm in consideration of compatibility with the DVD, and most preferably 0.6 mm (the total thickness of the DVD is 1.2 mm). ). This is because if the thickness of the substrate 1 is less than 0.01 mm, even when recording is performed with laser light converged from the incident surface A1 side of the substrate 1, it is easily affected by dust. Moreover, if there is no restriction | limiting in the total thickness of an optical recording medium, it should just be in the range of 0.01 mm-5 mm practically. If the thickness is 5 mm or more, it is difficult to increase the numerical aperture of the objective lens, and the spot size of the irradiation laser light is increased, so that it is difficult to increase the recording density.

基板1はフレキシブルなものでも良いし、リジッドなものであっても良い。フレキシブルな基板1は、テープ状、シート状、カード状の光記録媒体で使用する。リジッドな基板1は、カード状、或いはディスク状の光記録媒体で使用する。   The substrate 1 may be flexible or rigid. The flexible substrate 1 is used as an optical recording medium having a tape shape, a sheet shape, or a card shape. The rigid substrate 1 is used as a card-shaped or disk-shaped optical recording medium.

第1保護層2及び第2保護層4は、記録時に基板1、記録層3などが熱によって変形して記録特性が劣化することを防止するなど、基板1、記録層3を熱から保護する効果、光学的な干渉効果により、再生時の信号コントラストを改善する効果がある。   The first protective layer 2 and the second protective layer 4 protect the substrate 1 and the recording layer 3 from heat, such as preventing the substrate 1, the recording layer 3 and the like from being deformed by heat and deteriorating the recording characteristics during recording. The effect of improving the signal contrast at the time of reproduction is obtained by the effect and the optical interference effect.

第1保護層2及び第2保護層4はそれぞれ、記録再生用レーザ光に対して透明であって屈折率nが1.9≦n≦2.3の範囲にあることが望ましい。さらに、第1保護層2及び第2保護層4の材料は熱特性の点から、SiO2、SiO、ZnO、TiO2、Ta25、Nb25、ZrO2、MgOなどの酸化物、ZnS、In23、TaS4などの硫化物、SiC、TaC、WC、TiCなどの炭化物の単体及び混合物が好ましい。なかでも、ZnSとSiO2の混合膜は、記録、消去の繰り返しによっても、記録感度、C/N、消去率などの劣化が起きにくいことから特に好ましい。
また第1保護層2及び第2保護層4は、同一の材料、組成でなくとも良く、異種の材料から構成されていてもかまわない。
Each of the first protective layer 2 and the second protective layer 4 is preferably transparent to the recording / reproducing laser beam and has a refractive index n in the range of 1.9 ≦ n ≦ 2.3. Further, the materials of the first protective layer 2 and the second protective layer 4 are oxides such as SiO 2 , SiO, ZnO, TiO 2 , Ta 2 O 5 , Nb 2 O 5 , ZrO 2 , MgO from the viewpoint of thermal characteristics. ZnS, In 2 S 3 , sulfides such as TaS 4, and carbides such as SiC, TaC, WC, and TiC, and mixtures thereof are preferable. Among these, a mixed film of ZnS and SiO 2 is particularly preferable because deterioration of recording sensitivity, C / N, erasure rate, and the like hardly occurs even when recording and erasing are repeated.
Moreover, the 1st protective layer 2 and the 2nd protective layer 4 do not need to be the same material and composition, and may be comprised from a different material.

第1保護層2の厚さは、およそ5nm〜500nmの範囲である。さらには、第1保護層2の厚さは、基板1や記録層3から剥離し難く、クラックなどの欠陥が生じ難いことから、40nm〜300nmの範囲が好ましい。40nmより薄いと、ディスクの光学特性を確保しにくく、300nmより厚いと生産性に劣る。なお、より好ましくは50nm〜80nmの範囲である。   The thickness of the first protective layer 2 is in the range of approximately 5 nm to 500 nm. Furthermore, the thickness of the first protective layer 2 is preferably in the range of 40 nm to 300 nm because it is difficult to peel from the substrate 1 and the recording layer 3 and defects such as cracks are difficult to occur. If it is thinner than 40 nm, it is difficult to ensure the optical characteristics of the disk, and if it is thicker than 300 nm, the productivity is poor. In addition, More preferably, it is the range of 50 nm-80 nm.

第2保護層4の厚さは、C/N、消去率などの記録特性、安定に多数回の書き換えが可能なことから、5nm〜40nmの範囲が好ましい。5nmより薄いと記録膜の熱確保が難しくなるため最適記録パワーが上昇し、40nmより厚いとオーバーライト特性の悪化を招く。より好ましくは、10nm〜20nmの範囲である。   The thickness of the second protective layer 4 is preferably in the range of 5 nm to 40 nm from the viewpoint of recording characteristics such as C / N and erasure rate, and stable rewriting many times. If the thickness is less than 5 nm, it becomes difficult to ensure the heat of the recording film, so that the optimum recording power is increased. If the thickness is more than 40 nm, the overwrite characteristic is deteriorated. More preferably, it is the range of 10 nm-20 nm.

記録層3は、Ag−In−Sb−Te合金やGe−In−Sb−Te合金またはGe−In−Sb−Te合金に、AgまたはSi、Al、Ti、Bi、Gaのいずれかを少なくとも1種類含んでいる合金層である。また、記録層3の層厚は、10nm〜25nmが好ましい。層厚が10nmより薄いと結晶化速度が低下し高速記録特性が悪くなり、25nmより厚いと記録時に大きなレーザパワーが必要となる。   The recording layer 3 is made of Ag—In—Sb—Te alloy, Ge—In—Sb—Te alloy, or Ge—In—Sb—Te alloy with at least one of Ag, Si, Al, Ti, Bi, and Ga. It is a kind of alloy layer. Further, the layer thickness of the recording layer 3 is preferably 10 nm to 25 nm. If the layer thickness is less than 10 nm, the crystallization speed decreases and the high-speed recording characteristics deteriorate, and if it is more than 25 nm, a large laser power is required for recording.

反射層5の材料としては、高熱伝導率であること、広範囲な波長域で反射率が高いことから、とりわけAg又はAg合金が用いられる。Ag合金の例としては、AgにCr、Au、Cu、Pd、Pt、Ni、Nd、In、Ca、Biなどの少なくとも1種類の元素を混合したものなどが一般的である。   As the material of the reflective layer 5, Ag or an Ag alloy is particularly used because of its high thermal conductivity and high reflectance in a wide wavelength range. As an example of the Ag alloy, a mixture of Ag and at least one element such as Cr, Au, Cu, Pd, Pt, Ni, Nd, In, Ca, and Bi is generally used.

反射層5の厚さは、反射層5を形成する金属或いは合金の熱伝導率の大きさによって変化するが、50nm〜300nmであるのが好ましい。反射層5の厚みが50nm以上であれば、反射層5は光学的には変化せず反射率の値に影響を与えないが、反射層5の厚みが増すと冷却速度への影響が大きくなる。また、300nmを超える厚さを形成するのは製造上時間を要する。従って熱伝導率の高い材質を用いることにより、反射層5の層厚をなるべく最適範囲に制御する。   The thickness of the reflective layer 5 varies depending on the thermal conductivity of the metal or alloy forming the reflective layer 5, but is preferably 50 nm to 300 nm. If the thickness of the reflective layer 5 is 50 nm or more, the reflective layer 5 does not change optically and does not affect the reflectance value. However, as the thickness of the reflective layer 5 increases, the effect on the cooling rate increases. . In addition, it takes time in manufacturing to form a thickness exceeding 300 nm. Therefore, by using a material having high thermal conductivity, the layer thickness of the reflective layer 5 is controlled in the optimum range as much as possible.

ここで、第2保護層4にS化合物を含む混合物を用いた場合には、反射層5とのAgS化合物の生成を抑制するため、Sを含有していない材料をバリア層10として第2保護層4と反射層5の間に挿入することが好ましい。   Here, when a mixture containing an S compound is used for the second protective layer 4, a material that does not contain S is used as the barrier layer 10 for the second protection in order to suppress the formation of an AgS compound with the reflective layer 5. It is preferable to insert between the layer 4 and the reflective layer 5.

