JP2005201634A - Film thickness measuring method and apparatus - Google Patents

Film thickness measuring method and apparatus Download PDF

Info

Publication number
JP2005201634A
JP2005201634A JP2004002251A JP2004002251A JP2005201634A JP 2005201634 A JP2005201634 A JP 2005201634A JP 2004002251 A JP2004002251 A JP 2004002251A JP 2004002251 A JP2004002251 A JP 2004002251A JP 2005201634 A JP2005201634 A JP 2005201634A
Authority
JP
Japan
Prior art keywords
film thickness
film
initial value
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004002251A
Other languages
Japanese (ja)
Inventor
Takashi Inamura
崇 稲村
Shinichi Tozawa
伸一 戸沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004002251A priority Critical patent/JP2005201634A/en
Publication of JP2005201634A publication Critical patent/JP2005201634A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact film thickness measuring method and an apparatus, capable of high accuracy measurement of the film thickness of multi-layer films in a short time. <P>SOLUTION: A two-layer film 8 includes both one layer having a film thickness close at least to the overall thickness of the multi-layer film and the other layer having a thin film thickness; light is irradiated to the two-layer film, to measure reflected light or transmitted light; and a temporary initial value of the one layer having a film thickness close to the overall film thickness of the two-layer film, is determined by an calculation part 5 on the basis of measured values, to arbitrarily determine the positive initial value of the other film thickness. The theoretical value in a film thickness in the vicinity of the temporary initial value is determined by the calculation part 5, to determine errors between the measured values and the theoretical value. A film thickness having minimum error is taken as the positive initial value of the film thickness of the one layer close to the overall film thickness of the two-layer film, to compute each film thickness of the two-layer film, on the basis of the positive initial value of each film thickness of the two-layer film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、分光干渉法により薄膜の膜厚を非接触にて測定する膜厚測定方法、及び装置に関する。   The present invention relates to a film thickness measuring method and apparatus for measuring the film thickness of a thin film in a non-contact manner by spectral interference.

従来、透明膜に対しては、分光干渉法による非接触膜厚測定が用いられ、各種薄膜の膜厚測定に使用されている。分光干渉式による非接触膜厚測定は、膜に光を照射し、膜表面からの反射光と膜を通過して膜と基板境界面で反射して戻ってくる光を分光器で捕らえ、前者と後者の光の位相差により生ずる干渉を測定する。位相差は膜厚が変わって両者の光学距離が変わることで変化するので、膜の屈折率から膜厚を算出する。   Conventionally, non-contact film thickness measurement by spectral interferometry is used for transparent films, and is used for film thickness measurement of various thin films. The non-contact film thickness measurement by the spectral interference method irradiates the film with light, and the reflected light from the film surface and the light that passes through the film and is reflected at the interface between the film and the substrate are captured by the spectrometer. The interference caused by the phase difference between the light and the latter is measured. Since the phase difference changes when the film thickness changes and the optical distance between the two changes, the film thickness is calculated from the refractive index of the film.

また、多層膜の膜厚の測定方法として、マトリクス法と呼ばれる光学シミュレーションを用い、カーブフィット法にて多層膜の膜厚を算出する方法などが用いられている。カーブフィット法では多層膜の膜厚の初期値における反射率、透過率をマトリクス法により理論値を算出し、実測された測定値との誤差が最小になるように初期値を変更して、実測の反射率、透過率にカーブフィットするに最適な膜厚を算出する。(例えば、特許文献1参照)。
特開平07−004922
As a method for measuring the film thickness of the multilayer film, a method of calculating the film thickness of the multilayer film by a curve fit method using an optical simulation called a matrix method is used. In the curve fitting method, the theoretical values of reflectance and transmittance at the initial value of the multilayer film thickness are calculated by the matrix method, and the initial values are changed so that the error from the measured values is minimized, and the actual values are measured. The film thickness optimal for curve fitting to the reflectance and transmittance is calculated. (For example, refer to Patent Document 1).
JP 07-004922 A

ところが、カーブフィット法を用いて膜厚を算出する際、測定する膜の屈折率が膜の上部と下部で大きく異なる場合に、カーブフィットの誤差が収束しない、或は収束誤差が大きすぎる等の精度の低下という問題がある。また、カーブフィット法における問題の一つとして、初期値の設定条件により誤差が最小となる値に収束せず、誤差関数の他の極小値に収束してしまうことがある。これを避ける為にあらゆる初期値を設定して真の極小値を探すなど、最適な解を求める為には計算に非常に時間がかかり、実際の製品検査などに適用できない場合がある。   However, when calculating the film thickness using the curve fitting method, if the refractive index of the film to be measured differs greatly between the upper and lower parts of the film, the curve fitting error does not converge or the convergence error is too large. There is a problem of reduced accuracy. Further, as one of the problems in the curve fitting method, there is a case where the error function does not converge to a value at which the error is minimized depending on the initial value setting condition but converges to another minimum value of the error function. In order to avoid this, it takes a very long time to calculate an optimal solution, such as searching for a true minimum value by setting all initial values, and may not be applicable to actual product inspections.

この発明は上記事情に着目してなされたもので、その目的とするところは、多層膜の高精度な膜厚測定を、非接触、かつ短時間で行なえる膜厚測定方法、及び装置を提供することにある。   The present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a film thickness measuring method and apparatus capable of performing a highly accurate film thickness measurement of a multilayer film in a non-contact and short time. There is to do.