第3保護層6は、耐擦傷性や耐食性の向上のため設けられる。第3保護層6は種々の有機系の物質から構成されることが好ましく、特に放射線硬化型化合物やその組成物を、電子線、紫外線等の放射線により硬化させることが好ましい。第3保護層6の厚さは、通常0.1μm〜100μm程度であり、スピンコート、グラビア塗布、スプレーコート、ディッピング等、通常の方法により形成すればよい。   The third protective layer 6 is provided for improving scratch resistance and corrosion resistance. The third protective layer 6 is preferably composed of various organic substances, and in particular, it is preferable to cure the radiation curable compound and the composition thereof by radiation such as electron beams and ultraviolet rays. The thickness of the third protective layer 6 is usually about 0.1 μm to 100 μm, and may be formed by a usual method such as spin coating, gravure coating, spray coating, dipping or the like.

図3(A)〜(D)は、ダミー基板Bの各構成例を示す図である。
ダミー基板Bは、記録再生用レーザ光が入射しない場合には必ずしも透明である必要は無く、例えば媒体の光照射による保存特性を向上させるために、基板8に有色膜あるいは金属膜で遮光層9を形成した構成のものが考えられる。特に波長λ=350nmでの透過率Tを0%〜25%にすることが好ましく、透過率Tが25%より大きいと耐光性効果が小さくなる。ここで透過率Tは、ダミー基板Bの入射面B1から反射層5の表面(ダミー基板B側の面)に至るまでの範囲を構成する層の光透過率を指す。すなわち透過率Tは、入射面B1から反射層5の表面に至るまでの範囲に含まれる全ての物質(層)によって決まる光透過率である。
3A to 3D are diagrams showing examples of the configuration of the dummy substrate B. FIG.
The dummy substrate B does not necessarily have to be transparent when the recording / reproducing laser beam is not incident. For example, in order to improve the storage characteristics of the medium by light irradiation, the light shielding layer 9 is formed on the substrate 8 with a colored film or a metal film. The thing of the structure which formed was considered. In particular, the transmittance T at a wavelength λ = 350 nm is preferably 0% to 25%. When the transmittance T is greater than 25%, the light fastness effect is reduced. Here, the transmittance T indicates the light transmittance of a layer constituting the range from the incident surface B1 of the dummy substrate B to the surface of the reflective layer 5 (surface on the dummy substrate B side). That is, the transmittance T is a light transmittance determined by all substances (layers) included in the range from the incident surface B1 to the surface of the reflective layer 5.

図3(A)〜(D)は、透過率Tを制御するための透過率制御部材である遮光層9を用いたダミー基板Bの各構成例であり、ここでは好ましい構成例として考えられる第一構成例Ba〜第四構成例Bdを示す。図3(A)はダミー基板Bの第一構成例Ba、図3(B)はダミー基板Bの第二構成例Bb、図3(C)はダミー基板Bの第三構成例Bc、図3(D)はダミー基板Bの第四構成例Bdを示す。
第一構成例Baは、基板8をダミー基板Baの入射面側B1に、遮光層9をダミー基板Baの接着面側B2に設けた構成例、第二構成例Bbは遮光層9をダミー基板Bbの入射面側B1に、基板8をダミー基板Bbの接着面側B2に設けた構成例、第三構成例Bcは2枚の基板8の間に遮光層9を挿入させた構成例、第四構成例Bdは基板8に色などを付け基板8の全体を遮光層9とした構成例である。このような各構成例Ba〜Bdによってダミー基板Bの透過率Tを制御することができる。
FIGS. 3A to 3D are configuration examples of the dummy substrate B using the light shielding layer 9 which is a transmittance control member for controlling the transmittance T. Here, the first configuration example considered as a preferable configuration example is shown. A configuration example Ba to a fourth configuration example Bd are shown. 3A is a first configuration example Ba of the dummy substrate B, FIG. 3B is a second configuration example Bb of the dummy substrate B, FIG. 3C is a third configuration example Bc of the dummy substrate B, FIG. (D) shows a fourth configuration example Bd of the dummy substrate B. FIG.
The first configuration example Ba is a configuration example in which the substrate 8 is provided on the incident surface side B1 of the dummy substrate Ba and the light shielding layer 9 is provided on the bonding surface side B2 of the dummy substrate Ba, and the second configuration example Bb is the light shielding layer 9 on the dummy substrate. A configuration example in which the substrate 8 is provided on the bonding surface side B2 of the dummy substrate Bb on the incident surface side B1 of Bb, a third configuration example Bc is a configuration example in which the light shielding layer 9 is inserted between the two substrates 8, The fourth configuration example Bd is a configuration example in which a color or the like is applied to the substrate 8 and the entire substrate 8 is used as the light shielding layer 9. The transmittance T of the dummy substrate B can be controlled by such configuration examples Ba to Bd.

図4にダミー基板Bの波長350nmの照射光(特定波長光)における透過率T(transmittancy)と、3万ルクス(lx)の白色光600時間照射後の光記録媒体における記録再生エラーレートの関係を示す。図4より、透過率Tが30%以上であると、エラーレートが1×10-3を超える。エラーレートが1×10-3を超えると、エラー訂正がかなり困難になると言われているので、ダミー基板Bの透過率Tは0%〜25%にすることが好ましく、さらに好ましくは10%以下にすることが良い。
特定波長光の波長λを350nmとしたのは、第3保護層6は一般的に紫外線硬化型有機物系保護層であるために、紫外線領域である波長λが350nm前後で最も光化学反応が激しくなるためである。
FIG. 4 shows the relationship between the transmittance T (transmittancy) of irradiation light (specific wavelength light) with a wavelength of 350 nm on the dummy substrate B and the recording / reproducing error rate on the optical recording medium after irradiation with white light of 30,000 lux (lx) for 600 hours. Indicates. From FIG. 4, when the transmittance T is 30% or more, the error rate exceeds 1 × 10 −3 . When the error rate exceeds 1 × 10 −3 , error correction is said to be considerably difficult. Therefore, the transmittance T of the dummy substrate B is preferably 0% to 25%, more preferably 10% or less. It is good to be.
The reason why the wavelength λ of the specific wavelength light is 350 nm is that the third protective layer 6 is generally an ultraviolet curable organic protective layer, and therefore the photochemical reaction becomes most intense when the wavelength λ in the ultraviolet region is around 350 nm. Because.

上記したように透過率Tとは、入射面B1から反射層5の表面までの光の透過率であるため、ダミー基板B単独の光透過率で透過率Tを制御しなくても良い。例えば、ダミー基板Bと接着層Cのように、ダミー基板Bから反射層5の表面に至る間に存在する各部材(各層、各膜)の各光透過率を合算した光透過率を、前述した透過率Tの範囲0%〜25%にすることが好ましく、さらに好ましくは10%以下にすることが良い。   As described above, the transmittance T is the transmittance of light from the incident surface B1 to the surface of the reflective layer 5, and therefore the transmittance T does not have to be controlled by the light transmittance of the dummy substrate B alone. For example, like the dummy substrate B and the adhesive layer C, the light transmittance obtained by adding the light transmittances of the respective members (each layer and each film) existing between the dummy substrate B and the surface of the reflective layer 5 is described above. The transmittance T is preferably in the range of 0% to 25%, more preferably 10% or less.

基板8の材料には、透明な各種の合成樹脂、ガラスなどが使用できる。基板8の材料として例えば、ガラス、ポリカーボネイト、ポリメチル・メタクリレート、ポリオレフィン樹脂、エポキシ樹脂、ポリイミド樹脂などが挙げられる。特に、吸湿性が小さく、成形が容易であることからポリカーボネイト樹脂が好ましい。
遮光層9の材料は、入射面B1から入射する光を遮るものであれば何でもよい。また、生産性を考えると遮光層9を薄くすることが好ましい。このことより例えば、遮光層9の材料にAl合金など金属材料を用いることが好ましい。
As the material of the substrate 8, various kinds of transparent synthetic resins and glass can be used. Examples of the material of the substrate 8 include glass, polycarbonate, polymethyl methacrylate, polyolefin resin, epoxy resin, and polyimide resin. In particular, a polycarbonate resin is preferable because of its low hygroscopicity and easy molding.
The material of the light shielding layer 9 may be anything as long as it blocks light incident from the incident surface B1. In view of productivity, it is preferable to make the light shielding layer 9 thin. For this reason, for example, a metal material such as an Al alloy is preferably used as the material of the light shielding layer 9.

図5にAl合金製の遮光層9の層厚に対する透過率T(基板8は0.6mm厚のポリカーボネイトを用い、測定波長はλ=350nm)の一例を示す。ここではダミー基板Bとして、図3(A)〜(D)に示すダミー基板Ba〜Bdいずれかの構成を用いている。図5より、遮光層9の層厚が40nmより小さくなると、急激に透過率Tが増加していく。透過率を25%以下にするには14nm以上、透過率を10%以下にするには25nm以上の層厚を確保すればよいことが分かる。   FIG. 5 shows an example of the transmittance T with respect to the thickness of the light shielding layer 9 made of an Al alloy (the substrate 8 uses a polycarbonate with a thickness of 0.6 mm, and the measurement wavelength is λ = 350 nm). Here, as the dummy substrate B, any one of the dummy substrates Ba to Bd shown in FIGS. As shown in FIG. 5, when the thickness of the light shielding layer 9 is smaller than 40 nm, the transmittance T increases rapidly. It can be seen that a layer thickness of 14 nm or more should be ensured to make the transmittance 25% or less, and a layer thickness of 25 nm or more should be secured to make the transmittance 10% or less.

信号基板Aとダミー基板Bを貼り合わせる接着法は、有機系の物質から構成される放射線硬化型化合物やその組成物を、電子線、紫外線等の放射線により硬化接着させる方法や粘着シートにより接着させる方法がある。また耐光性効果を得るために、図1の接着層Cとして用いる接着剤や粘着シートの光透過率を0%〜25%(測定波長λ=350nm使用時)にすることも好ましい。
信号基板Aとダミー基板Bとの貼り合わせは、エアーサンドイッチ構造、エアーインシデント構造、密着貼り合わせ構造などがある。また、信号基板Aの上に基板1を除いた構成の信号基板Aを積層し、接着層Cを介してダミー基板Bと貼り合わせて片面2層の光記録媒体を形成することもできる。
The signal substrate A and the dummy substrate B are bonded to each other by bonding a radiation curable compound composed of an organic substance or a composition thereof by a method of curing and bonding with radiation such as an electron beam or ultraviolet rays, or an adhesive sheet. There is a way. In order to obtain a light resistance effect, it is also preferable that the light transmittance of the adhesive or pressure-sensitive adhesive sheet used as the adhesive layer C in FIG. 1 is 0% to 25% (when the measurement wavelength λ = 350 nm is used).
The signal substrate A and the dummy substrate B are bonded to each other by an air sandwich structure, an air incident structure, a close bonding structure, or the like. Alternatively, the signal substrate A having a configuration excluding the substrate 1 may be laminated on the signal substrate A and bonded to the dummy substrate B via the adhesive layer C to form a single-sided two-layer optical recording medium.

(光記録媒体の製造方法)
次に、第一実施形態の光記録媒体Dの製造方法について述べる。
まず、第1保護層2、記録層3、第2保護層4、反射層5などを基板1上に積層する方法としては、公知の真空中での薄膜形成法が挙げられる。例えば、真空蒸着法(抵抗加熱型や電子ビーム型)、イオンプレーティング法、スパッタリング法(直流や交流スパッタリング、反応性スパッタリング)であり、特に、組成、層厚のコントロールが容易であることから、スパッタリング法が好ましい。
(Method for producing optical recording medium)
Next, a method for manufacturing the optical recording medium D of the first embodiment will be described.
First, as a method of laminating the first protective layer 2, the recording layer 3, the second protective layer 4, the reflective layer 5, etc. on the substrate 1, a known thin film forming method in a vacuum can be mentioned. For example, vacuum deposition method (resistance heating type or electron beam type), ion plating method, sputtering method (direct current or alternating current sputtering, reactive sputtering), especially because the composition and layer thickness can be easily controlled, A sputtering method is preferred.

また、真空漕内で複数の基板1を同時に成膜するバッチ法や、基板1を1枚ずつ処理する枚葉式成膜装置を使用することが好ましい。形成する第1保護層2、記録層3、第2保護層4、反射層5などの層厚の制御は、スパッタ電源の投入パワーと時間を制御したり、水晶振動型膜厚計で堆積状態をモニタリングしたりすることで容易に行える。   In addition, it is preferable to use a batch method in which a plurality of substrates 1 are simultaneously formed in a vacuum chamber or a single wafer type film forming apparatus that processes the substrates 1 one by one. The thickness of the first protective layer 2, recording layer 3, second protective layer 4, reflective layer 5, etc. to be formed is controlled by controlling the power and time for turning on the sputtering power source or by using a quartz vibration type film thickness meter. It can be easily done by monitoring.

また、第1保護層2、記録層3、第2保護層4、反射層5などの形成は、基板1を固定したまま、或いは移動、回転した状態のどちらでも良い。層厚の面内の均一性に優れることから、基板1を自転させることが好ましく、さらに公転を組み合わせることがより好ましい。必要に応じて基板1の冷却を行うと、基板1の反り量を減少させることができる。   Further, the formation of the first protective layer 2, the recording layer 3, the second protective layer 4, the reflective layer 5 and the like may be performed while the substrate 1 is fixed or moved or rotated. Since the in-plane uniformity of the layer thickness is excellent, it is preferable to rotate the substrate 1, and it is more preferable to combine revolution. When the substrate 1 is cooled as necessary, the amount of warpage of the substrate 1 can be reduced.

また、本発明の効果を著しく損なわない範囲において、反射層5などを形成した後、これらの薄膜の変形防止などのため、ZnS、SiO2などの誘電体層或いは紫外線硬化樹脂などの第3保護層6などを必要に応じて設けても良い。
反射層5、或いはさらに第3保護層6を形成した後、図2に示す第3保護層6(第3保護層6を設けない場合は反射層5)の接着面A2と、ダミー基板Bの接着面B2とを接着剤などの接着層Cで貼り合わる。
In addition, after forming the reflective layer 5 and the like within a range that does not significantly impair the effects of the present invention, a third protective layer such as a dielectric layer such as ZnS or SiO 2 or an ultraviolet curable resin is used to prevent deformation of these thin films. The layer 6 or the like may be provided as necessary.
After the reflective layer 5 or the third protective layer 6 is formed, the adhesive surface A2 of the third protective layer 6 (the reflective layer 5 when the third protective layer 6 is not provided) shown in FIG. The adhesive surface B2 is bonded with an adhesive layer C such as an adhesive.

記録層3は、実際に記録を行う前に、あらかじめレーザ光、キセノンフラッシュランプなどの光を照射・加熱し、結晶化させておくことが好ましい。特に再生ノイズが少ないことから、レーザ光による初期化が好ましい。   The recording layer 3 is preferably crystallized by irradiating and heating light such as a laser beam or a xenon flash lamp in advance before actual recording. In particular, initialization with a laser beam is preferable because there is little reproduction noise.

さて、以下に第一実施形態に係る光記録媒体Dの実施例1〜実施例3及び比較例1、2について順次説明する。ここでは相変化型光ディスクを例にして述べる。
以下の実施例及び比較例では、波長が658nmのレーザダイオード、NA=0.60の光学レンズを搭載したパルステック社製光ディスクドライブテスタ(DDU1000)を用いて記録再生を行い、エラーレートで記録特性を評価した。
Now, Examples 1 to 3 and Comparative Examples 1 and 2 of the optical recording medium D according to the first embodiment will be described in order. Here, a phase change optical disk will be described as an example.
In the following examples and comparative examples, recording / reproduction is performed using an optical disk drive tester (DDU1000) manufactured by Pulstec Corp. equipped with a laser diode having a wavelength of 658 nm and an optical lens having NA = 0.60, and recording characteristics at an error rate. Evaluated.