本発明はかかる課題を解決するものであり、請求項1の発明は、基板上に形成される多層膜の各膜厚を測定する膜厚測定方法であって、該多層膜は、少なくとも多層膜全体の膜厚に近い膜厚を持つ1層と、他の膜厚の薄い層を1層含み、前記多層膜に光を照射して反射光又は透過光を測定するステップと、多層膜全体の膜厚に近い1層の膜厚の仮初期値を、前記測定して得られた測定値から演算によって求めるステップと、他の膜厚の薄い層の膜厚の正初期値を任意に定めるステップと、前記演算によって求めた仮初期値近傍の膜厚における理論値を求め、前記測定値と該理論値の誤差を求めるステップと、前記誤差が最小となる膜厚を多層膜全体の膜厚に近い1層の膜厚の正初期値とするステップと、前記多層膜それぞれの膜厚の正初期値に基づいて多層膜の各膜厚を算出するステップとを含む膜厚測定方法である。   The present invention solves such a problem, and the invention of claim 1 is a film thickness measuring method for measuring each film thickness of a multilayer film formed on a substrate, wherein the multilayer film is at least a multilayer film. Including one layer having a film thickness close to the entire film thickness and one thin layer having another film thickness, irradiating the multilayer film with light and measuring reflected or transmitted light; and A step of obtaining a temporary initial value of the thickness of one layer close to the thickness by calculation from the measured value obtained by the measurement, and a step of arbitrarily determining a positive initial value of the thickness of another thin layer Determining a theoretical value of the film thickness in the vicinity of the temporary initial value obtained by the calculation, obtaining an error between the measured value and the theoretical value, and setting a film thickness that minimizes the error to a film thickness of the entire multilayer film. A step of setting a positive initial value of the film thickness of the nearest one layer, and a positive initial value of the film thickness of each of the multilayer films A film thickness measuring method comprising the steps of calculating the respective film thicknesses of the multilayer film based.

したがって請求項1の発明は、基板上に形成される多層膜の各膜厚を測定する場合に、該多層膜は、少なくとも多層膜全体の膜厚に近い膜厚を持つ1層と、他の膜厚の薄い層を1層含み、多層膜に光を照射して反射光又は透過光が測定される。そして、多層膜全体の膜厚に近い1層の膜厚の仮初期値が測定して得られた測定値から演算によって求められ、他の膜厚の薄い層の膜厚の正初期値が任意に定められ、演算によって求めた仮初期値近傍の膜厚における理論値が求められ、測定値と理論値の誤差が求められる。そして、誤差が最小となる膜厚が多層膜全体の膜厚に近い1層の膜厚の正初期値とされ、多層膜それぞれの膜厚の正初期値に基づいて2層膜の各膜厚が算出される。このため、測定精度が向上し、測定時間を短縮することができる。   Therefore, in the invention of claim 1, when measuring each film thickness of the multilayer film formed on the substrate, the multilayer film includes at least one layer having a film thickness close to the film thickness of the entire multilayer film, One thin layer is included, and the reflected light or transmitted light is measured by irradiating the multilayer film with light. Then, a temporary initial value of the film thickness of one layer close to the film thickness of the entire multilayer film is obtained by calculation from the measured value obtained by measuring, and the positive initial value of the film thickness of the other thin film layer is arbitrary. The theoretical value of the film thickness in the vicinity of the temporary initial value obtained by calculation is obtained, and the error between the measured value and the theoretical value is obtained. The film thickness that minimizes the error is the positive initial value of the film thickness of one layer close to the film thickness of the entire multilayer film, and each film thickness of the two-layer film is based on the positive initial value of the film thickness of each multilayer film. Is calculated. For this reason, measurement accuracy can be improved and measurement time can be shortened.

また、請求項2の発明は、前記反射光又は透過光を測定するステップにおいて、照射する光の波長が、400〜750nmである膜厚測定方法である。   The invention according to claim 2 is the film thickness measuring method, wherein in the step of measuring the reflected light or transmitted light, the wavelength of the irradiated light is 400 to 750 nm.

したがって請求項2の発明は、前記反射光又は透過光を測定する際、照射する光の波長を400〜750nmとされる。このため、測定精度が向上し、測定時間を短縮することができる。   Therefore, in the invention of claim 2, when measuring the reflected light or transmitted light, the wavelength of light to be irradiated is set to 400 to 750 nm. For this reason, measurement accuracy can be improved and measurement time can be shortened.

また、請求項3の発明は、基板上に形成される多層膜の各膜厚を測定する膜厚測定装置であって、該多層膜は、少なくとも多層膜全体の膜厚に近い膜厚を持つ1層と、他の膜厚の薄い層を1層含み、前記多層膜に光を照射して反射光又は透過光を測定する測定手段と、多層膜全体の膜厚に近い1層の膜厚の仮初期値を、前記測定して得られた測定値から演算によって求める仮初期値演算手段と、他の膜厚の薄い層の膜厚の正初期値を任意に定める正初期値演算手段と、前記演算によって求めた仮初期値近傍の膜厚における理論値を求め、前記測定値と該理論値の誤差を求める誤差演算手段と、前記誤差が最小となる膜厚を多層膜全体の膜厚に近い1層の膜厚の正初期値とする正初期値確定手段と、前記多層膜それぞれの膜厚の正初期値に基づいて多層膜の各膜厚を算出する膜厚演算手段とを含む膜厚測定装置である。   The invention of claim 3 is a film thickness measuring device for measuring each film thickness of the multilayer film formed on the substrate, and the multilayer film has a film thickness at least close to the film thickness of the entire multilayer film. One layer and one thin layer having another thickness, a measuring means for irradiating the multilayer film with light and measuring reflected light or transmitted light, and a single layer thickness close to the entire multilayer film thickness A temporary initial value calculating means for calculating the temporary initial value of the film from the measured value obtained by the measurement, and a positive initial value calculating means for arbitrarily determining a positive initial value of the film thickness of another thin film layer; , Calculating a theoretical value of the film thickness in the vicinity of the temporary initial value obtained by the calculation, calculating an error between the measured value and the theoretical value, and determining a film thickness that minimizes the error as a film thickness of the entire multilayer film And a positive initial value determining means for setting the positive initial value of the film thickness of one layer close to the positive initial value of the film thickness of each of the multilayer films. A film thickness measuring device comprising a film thickness calculation means for calculating the respective film thicknesses of the multilayer film Te.