保存特性試験は、高温高湿条件として温度80℃相対湿度85%条件下(80℃85%RH)で100時間光記録媒体を放置し、その後光照射条件として、3万lxの白色光(保存試験光)を入射面B1に600時間照射した。以上の高温高湿条件及び光照射条件での保存処理(以下、保存処理とする)の後、未記録部分に記録し、その後エラーレート測定して、エラー訂正が難しくなるとされている1×10-3以上のエラーレートを不良とした。
透過率の測定には、日立製作所製330型分光光度計を用いた。
In the storage characteristic test, the optical recording medium was allowed to stand for 100 hours at a temperature of 80 ° C. and a relative humidity of 85% (80 ° C. and 85% RH) as a high-temperature and high-humidity condition, and then 30,000 lx white light (storage) Test light) was applied to the incident surface B1 for 600 hours. After storage processing under the above high temperature and high humidity conditions and light irradiation conditions (hereinafter referred to as storage processing), it is recorded on an unrecorded portion, and then error rate measurement is performed to make error correction difficult 1 × 10 An error rate of -3 or higher was considered bad.
A Hitachi type 330 spectrophotometer was used to measure the transmittance.

(実施例1)
信号基板Aは、直径が120mm、板厚が0.6mmのポリカーボネイト樹脂製の基板1上に各薄膜を形成し、作成した。基板1にはトラックピッチが0.74μmで空溝(グルーブ)、ランドが交互に形成されている。溝深さは25nmであり、グルーブ幅とランド幅の比は、およそ40:60であった。
(Example 1)
The signal substrate A was prepared by forming each thin film on a substrate 1 made of polycarbonate resin having a diameter of 120 mm and a plate thickness of 0.6 mm. Substrate 1 has a track pitch of 0.74 μm, and vacancies and lands are alternately formed. The groove depth was 25 nm, and the ratio of groove width to land width was approximately 40:60.

まず、真空容器内を3×10-4Paまで排気した後、高周波マグネトロンスパッタ法により、基板1の一方の面に2×10-1PaのArガス雰囲気中でSiO2を20mol%添加したZnSを用いて層厚70nmの第1保護層2を形成した。
続いて、記録層3をGe−In−Sb−Teの4元素単一合金ターゲットで層厚16nm、第2保護層4を第1保護層2と同じ材料で16nm、バリア層10をGeNで2nm、更に反射層5をAg−Pd−Cuターゲットで120nmとして、順次積層した。
First, after evacuating the inside of the vacuum vessel to 3 × 10 −4 Pa, ZnS added with 20 mol% of SiO 2 on one surface of the substrate 1 in an Ar gas atmosphere of 2 × 10 −1 Pa by a high frequency magnetron sputtering method. Was used to form the first protective layer 2 having a layer thickness of 70 nm.
Subsequently, the recording layer 3 is a Ge-In-Sb-Te four-element single alloy target with a layer thickness of 16 nm, the second protective layer 4 is the same material as the first protective layer 2, and the barrier layer 10 is 2 nm with GeN. Further, the reflective layer 5 was sequentially laminated with an Ag—Pd—Cu target of 120 nm.

基板1を真空容器内より取り出した後、反射層5上にアクリル系紫外線硬化樹脂(ソニーケミカル製SK5110)をスピンコートし、紫外線照射により硬化させて、層厚が3μmの第3保護層6を形成して、図2に示す信号基板Aaを得た。
上述したように、基板1の各層を形成した面とは反対の面(他方の面)を入射面A1とし、第3保護層6の反射層5と接していない面を接着面A2とする。
After the substrate 1 is taken out from the vacuum vessel, an acrylic ultraviolet curable resin (SK5110 manufactured by Sony Chemical) is spin-coated on the reflective layer 5 and cured by ultraviolet irradiation to form a third protective layer 6 having a layer thickness of 3 μm. As a result, a signal substrate Aa shown in FIG. 2 was obtained.
As described above, the surface (the other surface) opposite to the surface on which each layer of the substrate 1 is formed is the incident surface A1, and the surface of the third protective layer 6 that is not in contact with the reflective layer 5 is the adhesive surface A2.

ダミー基板Bは、基板8を、基板1と同様の直径が120mm、板厚が0.6mmのポリカーボネイト樹脂で作成し、基板8の一方の面に遮光層9をAlターゲットでスパッタ法により、層厚35nmとして形成した。本実施例ではダミー基板Bの構成を図3(A)に示した第一構成例Baとしたので、遮光層9を形成した面が接着面B2となる。このようにして作成したダミー基板Bの波長λ=350nmでの透過率Tは、3%であった。   In the dummy substrate B, the substrate 8 is made of a polycarbonate resin having a diameter of 120 mm and a plate thickness of 0.6 mm, which is the same as that of the substrate 1, and a light shielding layer 9 is formed on one surface of the substrate 8 by sputtering with an Al target. The film was formed with a thickness of 35 nm. In the present embodiment, since the configuration of the dummy substrate B is the first configuration example Ba shown in FIG. 3A, the surface on which the light shielding layer 9 is formed becomes the adhesive surface B2. The transmittance T at the wavelength λ = 350 nm of the dummy substrate B thus produced was 3%.

接着層Cに粘着シールを用いて、信号基板A(Aa)の接着面A2とダミー基板B(Ba)の接着面B2とを貼り合わせた。続いて、初期化装置(日立コンピュータ機器製POP120)にて、ラジアル方向レーザ光幅250μm、走査方向レーザ光幅1.0μmのレーザを用いて、走査線速度4.5m/s、レーザパワー1600mW、送りピッチ220μmの条件で記録層3の初期化を行い、光記録媒体Dを作製した。   An adhesive seal was used for the adhesive layer C, and the adhesive surface A2 of the signal substrate A (Aa) and the adhesive surface B2 of the dummy substrate B (Ba) were bonded together. Subsequently, in an initialization apparatus (POP120 manufactured by Hitachi Computer Equipment Co., Ltd.), using a laser having a radial laser beam width of 250 μm and a scanning laser beam width of 1.0 μm, a scanning linear velocity of 4.5 m / s, a laser power of 1600 mW, The recording layer 3 was initialized under a feed pitch of 220 μm, and an optical recording medium D was produced.

こうして製造した光記録媒体Dを用い、基板1側(入射面A1)から記録層3の案内溝であるグルーブ部に記録を行った。グルーブは記録再生用レーザ光の入射方向から見て凸状になっている。
上記の記録を線速度3.5m/s(DVD規格1倍速)の条件で行い、エラーレート測定したところ、保存前の記録特性は2×10-5であることを確認した。さらに、高温高湿条件後及び光照射条件での保存処理後に、記録及びエラーレート測定をしたところ、表1に示すとおり、5×10-5と良好であり、保存処理後でも良好な特性が得られた。
表1において、エラーレートが良好であればOKを、エラーレートが不良であればNGを記した。
Using the optical recording medium D thus manufactured, recording was performed from the substrate 1 side (incident surface A1) to the groove portion which is a guide groove of the recording layer 3. The groove has a convex shape when viewed from the incident direction of the recording / reproducing laser beam.
When the above recording was performed under the condition of a linear velocity of 3.5 m / s (DVD standard 1 × speed) and the error rate was measured, it was confirmed that the recording characteristic before storage was 2 × 10 −5 . Furthermore, after recording under high temperature and high humidity conditions and after storage treatment under light irradiation conditions, recording and error rate measurement were conducted, and as shown in Table 1, it was as good as 5 × 10 −5, and even after storage processing, good characteristics were obtained. Obtained.
In Table 1, OK is indicated when the error rate is good, and NG is indicated when the error rate is poor.

Figure 2005203071
Figure 2005203071

(実施例2)
ダミー基板Bの遮光層9を層厚70nmにした他は、実施例1と同様の光記録媒体を作成した。このようにして作成したダミー基板Bの波長λ=350nmでの透過率Tは、0%であった。実施例1と同様の測定をしたところ、表1に示すとおり、保存処理後の記録再生のエラーレートは2×10-5と、実施例1と同様に保存処理後も良好な記録特性が得られた。
(Example 2)
An optical recording medium similar to that of Example 1 was prepared except that the light shielding layer 9 of the dummy substrate B was changed to a layer thickness of 70 nm. The transmittance T at the wavelength λ = 350 nm of the dummy substrate B thus produced was 0%. When the same measurement as in Example 1 was performed, as shown in Table 1, the error rate of recording and reproduction after the storage process was 2 × 10 −5, and good recording characteristics were obtained after the storage process as in Example 1. It was.

(実施例3)
ダミー基板Bの遮光層9を層厚15nmにした他は、実施例1と同様の光記録媒体を作成した。このようにして作成したダミー基板Bの波長λ=350nmでの透過率Tは、22%であった。実施例1と同様の測定をしたところ、表1に示すとおり、保存処理後の記録再生のエラーレートは3×10-4と、実施例1と同様に保存処理後も記録特性が良好であった。
(Example 3)
An optical recording medium similar to that of Example 1 was prepared, except that the light shielding layer 9 of the dummy substrate B was changed to 15 nm. The transmittance T at the wavelength λ = 350 nm of the dummy substrate B thus produced was 22%. When the same measurement as in Example 1 was performed, as shown in Table 1, the recording / reproduction error rate after the storage process was 3 × 10 −4, and the recording characteristics were good after the storage process as in Example 1. It was.

(比較例1)
ダミー基板Bの遮光層9を無くした(0nm)他は、実施例1と同様の光記録媒体を作成した。このようにして作成したダミー基板Bの波長λ=350nmでの透過率Tは、82%であった。実施例1と同様の測定をしたところ、表1に示すとおり、保存処理後の記録再生のエラーレートは2×10-3と、実施例1と比較すると、保存処理後の記録特性が著しく悪化していた。
(Comparative Example 1)
An optical recording medium similar to that of Example 1 was prepared except that the light shielding layer 9 of the dummy substrate B was eliminated (0 nm). The transmittance T of the dummy substrate B thus prepared at a wavelength λ = 350 nm was 82%. When the same measurement as in Example 1 was performed, as shown in Table 1, the error rate of recording and reproduction after the storage process was 2 × 10 −3, which was significantly worse than the recording characteristics after the storage process. Was.

(比較例2)
ダミー基板Bの遮光層9を層厚10nmにした他は、実施例1と同様の光記録媒体を作成した。このようにして作成したダミー基板Bの波長λ=350nmでの透過率Tは、37%であった。実施例1と同様の測定をしたところ、表1に示すとおり、保存処理後の記録再生のエラーレートは1×10-3と、実施例1と比較すると、保存処理後の記録特性が著しく悪化していた。
(Comparative Example 2)
An optical recording medium similar to that of Example 1 was prepared, except that the thickness of the light shielding layer 9 of the dummy substrate B was 10 nm. The transmittance T at the wavelength λ = 350 nm of the dummy substrate B thus prepared was 37%. When the same measurement as in Example 1 was performed, as shown in Table 1, the recording / reproduction error rate after the storage process was 1 × 10 −3, which was significantly deteriorated in the recording characteristics after the storage process as compared with Example 1. Was.

以上のことから、遮光層9を充分に設けなかったことで反射層5に光が長時間照射されると、光照射後の記録特性が著しく悪化することがわかった。これは、光照射により第3保護層6の紫外線硬化樹脂と反射層5のAgまたはAg合金が活性化され、反射層5の特性が変化し放熱状況も変わることで、記録特性が悪化すると推測される。また上述したように、エラー訂正が可能なエラーレートは1×10-3以下といわれており、このことから照射される光の、反射層5への透過率Tは0%〜25%の範囲にすることが好ましいことが分かった。 From the above, it was found that if the light shielding layer 9 was not sufficiently provided and the reflective layer 5 was irradiated with light for a long time, the recording characteristics after the light irradiation were remarkably deteriorated. This is presumed that the recording characteristics deteriorate due to activation of the UV curable resin of the third protective layer 6 and Ag or Ag alloy of the reflective layer 5 due to light irradiation, changing the characteristics of the reflective layer 5 and changing the heat dissipation state. Is done. Further, as described above, the error rate at which error correction is possible is said to be 1 × 10 −3 or less. Therefore, the transmittance T of the irradiated light to the reflective layer 5 is in the range of 0% to 25%. It turned out to be preferable.

また、照射される波長λ=350nmのレーザ光の反射層5への透過率Tを0%〜25%の範囲にする方法として、実施例1〜3ではダミー基板Bに付着させた遮光層9の厚みで透過率Tを制御していたが、透過率Tを制御するのはダミー基板Bでなくとも良い。つまり光記録媒体Dの記録再生用レーザ光の入射面A1とは反射層5を挟んで反対側に形成されている、例えば第3保護層6や、信号基板Aとダミー基板Bとを接着させる接着剤(接着層C)にカーボンブラックなどの粉末を混入させることで、透過率Tを0%〜25%の範囲に制御しても実施例1と同様の効果が得られる。   Further, as a method for setting the transmittance T of the irradiated laser light of wavelength λ = 350 nm to the reflection layer 5 in the range of 0% to 25%, the light shielding layer 9 attached to the dummy substrate B in Examples 1 to 3. Although the transmittance T is controlled by the thickness of the substrate, the transmittance T may not be controlled by the dummy substrate B. That is, for example, the third protective layer 6 or the signal substrate A and the dummy substrate B formed on the opposite side of the reflection layer 5 with respect to the incident surface A1 of the recording / reproducing laser beam of the optical recording medium D is bonded. Even if the transmittance T is controlled to be in the range of 0% to 25% by mixing a powder such as carbon black into the adhesive (adhesive layer C), the same effect as in Example 1 can be obtained.

<光記録媒体Dの第二実施形態>
ダミー基板Bや接着層Cの波長λ=350nmでの光透過率を0%〜25%の範囲にできない場合には、耐光性を向上させる別な方法として、図6に示すように高密着不活性層7を反射層5と第3保護層6との間に挿入した構成の信号基板Abを用いる。
<Second Embodiment of Optical Recording Medium D>
If the light transmittance of the dummy substrate B or the adhesive layer C at the wavelength λ = 350 nm cannot be in the range of 0% to 25%, as another method for improving the light resistance, as shown in FIG. A signal substrate Ab having a configuration in which the active layer 7 is inserted between the reflective layer 5 and the third protective layer 6 is used.

本発明者の検討では、入射面B1からの光照射による記録特性の悪化は、AgまたはAg合金の反射層5と第3保護層6とが直接接し、かつ、AgまたはAg合金の反射層5に光が長時間照射される場合にのみ起きる。この悪化メカニズムにおいて反射層5の金属光沢は失われないことから、第3保護層6中の成分と反射層5の材料であるAgまたはAg合金との化学反応が光照射により活性化され、反射層5の金属材料が化学変化する(腐食ではない)ものと推測される。この反射層5の光活性の化学変化により、反射層5の金属材料の熱伝導率が変化し、これにより記録層3の記録時の放熱状態が悪くなるので、記録特性の悪化が引き起こされていると考えられる。つまり反射層5の化学変化は腐食(金属ではなくなる化学変化)ではなく、金属から金属への変化であることから、高密着不活性層7を反射層5と第3保護層6との間に挿入することで、耐光性が向上する。   According to the study of the present inventor, the deterioration of the recording characteristics due to light irradiation from the incident surface B1 is that the reflective layer 5 made of Ag or Ag alloy is in direct contact with the third protective layer 6 and the reflective layer 5 made of Ag or Ag alloy. This happens only when the light is irradiated for a long time. Since the metallic luster of the reflective layer 5 is not lost in this deterioration mechanism, the chemical reaction between the components in the third protective layer 6 and Ag or Ag alloy as the material of the reflective layer 5 is activated by light irradiation, and the reflection It is presumed that the metal material of the layer 5 is chemically changed (not corroded). Due to the chemical change of the photoactive property of the reflective layer 5, the thermal conductivity of the metal material of the reflective layer 5 is changed, which deteriorates the heat dissipation state during recording of the recording layer 3, thereby deteriorating the recording characteristics. It is thought that there is. That is, the chemical change of the reflective layer 5 is not a corrosion (a chemical change that is not a metal) but a change from metal to metal, so that the high adhesion inactive layer 7 is interposed between the reflective layer 5 and the third protective layer 6. Insertion improves light resistance.