したがって請求項3の発明は、基板上に形成される多層膜の各膜厚を測定する場合に、該多層膜は、少なくとも多層膜全体の膜厚に近い膜厚を持つ1層と、他の膜厚の薄い層を1層含み、多層膜に光を照射して反射光又は透過光が測定される。そして、多層膜全体の膜厚に近い1層の膜厚の仮初期値が測定して得られた測定値から演算によって求められ、他の膜厚の薄い層の膜厚の正初期値が任意に定められ、演算によって求めた仮初期値近傍の膜厚における理論値が求められ、測定値と理論値の誤差が求められる。そして、誤差が最小となる膜厚が多層膜全体の膜厚に近い1層の膜厚の正初期値とされ、多層膜それぞれの膜厚の正初期値に基づいて2層膜の各膜厚が算出される。このため、測定精度が向上し、測定時間を短縮することができる。   Therefore, in the invention of claim 3, when measuring each film thickness of the multilayer film formed on the substrate, the multilayer film includes at least one layer having a film thickness close to the film thickness of the entire multilayer film, and other layers. One thin layer is included, and the reflected light or transmitted light is measured by irradiating the multilayer film with light. Then, a temporary initial value of the film thickness of one layer close to the film thickness of the entire multilayer film is obtained by calculation from the measured value obtained by measuring, and the positive initial value of the film thickness of the other thin film layer is arbitrary. The theoretical value of the film thickness in the vicinity of the temporary initial value obtained by calculation is obtained, and the error between the measured value and the theoretical value is obtained. The film thickness that minimizes the error is the positive initial value of the film thickness of one layer close to the film thickness of the entire multilayer film, and each film thickness of the two-layer film is based on the positive initial value of the film thickness of each multilayer film. Is calculated. For this reason, measurement accuracy can be improved and measurement time can be shortened.

また、請求項4の発明は、前記測定手段において、照射する光の波長が、400〜750nmとした膜厚測定装置である。   Further, the invention of claim 4 is the film thickness measuring apparatus according to the measuring means, wherein the wavelength of light to be irradiated is 400 to 750 nm.

したがって請求項4の発明は、照射される光の波長が、400〜750nmである。このため、精度よく短時間で膜厚を測定することができる。   Therefore, in the invention of claim 4, the wavelength of the irradiated light is 400 to 750 nm. For this reason, the film thickness can be accurately measured in a short time.

本発明の膜厚測定方法、及び装置によれば、多層膜全体の膜厚に近い1層の膜厚の初期値を2段階で求めるため、測定精度が向上し、多層膜の各膜厚の測定時間を従来の方法に比べて短縮することができる。   According to the film thickness measuring method and apparatus of the present invention, since the initial value of the film thickness of one layer close to the film thickness of the entire multilayer film is obtained in two stages, the measurement accuracy is improved and each film thickness of the multilayer film is improved. Measurement time can be shortened compared to the conventional method.

次に、本願発明について図面を参照して詳細に説明する。   Next, the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る膜厚測定装置の一実施形態を示す構成図である。   FIG. 1 is a configuration diagram showing an embodiment of a film thickness measuring apparatus according to the present invention.

図1に示すように、本発明による膜厚測定装置は、光源部1、2分岐ファイバー2、対物レンズ3、分光器4、演算部5から構成されているものである。   As shown in FIG. 1, the film thickness measuring device according to the present invention includes a light source unit 1, a branching fiber 2, an objective lens 3, a spectroscope 4, and a calculation unit 5.

光源部1は、電球10とカットフィルタ9を備える。電球10は、例えば、可視光の光量の大きいハロゲン電球を使用している。2分岐ファイバー2は、光源部1に接続している部分が投光用で、分光器4に接続している部分が受光用である。それぞれが光ファイバーを例えば、数100本を束ねたもので、途中でそれらが1本にまとめられている。これらの束の中で、投光用と受光用の光ファイバー1本1本は入り交じって束ねられ、対物レンズ3に接続している面では均等に両方の光ファイバーが配置されるようになっている。対物レンズ3は、入射光を被測定物である例えば液晶表示装置用基板(例えば、PS(フォトスペーサー)膜とITO(透明導電)膜等から構成される)8上のPS膜に集光する。分光器4は、回折格子、リニアアレイ等から成る分光器部6と、分光器部6の制御と信号をデジタル変換する制御部7から成る。演算部5は、パーソナルコンピュータ、キーボード、マウス、ディスプレイモニタ等から構成され、演算を行ない、膜厚値を算出する。また、分光器4の制御やユーザーインターフェイス処理も行う。   The light source unit 1 includes a light bulb 10 and a cut filter 9. For example, a halogen bulb having a large amount of visible light is used as the bulb 10. In the bifurcated fiber 2, a portion connected to the light source unit 1 is for light projection, and a portion connected to the spectroscope 4 is for light reception. Each of them is, for example, a bundle of several hundred optical fibers, and they are combined into one on the way. Among these bundles, each of the light projecting and receiving optical fibers is bundled together so that both optical fibers are evenly arranged on the surface connected to the objective lens 3. . The objective lens 3 condenses incident light on a PS film on a substrate to be measured, such as a liquid crystal display substrate (for example, a PS (photo spacer) film and an ITO (transparent conductive) film) 8. . The spectroscope 4 includes a spectroscope unit 6 including a diffraction grating, a linear array, and the like, and a control unit 7 that controls the spectroscope unit 6 and digitally converts signals. The calculation unit 5 includes a personal computer, a keyboard, a mouse, a display monitor, and the like, and performs calculation to calculate a film thickness value. In addition, the spectroscope 4 is controlled and user interface processing is performed.

次に、本発明に係る膜厚測定装置を適用した膜厚測定方法について、図2のフローチャートを参照して説明する。これは、基板上に形成される多層膜の各膜厚を測定する膜厚測定方法であるが、この多層膜は、多層膜全体の膜厚に近い膜厚を持つ1層と、他の膜厚が非常に薄い層である場合に適用できるものである。   Next, a film thickness measuring method to which the film thickness measuring apparatus according to the present invention is applied will be described with reference to the flowchart of FIG. This is a film thickness measurement method that measures each film thickness of a multilayer film formed on a substrate. This multilayer film is composed of one layer having a film thickness close to the film thickness of the entire multilayer film and another film. This can be applied when the thickness is a very thin layer.

まず、多層膜に光源からの光を照肘する(ステップS1)。   First, light from a light source is applied to the multilayer film (step S1).