図6は、信号基板Aの第二構成例である信号基板Abを示す図である。信号基板Abは、基板1上に第1保護層2、記録層3、第2保護層4、反射層5、高密着不活性層7、第3保護層6を順次積層した構成とする。信号基板Abを用いた光記録媒体Dの構成を第二実施形態とする。バリア層10は既述したように、適宜設ければよい。
信号基板Abを形成する基板及び層の、第一実施形態に用いた信号基板Aaと同様のものには同じ符号を付し、前記基板及び層の材料、その厚み等は第一実施形態にて既述したものと同じとし、説明を省略する。
高密着不活性層7の材料は、金属、半金属、窒化物、酸化物、炭化物またはそれらの化合物でよく、反射層5に用いられるAgまたはAg合金との密着強度が1.6MPa以上であることが好ましい。
FIG. 6 is a diagram illustrating a signal board Ab which is a second configuration example of the signal board A. The signal substrate Ab has a configuration in which a first protective layer 2, a recording layer 3, a second protective layer 4, a reflective layer 5, a high adhesion inactive layer 7, and a third protective layer 6 are sequentially laminated on the substrate 1. The configuration of the optical recording medium D using the signal substrate Ab is a second embodiment. As described above, the barrier layer 10 may be provided as appropriate.
The same reference numerals are given to the same substrates and layers that form the signal substrate Ab as the signal substrate Aa used in the first embodiment, and the materials and thicknesses of the substrate and layers in the first embodiment It is the same as already described, and the description is omitted.
The material of the high adhesion inactive layer 7 may be metal, metalloid, nitride, oxide, carbide, or a compound thereof, and adhesion strength with Ag or an Ag alloy used for the reflective layer 5 is 1.6 MPa or more. It is preferable.

図7は、温度80℃相対湿度85%(高温高湿:80℃85%RH)条件下での100時間放置、さらに3万lxの白色光を600時間照射させた後の、高密着不活性層7とAgまたはAg合金の反射層5との密着強度と、記録再生エラーレートの関係を示す。図7より、密着強度が1.6MPaより小さいと、エラーレートが、エラー訂正がかなり困難になると言われている1×10-3を超えるので、密着強度は1.6MPa以上であることが好ましい。密着強度が1.6MPaより小さいと、高温高湿条件下(80℃85%RH)で反射層5と高密着不活性層7との界面から剥離が起きると思われる。剥離が起きると、媒体が白っぽくなり概観が悪くなるだけでなく、高密着不活性層7の耐光性効果がなくなり、光照射による記録特性の劣化が起きるので、好ましくない。なお、密着強度の上限は特になく、1.6MPa以上であればよい。 FIG. 7 shows high adhesion inactivity after standing for 100 hours under conditions of a temperature of 80 ° C. and a relative humidity of 85% (high temperature and high humidity: 80 ° C. and 85% RH), and further irradiating 30,000 lx white light for 600 hours. The relationship between the adhesion strength between the layer 7 and the reflective layer 5 made of Ag or Ag alloy and the recording / reproducing error rate is shown. From FIG. 7, when the adhesion strength is less than 1.6 MPa, the error rate exceeds 1 × 10 −3 , which is said to make error correction considerably difficult. Therefore, the adhesion strength is preferably 1.6 MPa or more. . If the adhesion strength is less than 1.6 MPa, it is considered that peeling occurs from the interface between the reflective layer 5 and the high adhesion inactive layer 7 under high temperature and high humidity conditions (80 ° C. and 85% RH). If peeling occurs, the medium becomes whitish and the appearance is deteriorated, and the light resistance effect of the high adhesion inactive layer 7 is lost, and the recording characteristics are deteriorated by light irradiation. The upper limit of the adhesion strength is not particularly limited and may be 1.6 MPa or more.

密着強度の測定には、図8に示す引張り試験を行った。引張り試験の条件としてまず、ガラス板71に反射層5に用いるAgまたはAg合金の薄膜5sを約200nm積層させ、その上に高密着不活性層7の材料からなる薄膜7sを200nm積層させたサンプルを用いる。サンプルにエポキシ系接着剤にてSUS板72及び角棒73を接合して共試材とし、引張り方向hがSUS板72に対して垂直となるように共試材をC型フック74にぶら下げる。共試材の静止を確認してから引張り試験を行い、薄膜5s(反射層5)と薄膜7s(高密着不活性層7)の界面において破断した力を測定し、面積で除して密着強度とした。   For the measurement of the adhesion strength, the tensile test shown in FIG. 8 was performed. As a condition of the tensile test, first, a thin film 5s of Ag or Ag alloy used for the reflective layer 5 is laminated on the glass plate 71 for about 200 nm, and a thin film 7s made of the material of the high adhesion inactive layer 7 is laminated thereon by 200 nm. Is used. The SUS plate 72 and the square bar 73 are joined to the sample with an epoxy adhesive to form a co-test material, and the co-test material is hung on the C-shaped hook 74 so that the pulling direction h is perpendicular to the SUS plate 72. A tensile test is performed after confirming the rest of the co-test material, and the force at which the fracture occurs at the interface between the thin film 5s (reflective layer 5) and the thin film 7s (high adhesion inactive layer 7) is measured, and divided by the area, adhesion strength It was.

続いて、高密着不活性層7を設けた第二実施形態の光記録媒体に係る実施例4〜実施例7と比較例3、4について説明する。
第二実施形態の光記録媒体は、上述した第一実施形態の光記録媒体と同様の製造方法で製造した。高密着不活性層7は、基板1上に形成した他の層、すなわち第1保護層2、記録層3、第2保護層4、及び反射層5と同様に形成した。
第二実施形態においてダミー基板Bは遮光層9を設けず、基板8のみからなる。ダミー基板Bは接着層Cに粘着シールを用いて信号基板Abと貼り合わせた。
また、記録特性の評価や保存特性試験及びエラーレート測定についても、第一実施形態の光記録媒体と同様に行った。
Subsequently, Examples 4 to 7 and Comparative Examples 3 and 4 according to the optical recording medium of the second embodiment provided with the high adhesion inactive layer 7 will be described.
The optical recording medium of the second embodiment was manufactured by the same manufacturing method as the optical recording medium of the first embodiment described above. The high adhesion inactive layer 7 was formed in the same manner as the other layers formed on the substrate 1, that is, the first protective layer 2, the recording layer 3, the second protective layer 4, and the reflective layer 5.
In the second embodiment, the dummy substrate B includes only the substrate 8 without providing the light shielding layer 9. The dummy substrate B was bonded to the signal substrate Ab using an adhesive seal on the adhesive layer C.
Further, evaluation of recording characteristics, storage characteristic test, and error rate measurement were performed in the same manner as the optical recording medium of the first embodiment.

(実施例4)
ダミー基板Bの遮光層9を無くし、さらに反射層5と第3保護層6の間に高密着不活性層7をGeNで層厚5nmとして挿入した他は、実施例1と同様の光記録媒体を作成した。引張り試験において、反射層5の材料のAgPdCuとGeNとの密着強度は、5.1MPaであった。実施例1と同様の測定をしたところ表2に示すとおり、保存処理後の記録再生のエラーレートは5×10-5と、実施例1と同様に保存処理後も記録特性が良好であった。
Example 4
An optical recording medium similar to that of Example 1 except that the light shielding layer 9 of the dummy substrate B is eliminated and a highly adhesive inactive layer 7 is inserted between Ge and the third protective layer 6 with a thickness of 5 nm of GeN. It was created. In the tensile test, the adhesion strength between AgPdCu and GeN as the material of the reflective layer 5 was 5.1 MPa. When the same measurement as in Example 1 was performed, as shown in Table 2, the recording / reproduction error rate after the storage process was 5 × 10 −5, and the recording characteristics were good after the storage process as in Example 1. .

Figure 2005203071
Figure 2005203071

(実施例5)
高密着不活性層7をAl23にした他は、実施例4と同様の光記録媒体を作成した。引張り試験において、反射層5の材料であるAgPdCuとAl23との密着強度は、3.6MPaであった。実施例1と同様の測定をしたところ、表2に示すとおり、保存処理後の記録再生のエラーレートは6×10-5と、実施例1と同様に保存処理後も記録特性が良好であった。
(Example 5)
An optical recording medium similar to that of Example 4 was prepared except that the high adhesion inactive layer 7 was changed to Al 2 O 3 . In the tensile test, the adhesion strength between AgPdCu, which is the material of the reflective layer 5, and Al 2 O 3 was 3.6 MPa. When the same measurement as in Example 1 was performed, as shown in Table 2, the recording / reproduction error rate after the storage process was 6 × 10 −5, and the recording characteristics were good after the storage process as in Example 1. It was.

(実施例6)
高密着不活性層7をGeにした他は、実施例4と同様の光記録媒体を作成した。引張り試験において、反射層5の材料であるAgPdCuとGeとの密着強度は、1.6MPaであった。実施例1と同様の測定をしたところ、表2に示すとおり、保存処理後の記録再生のエラーレートは9×10-5と、実施例1と同様に保存処理後も記録特性が良好であった。
(Example 6)
An optical recording medium similar to that of Example 4 was prepared except that the high adhesion inactive layer 7 was replaced with Ge. In the tensile test, the adhesion strength between AgPdCu, which is the material of the reflective layer 5, and Ge was 1.6 MPa. When the same measurement as in Example 1 was performed, as shown in Table 2, the recording / playback error rate after the storage process was 9 × 10 −5, and the recording characteristics were good after the storage process as in Example 1. It was.

(実施例7)
高密着不活性層7をNiCrにした他は、実施例4と同様の光記録媒体を作成した。引張り試験において、反射層5の材料であるAgPdCuとNiCrとの密着強度は、2.5MPaであった。実施例1と同様の測定をしたところ、表2に示すとおり、保存処理後の記録再生のエラーレートは6×10-5と、実施例1と同様に保存処理後も記録特性が良好であった。
(Example 7)
An optical recording medium similar to that of Example 4 was prepared except that the high adhesion inactive layer 7 was changed to NiCr. In the tensile test, the adhesion strength between AgPdCu, which is the material of the reflective layer 5, and NiCr was 2.5 MPa. When the same measurement as in Example 1 was performed, as shown in Table 2, the recording / reproduction error rate after the storage process was 6 × 10 −5, and the recording characteristics were good after the storage process as in Example 1. It was.

(比較例3)
高密着不活性層7をAlにした他は、実施例4と同様の光記録媒体を作成した。引張り試験において、反射層5の材料であるAgPdCuとAlとの密着強度は、1.2MPaであった。実施例1と同様の測定をしたところ、表2に示すとおり、保存処理後の記録再生のエラーレートは3×10-3と、実施例1と比較すると、光照射後の記録特性が著しく悪化していた。
(Comparative Example 3)
An optical recording medium similar to that of Example 4 was prepared except that the high adhesion inactive layer 7 was made of Al. In the tensile test, the adhesion strength between AgPdCu, which is the material of the reflective layer 5, and Al was 1.2 MPa. When the same measurement as in Example 1 was performed, as shown in Table 2, the recording / playback error rate after the storage process was 3 × 10 −3, which was significantly worse than that in Example 1, compared with Example 1. Was.

(比較例4)
高密着不活性層7をCuにした他は、実施例4と同様の光記録媒体を作成した。引張り試験において、反射層5の材料であるAgPdCuとCuとの密着強度は、1.4MPaであった。実施例1と同様の測定をしたところ、表2に示すとおり、保存処理後の記録再生のエラーレートは1×10-3と、実施例1と比較すると、光照射後の記録特性が著しく悪化していた。
(Comparative Example 4)
An optical recording medium similar to that of Example 4 was prepared except that the high adhesion inactive layer 7 was made of Cu. In the tensile test, the adhesion strength between AgPdCu, which is the material of the reflective layer 5, and Cu was 1.4 MPa. When the same measurement as in Example 1 was performed, as shown in Table 2, the recording / reproduction error rate after the storage process was 1 × 10 −3, which was significantly deteriorated after the light irradiation as compared with Example 1. Was.

以上より、高密着不活性層7の材料をAlやCuに変更したことで反射層5との密着強度が小さくなり、その結果高温高湿条件後に剥離し、中間層の効果が薄れる。これにより、高温高湿条件後の光照射条件により第3保護層6の紫外線硬化樹脂と反射層5のAgまたはAg合金が活性化され、記録特性が悪化すると推測される。   As described above, the material of the high adhesion inactive layer 7 is changed to Al or Cu, so that the adhesion strength with the reflective layer 5 is reduced, and as a result, peeling occurs after high temperature and high humidity conditions, and the effect of the intermediate layer is diminished. Thereby, it is presumed that the ultraviolet curable resin of the third protective layer 6 and the Ag or Ag alloy of the reflective layer 5 are activated by the light irradiation condition after the high temperature and high humidity condition, and the recording characteristics deteriorate.

本第二実施形態のように、ダミー基板Bに遮光層9を形成しない場合には、光照射による第3保護層6の紫外線硬化樹脂と反射層5のAgまたはAg合金との化学反応の活性化を抑制するために、反射層5と第3保護層6の間に高密着不活性層7を用いることが必要である。その材料は、反射層5との界面の密着強度が、1.6MPa以上であることが好ましい。密着強度が1.6MPaより小さいと、高温高湿条件下で剥離を生じ、光照射の影響以前に記録特性が悪化する。   When the light shielding layer 9 is not formed on the dummy substrate B as in the second embodiment, the activity of the chemical reaction between the UV curable resin of the third protective layer 6 and Ag or Ag alloy of the reflective layer 5 by light irradiation. In order to suppress the formation, it is necessary to use a highly adhesive inactive layer 7 between the reflective layer 5 and the third protective layer 6. The material preferably has an adhesion strength at the interface with the reflective layer 5 of 1.6 MPa or more. When the adhesion strength is less than 1.6 MPa, peeling occurs under high temperature and high humidity conditions, and the recording characteristics deteriorate before the influence of light irradiation.

以上で述べた、AgまたはAg合金反射層5に光が入らないように、接着させるダミー基板Bや第3保護層6や接着層Cが遮光性を有する第一実施形態の光記録媒体、またはAgまたはAg合金反射層5と第3保護層6との間に高密着不活性層7を挿入する第二実施形態の光記録媒体、いずれの媒体構造も良好な記録特性維持に有効である。生産性を考慮して、個々にあった上記したいずれかの構造の製造方法を用いればよい。   As described above, the optical recording medium of the first embodiment in which the dummy substrate B, the third protective layer 6 and the adhesive layer C to be bonded have light shielding properties so that light does not enter the Ag or Ag alloy reflective layer 5, or The optical recording medium of the second embodiment in which the highly adhesive inactive layer 7 is inserted between the Ag or Ag alloy reflective layer 5 and the third protective layer 6, and the medium structure of both are effective for maintaining good recording characteristics. In consideration of productivity, a manufacturing method of any one of the structures described above may be used.