次に、基板からの反射光又は透過光を分光器で測定する(ステップS2)。   Next, reflected light or transmitted light from the substrate is measured with a spectroscope (step S2).

次に、多層膜を多層膜全体の膜厚に近い1層の単層膜とみなして、ステップS2で得られた測定値からPV法などの単層膜の膜厚を求める手法を用いて、演算によって求めた値を、多層膜全体の膜厚に近い1層の膜厚の仮初期値どするとともに、膜厚の非常に薄い層の膜厚の正初期値を任意に定める(ステップS3)。   Next, the multilayer film is regarded as a single-layer film close to the entire multilayer film thickness, and a method for determining the film thickness of the single-layer film such as the PV method from the measured value obtained in step S2 is used. The value obtained by the calculation is used as a temporary initial value of the thickness of one layer close to the entire thickness of the multilayer film, and a positive initial value of the thickness of a very thin layer is arbitrarily determined (step S3). .

次に、ステップS3で求めた仮初期値近傍の膜厚における理論値をマトリクス法によって求め、測定値と理論値の誤差を求める(ステップS4)。   Next, a theoretical value for the film thickness in the vicinity of the temporary initial value obtained in step S3 is obtained by a matrix method, and an error between the measured value and the theoretical value is obtained (step S4).

次に、求めた理論値と測定値の誤差が最小となる膜厚を多層膜全体の膜厚に近い1層の膜厚の正初期値とする(ステップS5)。   Next, the film thickness that minimizes the error between the calculated theoretical value and the measured value is set as the positive initial value of the film thickness of one layer close to the film thickness of the entire multilayer film (step S5).

次に、多層膜それぞれの膜厚の正初期値に基づいて、多層膜の各膜厚を最小2乗法などの最適化手法を用いて算出する(ステップS6)。   Next, based on the positive initial value of the film thickness of each multilayer film, each film thickness of the multilayer film is calculated using an optimization method such as a least square method (step S6).

続いて、液晶表示装置用基板のPS膜とITO膜の各膜厚を測定する場合を用いて、多層膜が2層膜の場合の具体例を説明する。   Subsequently, a specific example in the case where the multilayer film is a two-layer film will be described using the case where the film thicknesses of the PS film and the ITO film of the substrate for a liquid crystal display device are measured.

ステップS1では、光源部1から出力され、対物レンズ3を介した入射光は、被測定物である液晶表示装置用基板8上に集光する。ステップS2で、入射光は、液晶表示装置用基板8上で反射し、この反射光は、対物レンズ3および2分岐ファイバー2を経由して分光器4に入る。なお、分光器4は、回折格子とリニアアレイ素子の組み合わせで使用する波長が決まるが、可視光領域である400nm〜750nm程度の波長範囲を使用すれば十分である。ステップS3で、演算部5では、PS膜とITO膜の2層膜をPS膜の1層膜とみなして、PV法を用いて膜厚を測定し、仮初期値とする。またITO膜厚の正初期値を任意に定める。ステップS4では、PS膜厚の仮初期値近傍の膜厚における理論値を求め、前記測定値と該理論値の誤差を求める。ステップS5で、算出部5は、誤差が最小となる膜厚を2層膜のPS膜の膜厚の正初期値とする。ステップS6で、算出部5は、前記2つの正初期値に基づいて、例えば、最小二乗法を用いて、2層膜のそれぞれの膜厚を算出する。   In step S1, incident light that is output from the light source unit 1 and passes through the objective lens 3 is condensed on the liquid crystal display substrate 8 that is an object to be measured. In step S 2, the incident light is reflected on the liquid crystal display substrate 8, and the reflected light enters the spectroscope 4 via the objective lens 3 and the two-branch fiber 2. In addition, although the wavelength to be used for the spectroscope 4 is determined by the combination of the diffraction grating and the linear array element, it is sufficient to use a wavelength range of about 400 nm to 750 nm which is a visible light region. In step S3, the calculation unit 5 regards the two-layer film of the PS film and the ITO film as a single-layer film of the PS film, measures the film thickness using the PV method, and sets it as a temporary initial value. Further, a positive initial value of the ITO film thickness is arbitrarily determined. In step S4, a theoretical value in the film thickness near the temporary initial value of the PS film thickness is obtained, and an error between the measured value and the theoretical value is obtained. In step S5, the calculation unit 5 sets the film thickness that minimizes the error as a positive initial value of the film thickness of the two-layer PS film. In step S6, the calculation unit 5 calculates the film thickness of each of the two-layer films based on the two positive initial values using, for example, the least square method.

このように、本発明によれば、PS膜厚測定装置は、可視光域の光量が大きいハロゲン電球を光源とするので、ITO膜内の上部と下部での屈折率の変化の影響を受けずらい波長域での膜厚計算が可能となる。   Thus, according to the present invention, the PS film thickness measurement apparatus uses a halogen bulb with a large amount of light in the visible light region as a light source, and thus is not affected by the change in refractive index between the upper and lower portions in the ITO film. The film thickness can be calculated in a wide wavelength range.

次に、例示した、PS膜とITO膜の各膜厚を測定する場合の測定光として、可視光領域である400nm〜750nm程度の波長範囲を使用するに至った理由について説明する。図3は、サンプル1とサンプル2について、ITO膜内の上部と下部での屈折率の変化を示したもので、可視光域の方が近赤外域よりも屈折率の変化が明らかに小さい。このため、可視光域の波長域でカーブフィット法の処理をした結果の計算誤差は近赤外域の波長域でカーブフィット法の処理をした結果に比べて大幅に小さくなっていることが図4に示されている。   Next, the reason why the wavelength range of about 400 nm to 750 nm, which is the visible light region, has been used as the measurement light when measuring the film thicknesses of the PS film and the ITO film will be described. FIG. 3 shows the change in the refractive index between the upper and lower portions in the ITO film for Sample 1 and Sample 2. The change in the refractive index is clearly smaller in the visible light region than in the near infrared region. Therefore, the calculation error resulting from the curve fitting method in the visible light wavelength range is significantly smaller than the result of the curve fitting method processing in the near infrared wavelength region. Is shown in

これらの結果は、この後に説明する最適な初期値を用いたカーブフィット法を適用した場合の結果であり、処理方法の優劣とは関係の無いITO膜の物性の問題であり、使用する波長域で解決可能であることが分かった。   These results are the results of applying the curve fitting method using the optimal initial values described later, and are the problems of the physical properties of the ITO film that have nothing to do with the superiority or inferiority of the processing method. It was found that this could be solved.

続いて、本実施形態で適用するカーブフィット法の初期値の設定方法について説明する。カーブフィット法において初期値の設定はきわめて重要な要素であり、この設定次第で膜厚計算の精度は良くも悪くも成り得る。カーブフィット法の初期値の設定条件による膜厚計算の収束結果の違いをシミュレーションし、比較した結果を図5に示す。このシュミレーションでは、PS膜に4500nm、ITO膜に160nmのものを用いた。図の左側は、PS膜およびITO膜のそれぞれの初期値であり、右側は、それぞれの収束値である。   Subsequently, an initial value setting method of the curve fitting method applied in the present embodiment will be described. In the curve fitting method, the setting of the initial value is an extremely important factor, and the accuracy of the film thickness calculation can be good or bad depending on the setting. FIG. 5 shows the result of a simulation of the difference in the convergence result of the film thickness calculation according to the initial value setting conditions of the curve fitting method, and the comparison. In this simulation, a PS film of 4500 nm and an ITO film of 160 nm were used. The left side of the figure is the initial value of each of the PS film and the ITO film, and the right side is the convergence value of each.

上記の結果で注意したいことは、初期値の変数としてITO膜厚とPS膜厚の2つの変数があることである。図5に示した結果から明らかなように、PS膜の初期値の設定が真の値(4500nm)に非常に近いものしか正しい値(4500nm)に収束していないのに対して、ITO膜厚の初期値の設定はそれほど真の値(160nm)に近くなくても正しい値(160nm)に収束しているという特徴がある。   It should be noted in the above results that there are two variables of initial film thickness, ITO film thickness and PS film thickness. As apparent from the results shown in FIG. 5, the initial value of the PS film is very close to the true value (4500 nm), but only the correct value (4500 nm) is converged. The initial value is set to the correct value (160 nm) even if it is not so close to the true value (160 nm).

さらに、ITO膜厚の測定においては、製造上ITO膜の形成は通常130nm〜190nm程度の範囲で膜厚制御が可能であり、このレンジ内であれば、何れの値を初期値としてもカーブフィット法による膜厚算出に大きな影響は無いことが分かる。   Furthermore, in the measurement of ITO film thickness, it is possible to control the film thickness within the range of about 130 nm to 190 nm for manufacturing, and within this range, any value can be used as the initial value for curve fitting. It can be seen that there is no significant influence on the film thickness calculation by the method.

しかし、PS膜厚の測定においては、製造上PS膜の形成の膜厚制御が難しく、測定には2000nm〜6000μm程度の範囲が必要である。このレンジ内で何れかの値を初期値と設定すると、その値によっては正しい値に収束しなくなってしまい、検査装置の性能を満たすことができない。   However, in the measurement of the PS film thickness, it is difficult to control the film thickness for forming the PS film in production, and the measurement requires a range of about 2000 nm to 6000 μm. If any value is set as the initial value within this range, depending on the value, it will not converge to the correct value, and the performance of the inspection apparatus cannot be satisfied.

この原因を図10(ITO膜厚を一定とした時のPS膜厚変位に対する誤差量をプロットした図)を用いて検証してみると、ITO膜厚を一定とし、PS膜厚を変化させた場合の誤差関数においては波形が周期的になり、更にPS膜厚測定に必要なレンジにおいて極小値が多数存在するので、カーブフィット法により誤った膜厚に収束させない為には、真の膜厚のプラスマイナス50nm程度の範囲にPS膜厚の初期値を設定する必要がある。これに対して、PS膜厚を一定とし、ITO膜厚を変化させた場合の誤差関数においては、図示はしないが、ITO膜厚の測定に必要なレンジに極小値が1点しか無いため、130nm〜190nm程度の範囲にITO膜厚の初期値を設定すれば、正しい膜厚に収束するということが分かる。   When this cause is verified using FIG. 10 (a diagram plotting the error amount with respect to the PS film thickness displacement when the ITO film thickness is constant), the ITO film thickness is made constant and the PS film thickness is changed. In the case of the error function, the waveform is periodic, and there are many local minimum values in the range necessary for PS film thickness measurement. It is necessary to set the initial value of the PS film thickness within a range of about plus or minus 50 nm. On the other hand, in the error function when the thickness of the ITO film is changed and the thickness of the ITO film is changed, although not shown, there is only one minimum value in the range necessary for measuring the thickness of the ITO film. It can be seen that if the initial value of the ITO film thickness is set in the range of about 130 nm to 190 nm, the film thickness will converge to the correct film thickness.

これら液晶表示装置用基板8上のPS膜の測定における、製造上の問題等を考慮すると、ITO膜厚は製造上に制御可能な範囲で初期値を設定し、PS膜厚は何らかの方法で、真の膜厚のプラスマイナス50nm程度の範囲で初期値を設定してから、カーブフィット法を適用して正しい膜厚を算出する必要がある。   In consideration of manufacturing problems in the measurement of the PS film on the liquid crystal display substrate 8, the ITO film thickness is set to an initial value within a controllable range, and the PS film thickness is determined by some method. It is necessary to calculate the correct film thickness by applying the curve fitting method after setting the initial value within a range of about ± 50 nm of the true film thickness.

以上より、PS膜厚の初期値の設定方法をクリアすればよいことがわかる。本実施形態においてはPS膜の測定を、単層膜の測定に定評のあるPV法を用いた膜厚測定法を使用して初期値を設定する。以下にその方法についてさらに詳しく説明する。   From the above, it can be seen that the method for setting the initial value of the PS film thickness should be cleared. In this embodiment, the initial value is set using the film thickness measurement method using the PV method, which has a well-established measurement of the single layer film, for the measurement of the PS film. The method will be described in more detail below.

PV法を用いた膜厚測定法は、ノイズ等にも強く精度も高い測定方法であるが、その厳密な理論は単層膜にのみ適用されるものであり、多層膜の推定には基本的に適用できない。ただし、液晶表示装置用基板8上に形成されるITO膜の膜厚は薄く、その厚さを無視して、更にその上に形成されるPS膜の測定を行なっても測定誤差3%程度の測定は可能である。本実施形態においては、まず、このPV法にてPS膜のおおよその測定を行ない、仮初期値を算出する。   The film thickness measurement method using the PV method is a measurement method that is strong against noise and has high accuracy, but its strict theory applies only to a single layer film, and is fundamental for estimation of a multilayer film. Not applicable to. However, the film thickness of the ITO film formed on the substrate 8 for the liquid crystal display device is thin. Even if the PS film formed on the ITO film is further measured by ignoring the thickness, the measurement error is about 3%. Measurement is possible. In this embodiment, first, an approximate measurement of the PS film is performed by this PV method, and a temporary initial value is calculated.

PS膜の複数のサンプルを、PV法を適用して膜厚測定したので、その結果を図6に示す。このようにPV法によりPS膜厚を測定するが、図6の結果から分かるように、先に説明したプラスマイナス50nmの精度(接触式との誤差が50nm以内の精度)では計算できないことが判明した。ここで測定された初期値を仮初期値とする。   A plurality of PS film samples were measured by applying the PV method, and the results are shown in FIG. As described above, the PS film thickness is measured by the PV method. As can be seen from the results of FIG. 6, it is found that the calculation cannot be performed with the accuracy of plus or minus 50 nm described above (accuracy with the contact method within 50 nm). did. Let the initial value measured here be a temporary initial value.

そこで更に、PV法で求めた仮初期値に対応する膜厚の例えば、プラスマイナス400nmの範囲を25nmの間隔で操作していき、マトリクス法にて算出した誤差が最も小さい点を定め、そのときの膜厚を初期値(正初期値)として採用する。   Then, further, for example, the range of plus or minus 400 nm of the film thickness corresponding to the temporary initial value obtained by the PV method is operated at an interval of 25 nm, and the point where the error calculated by the matrix method is the smallest is determined. Is used as the initial value (positive initial value).

上記のようにして決定した初期値(正初期値)を用い、カーブフィット法を適用して算出した膜厚測定の精度は、高精度となる。なお、カーブフィット法は周知の手法であるので、ここでは詳細な説明を省略する。また、本発明においては、仮初期値を求める方法としてPV法を用いて説明しているが、(仮初期値を求めるための)おおよその膜厚を知ることが出来る測定手法であれば、どのような方法を用いても構わない。   The accuracy of the film thickness measurement calculated by applying the curve fitting method using the initial value (positive initial value) determined as described above is high. Since the curve fitting method is a well-known method, detailed description thereof is omitted here. Further, in the present invention, the PV method is described as a method for obtaining the temporary initial value, but any measurement method that can know the approximate film thickness (for obtaining the temporary initial value) can be used. Such a method may be used.

以下に、本発明の具体的な実施形態を用いてさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail using specific embodiments of the present invention.

本実施形態では、液晶表示装置基板8上に形成されたITO膜とPS膜の2層膜からなる膜を測定し、そのうちPS膜厚を高精度に求める方法の一実施形態を説明する。なお、測定に使用した分光器は、松下インターテクノ社社製の反射型測定器を使用し、使用する波長は、例えば、450nm〜700nmとする。また、演算装置としてのパーソナルコンピュータは、CPUはPentium3搭載、メモリは128MBを搭載のものを使用した。   In the present embodiment, an embodiment of a method for measuring a film composed of two layers of an ITO film and a PS film formed on the liquid crystal display device substrate 8 and obtaining the PS film thickness with high accuracy will be described. In addition, the spectroscope used for the measurement uses the reflection type measuring instrument made from Matsushita Inter-Techno Co., Ltd., and the wavelength to be used shall be 450 nm-700 nm, for example. In addition, the personal computer as the arithmetic unit used was a CPU equipped with Pentium 3 and a memory equipped with 128 MB.

以上のような条件を基に膜厚測定を行ない、接触式の膜厚測定装置の測定値と比較して、本発明によるPS膜の膜厚測定方法を適用した膜厚測定装置の評価を行なう。   The film thickness is measured based on the above conditions, and compared with the measured value of the contact-type film thickness measuring apparatus, the film thickness measuring apparatus applying the PS film thickness measuring method according to the present invention is evaluated. .

先ず、図1と同様の構成からなる測定装置で液晶表示装置用基板8上のPS膜の分光反射率を測定し、これを単層膜とみなしてPV法を適用して膜厚(の仮初期値)を算出する。実測の分光反射率は図7に示すようになり、PV法により算出したPS膜厚は以下のようになった。   First, the spectral reflectance of the PS film on the liquid crystal display substrate 8 is measured with a measuring apparatus having the same configuration as in FIG. (Initial value) is calculated. The actually measured spectral reflectance is as shown in FIG. 7, and the PS film thickness calculated by the PV method is as follows.

PV法算出(仮初期値)=3657nm
このように、PV法により求めたPS膜厚を仮初期値として、この値の例えば、プラスマイナス400nmの範囲を25nm間隔で操作していき、マトリクス法にて誤差を算出する。また、ITO膜厚は160nmで一定とした。
PV method calculation (tentative initial value) = 3657 nm
In this way, using the PS film thickness obtained by the PV method as a temporary initial value, the range of this value, for example, plus or minus 400 nm is operated at 25 nm intervals, and the error is calculated by the matrix method. The ITO film thickness was constant at 160 nm.

算出方法は以下のとおりである。

Figure 2005201634
The calculation method is as follows.
Figure 2005201634

マトリクス法により算出した誤差は図8のようになった。 The error calculated by the matrix method is as shown in FIG.

図8の誤差の中で最小であるときのPS膜厚は、3482nmであるので、これを初期値として決定し、ITO膜厚の初期値である160nmとあわせてカーブフィット法を用いた膜厚を算出する。本発明によるPS膜測定装置にて測定した膜厚を、接触式の膜厚測定装置の測定値と比較した結果、本発明によるPS膜厚の測定値は3476nm、接触式によるPS膜厚の測定値は3453nmで膜厚差は0.67%であった。   Since the PS film thickness at the minimum of the errors in FIG. 8 is 3482 nm, this is determined as the initial value, and the film thickness using the curve fit method is combined with the initial value of the ITO film thickness of 160 nm. Is calculated. As a result of comparing the film thickness measured by the PS film measuring apparatus according to the present invention with the measured value of the contact type film thickness measuring apparatus, the measured value of the PS film thickness according to the present invention is 3476 nm, and the PS film thickness measured by the contact type is measured. The value was 3453 nm and the film thickness difference was 0.67%.

また、本発明によるITO膜厚の測定値は157nmであった。 The measured value of the ITO film thickness according to the present invention was 157 nm.

また、これを複数のPS膜のサンプルで実施した結果は図9であり、膜厚の誤差は、0.36−1.60パーセントとなった。   Moreover, the result of having implemented this with the sample of several PS film | membrane is FIG. 9, and the error of film thickness was 0.36-1.60%.

以上説明したように、本発明のPS膜厚測定方法、及びPS膜厚測定装置を用いることにより、従来方法より精度の高いPS膜厚の測定が可能となる。また、カーブフィット法の欠点の誤った値での計算収束を避ける為に、「PV法により仮の初期値を設定する」および「仮の初期値の周辺を詳細に計算し、マトリクス法による誤差算出値が最小になる点を初期値に設定する」という、2段階の方式を採用することにより、PS膜厚の測定に必要な2000nm〜6000nmの全ての点を初期値としてマトリクス法により誤差を算出し、その最小値を探るという非常に計算負荷が高い方法と比較すれば、大幅に計算時間を短縮できた。この計算時間の短縮は、製造工程におけるPS膜厚の測定において非常に重要で、本発明の膜厚測定装置、及び膜厚測定方法を用いることで製造ライン上での検査も可能となる。また、多層膜の光学特性を求める理論式のマトリクス法を用いたカーブフィット法を採用することで、実際の運用に際しての信頼性が得られる。   As described above, by using the PS film thickness measuring method and the PS film thickness measuring apparatus of the present invention, it becomes possible to measure the PS film thickness with higher accuracy than the conventional method. In addition, in order to avoid calculation convergence with incorrect values of the disadvantages of the curve fit method, “the tentative initial value is set by the PV method” and “the tentative initial value is calculated in detail, and errors due to the matrix method are calculated. By adopting a two-step method of “setting the point where the calculated value is minimized” to the initial value, all the points of 2000 nm to 6000 nm necessary for the measurement of the PS film thickness are used as the initial values to introduce errors. Compared with the method that calculates and finds the minimum value, the calculation time is greatly reduced. This shortening of the calculation time is very important in the measurement of the PS film thickness in the manufacturing process, and the inspection on the production line is also possible by using the film thickness measuring apparatus and the film thickness measuring method of the present invention. Further, by adopting a curve fitting method using a theoretical matrix method for obtaining the optical characteristics of the multilayer film, reliability in actual operation can be obtained.

なお、本装置では反射率で測定を行なう例を挙げているが、光学系を変えることで、透過率測定でも可能である。その場合マトリクス法の式も透過率を求める式となる。   In this apparatus, an example of measuring by reflectance is given. However, transmittance can be measured by changing the optical system. In that case, the equation of the matrix method is also an equation for obtaining the transmittance.

本発明の実施形態に係る膜厚測定装置の一実施形態を示す構成図である。It is a lineblock diagram showing one embodiment of a film thickness measuring device concerning an embodiment of the present invention. この発明の実施形態に係わる膜厚測定方法のフローチャートである。It is a flowchart of the film thickness measuring method concerning embodiment of this invention. この発明の実施形態に係わるITO膜の上部と下部の屈折率を示した図である。It is the figure which showed the refractive index of the upper part and lower part of the ITO film | membrane concerning embodiment of this invention. この発明の実施形態に係わるカーブフィット法によるシミュレーションと実測値の反射率の比較を、近赤外域と可視光域の波長域で示した図である。It is the figure which showed the comparison by the simulation by the curve fit method concerning embodiment of this invention, and the reflectance of an actual measurement value in the wavelength range of a near infrared region and a visible light region. この発明の実施形態に係わるカーブフィット法の初期値の設定条件による膜厚計算の収束結果の違いをシミュレーションし、比較した結果を示す図である。It is a figure which shows the result of having simulated the difference of the convergence result of the film thickness calculation by the setting conditions of the initial value of the curve fitting method concerning embodiment of this invention, and compared. この発明の実施形態に係わるPS膜の複数のサンプルを、PV法を適用して膜厚測定した結果を示す図である。It is a figure which shows the result of having measured the film thickness of the several sample of PS film | membrane concerning embodiment of this invention by applying PV method. この発明の実施形態に係わる分光反射率を示す図である。It is a figure which shows the spectral reflectance concerning embodiment of this invention. この発明の実施形態に係わるマトリクス法により算出した誤差を示す図である。It is a figure which shows the error computed by the matrix method concerning embodiment of this invention. この発明の実施形態に係わるPS膜の測定値と接触式による測定値の比較結果を示す図である。It is a figure which shows the comparison result of the measured value of PS film | membrane concerning the embodiment of this invention, and the measured value by a contact type. この発明の実施形態に係わるITO膜厚を一定とした時のPS膜厚変位に対する誤差量のプロットを示す図である。It is a figure which shows the plot of the error amount with respect to PS film thickness displacement when the ITO film thickness concerning embodiment of this invention is made constant.

符号の説明Explanation of symbols

1・・・光源部、2・・・2分岐ファイバー、3・・・対物レンズ、4・・・分光器、5・・・演算部、6・・・分光器部、7・・・制御部、8・・・液晶表示装置用基板、9・・・カットフィルタ、10・・電球 DESCRIPTION OF SYMBOLS 1 ... Light source part, 2 ... 2 branch fiber, 3 ... Objective lens, 4 ... Spectroscope, 5 ... Calculation part, 6 ... Spectroscope part, 7 ... Control part , 8 ... Substrate for liquid crystal display device, 9 ... Cut filter, 10 · · Light bulb

Claims (4)

基板上に形成される多層膜の各膜厚を測定する膜厚測定方法であって、該多層膜は、少なくとも多層膜全体の膜厚に近い膜厚を持つ1層と、他の膜厚の薄い層を1層含み、
前記多層膜に光を照射して反射光又は透過光を測定するステップと、
多層膜全体の膜厚に近い1層の膜厚の仮初期値を、前記測定して得られた測定値から演算によって求めるステップと、
他の膜厚の薄い層の膜厚の正初期値を任意に定めるステップと、
前記演算によって求めた仮初期値近傍の膜厚における理論値を求め、前記測定値と該理論値の誤差を求めるステップと、
前記誤差が最小となる膜厚を多層膜全体の膜厚に近い1層の膜厚の正初期値とするステップと、
前記多層膜それぞれの膜厚の正初期値に基づいて多層膜の各膜厚を算出するステップと、
を含む膜厚測定方法。
A film thickness measuring method for measuring each film thickness of a multilayer film formed on a substrate, wherein the multilayer film has at least one film thickness close to the film thickness of the entire multilayer film and other film thicknesses. Including one thin layer,
Irradiating the multilayer film with light to measure reflected light or transmitted light;
Obtaining a temporary initial value of the film thickness of one layer close to the film thickness of the entire multilayer film by calculation from the measured value obtained by the measurement;
A step of arbitrarily determining a positive initial value of the thickness of another thin layer;
Obtaining a theoretical value of the film thickness in the vicinity of the temporary initial value obtained by the calculation, and obtaining an error between the measured value and the theoretical value;
Setting the film thickness at which the error is minimized to a positive initial value of the film thickness of one layer close to the film thickness of the entire multilayer film;
Calculating each film thickness of the multilayer film based on the positive initial value of the film thickness of each multilayer film;
A film thickness measuring method including:
前記反射光又は透過光を測定するステップにおいて照射する光の波長が、400〜750nmである請求項1記載の膜厚測定方法。 The film thickness measuring method according to claim 1, wherein the wavelength of light applied in the step of measuring the reflected light or transmitted light is 400 to 750 nm. 基板上に形成される多層膜の各膜厚を測定する膜厚測定装置であって、該多層膜は、少なくとも多層膜全体の膜厚に近い膜厚を持つ1層と、他の膜厚の薄い層を1層含み、
前記多層膜に光を照射して反射光又は透過光を測定する測定手段と、
多層膜全体の膜厚に近い1層の膜厚の仮初期値を、前記測定して得られた測定値から演算によって求める仮初期値演算手段と、
他の膜厚の薄い層の膜厚の正初期値を任意に定める正初期値演算手段と、
前記演算によって求めた仮初期値近傍の膜厚における理論値を求め、前記測定値と該理論値の誤差を求める誤差演算手段と、
前記誤差が最小となる膜厚を多層膜全体の膜厚に近い1層の膜厚の正初期値とする正初期値確定手段と、
前記多層膜それぞれの膜厚の正初期値に基づいて多層膜の各膜厚を算出する膜厚演算手段と、
を含む膜厚測定装置。
A film thickness measuring device for measuring each film thickness of a multilayer film formed on a substrate, wherein the multilayer film includes at least one film having a film thickness close to the film thickness of the entire multilayer film and other film thicknesses. Including one thin layer,
Measuring means for irradiating the multilayer film with light and measuring reflected light or transmitted light;
A temporary initial value calculating means for calculating a temporary initial value of the film thickness of one layer close to the film thickness of the entire multilayer film by calculation from the measured value obtained by the measurement;
Positive initial value calculating means for arbitrarily determining the positive initial value of the film thickness of other thin layers;
An error calculation means for obtaining a theoretical value in a film thickness in the vicinity of the temporary initial value obtained by the calculation, and obtaining an error between the measured value and the theoretical value;
A positive initial value determining means for setting the film thickness at which the error is minimized to a positive initial value of a film thickness of one layer close to the film thickness of the entire multilayer film;
Film thickness calculation means for calculating each film thickness of the multilayer film based on the positive initial value of the film thickness of each multilayer film,
A film thickness measuring device including
前記測定手段において、照射する光の波長が、400〜750nmである請求項3記載の膜厚測定装置。 The film thickness measuring apparatus according to claim 3, wherein in the measuring means, the wavelength of light to be irradiated is 400 to 750 nm.
JP2004002251A 2004-01-07 2004-01-07 Film thickness measuring method and apparatus Pending JP2005201634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002251A JP2005201634A (en) 2004-01-07 2004-01-07 Film thickness measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002251A JP2005201634A (en) 2004-01-07 2004-01-07 Film thickness measuring method and apparatus

Publications (1)

Publication Number Publication Date
JP2005201634A true JP2005201634A (en) 2005-07-28

Family

ID=34817530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002251A Pending JP2005201634A (en) 2004-01-07 2004-01-07 Film thickness measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP2005201634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002327A (en) * 2008-06-20 2010-01-07 Otsuka Denshi Co Ltd Film thickness measuring instrument and film thickness measuring method
CN112166297A (en) * 2018-05-31 2021-01-01 东丽株式会社 Method and apparatus for measuring thickness of liquid film, and method for producing thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002327A (en) * 2008-06-20 2010-01-07 Otsuka Denshi Co Ltd Film thickness measuring instrument and film thickness measuring method
CN112166297A (en) * 2018-05-31 2021-01-01 东丽株式会社 Method and apparatus for measuring thickness of liquid film, and method for producing thin film
CN112166297B (en) * 2018-05-31 2022-09-13 东丽株式会社 Method and apparatus for measuring thickness of liquid film, and method for producing thin film
US11493327