<光記録媒体の第三実施形態>
図6に示す高密着不活性層7を設けた信号基板Abと、図3に示す遮光層9を設けたダミー基板Bとを接着層Cで貼り合わせた構成の光記録媒体を、第三実施形態とする。光記録媒体を本第三実施形態の構成とすることで、反射層5への透過率Tを制御でき、かつ反射層5の化学反応を抑制することができるために、高温高湿条件及び光照射条件の下でよりよい記録再生特性を維持できる。
<Third Embodiment of Optical Recording Medium>
An optical recording medium having a configuration in which the signal substrate Ab provided with the high adhesion inactive layer 7 shown in FIG. 6 and the dummy substrate B provided with the light shielding layer 9 shown in FIG. Form. Since the optical recording medium has the configuration of the third embodiment, the transmittance T to the reflective layer 5 can be controlled and the chemical reaction of the reflective layer 5 can be suppressed. Better recording / reproducing characteristics can be maintained under irradiation conditions.

本発明に係る光記録媒体の各実施形態の概略構成を示す図である。It is a figure which shows schematic structure of each embodiment of the optical recording medium based on this invention. 本発明に係る信号基板Aの第一構成例を示す図である。It is a figure which shows the 1st structural example of the signal board | substrate A which concerns on this invention. 本発明に係るダミー基板Bの各構成例を示す図である。It is a figure which shows each structural example of the dummy board | substrate B which concerns on this invention. ダミー基板Bの波長350nmの照射光における透過率Tに対する記録再生エラーレートの関係を示す図である。It is a figure which shows the relationship of the recording / reproducing error rate with respect to the transmittance | permeability T in the irradiation light of wavelength 350nm of the dummy substrate B. FIG. 遮光層9(Al)の層厚に対する透過率Tの関係を示す図である。It is a figure which shows the relationship of the transmittance | permeability T with respect to the layer thickness of the light shielding layer 9 (Al). 本発明に係る信号基板Aの第二構成例を示す図である。It is a figure which shows the 2nd structural example of the signal board | substrate A which concerns on this invention. 高密着活性層7と反射層5との密着強度に対する記録再生エラーレートの関係を示す図である。It is a figure which shows the relationship of the recording / reproducing error rate with respect to the adhesive strength of the high adhesion active layer 7 and the reflection layer 5. FIG. 引っ張り試験の説明図である。It is explanatory drawing of a tension test.

符号の説明Explanation of symbols

A 信号基板
A1 入射面(第1の入射面)
B ダミー基板
B1 入射面(第2の入射面)
C 接着層
D 光記録媒体
1 基板(第1の基板)
2 第1保護層
3 記録層
4 第2保護層
5 反射層
6 第3保護層
7 高密着不活性層
8 基板(第2の基板)
9 遮光層(透過率制御部材)
10 バリア層
A Signal board A1 Incident surface (first incident surface)
B Dummy substrate B1 Incident surface (second incident surface)
C Adhesive layer D Optical recording medium 1 Substrate (first substrate)
2 First protective layer 3 Recording layer 4 Second protective layer 5 Reflective layer 6 Third protective layer 7 High adhesion inactive layer 8 Substrate (second substrate)
9 Shading layer (transmittance control member)
10 Barrier layer

Claims (4)

記録光により情報を記録する光記録媒体において、
信号基板と、
前記信号基板上に積層した支持体とを備え、
前記信号基板は前記信号基板の底面側から前記支持体側に向かって、前記記録光が入射される第1の入射面を有する第1の基板と、前記第1の基板上に少なくとも、記録層、Agを含む物質からなる反射層、有機物系の物質からなる保護層を順次積層してなり、
前記支持体の表面である第2の入射面から波長350nmである特定波長光を照射したとき、前記第2の入射面から前記反射層の表面に至るまでの範囲を構成する層の前記特定波長光の透過率Tは0%≦T≦25%
であることを特徴とする光記録媒体。
In an optical recording medium for recording information by recording light,
A signal board;
A support laminated on the signal board,
The signal substrate includes a first substrate having a first incident surface on which the recording light is incident from a bottom surface side of the signal substrate toward the support, and at least a recording layer on the first substrate, A reflective layer made of a substance containing Ag and a protective layer made of an organic substance are sequentially laminated,
The specific wavelength of the layer constituting the range from the second incident surface to the surface of the reflective layer when irradiated with light having a specific wavelength of 350 nm from the second incident surface which is the surface of the support Light transmittance T is 0% ≦ T ≦ 25%
An optical recording medium characterized by the above.
前記支持体は、前記第2の入射面を有するダミー基板と接着層とを有することを特徴とする請求項1記載の光記録媒体。   2. The optical recording medium according to claim 1, wherein the support includes a dummy substrate having the second incident surface and an adhesive layer. 前記ダミー基板は、第2の基板と透過率制御部材とを有し、
前記透過率制御部材の透過率を0から25%とすることにより、前記透過率Tを設定していることを特徴とする請求項2記載の光記録媒体。
The dummy substrate has a second substrate and a transmittance control member,
3. The optical recording medium according to claim 2, wherein the transmittance T is set by setting the transmittance of the transmittance control member to 0 to 25%.
前記ダミー基板は、第2の基板を有し、前記第2の基板を透過率が0から25%である透過率制御部材とすることにより、前記透過率Tを設定していることを特徴とする請求項2記載の光記録媒体。   The dummy substrate includes a second substrate, and the transmittance T is set by using the second substrate as a transmittance control member having a transmittance of 0 to 25%. The optical recording medium according to claim 2.
JP2004274703A 2003-12-16 2004-09-22 Optical recording medium Expired - Fee Related JP4232159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274703A JP4232159B2 (en) 2003-12-16 2004-09-22 Optical recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003417671 2003-12-16
JP2004274703A JP4232159B2 (en) 2003-12-16 2004-09-22 Optical recording medium

Publications (2)

Publication Number Publication Date
JP2005203071A true JP2005203071A (en) 2005-07-28
JP4232159B2 JP4232159B2 (en) 2009-03-04

Family

ID=34829158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274703A Expired - Fee Related JP4232159B2 (en) 2003-12-16 2004-09-22 Optical recording medium

Country Status (1)

Country Link
JP (1) JP4232159B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995032B2 (en) 2018-09-21 2022-01-14 豊田鉄工株式会社 Pedal arm

Also Published As

Publication number Publication date
JP4232159B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP5560261B2 (en) Information recording medium
WO2009096165A1 (en) Optical information recording medium, method for manufacturing the same, and target thereof
JP2004158145A (en) Optical recording medium
US7136343B2 (en) Optical recording/reproducing method and optical recording medium
JP2008305529A (en) Optical storage medium and method of producing optical storage medium
JP4232159B2 (en) Optical recording medium
JP2005302264A (en) Phase transition type optical information recording medium and two layered phase transition type optical information recording medium
TWI302309B (en) Optical storage medium
JP5298623B2 (en) Write-once optical recording medium
JP4686779B2 (en) Multi-layer phase change optical recording medium
KR20090125232A (en) Optical information recording medium and method of recording and/or reproducing therein
JP2004171631A (en) Optical recording medium
JP2005203072A (en) Optical recording medium
US20040126623A1 (en) Optical information recording medium and method of recording and reproducing information on and from optical information recording medium
US20070076579A1 (en) Optical storage medium
WO2010061557A1 (en) Information recording medium, recording device, reproduction device, and reproduction method
JP4322719B2 (en) Optical information recording medium, method for producing the same, and sputtering target
JP2007323743A (en) Phase transition type optical recording medium
JP2005243218A (en) Optical recording medium
JP2008090964A (en) Write-once two-layer type optical recording medium
JP2006294219A (en) Phase change type optical information recording medium and its manufacturing method
JP2001167475A (en) Optical recording medium
US20060165946A1 (en) Optical storage medium
JP2006252706A (en) Optical recording medium and manufacturing method of optical recording medium
JP2007310940A (en) Phase transition optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees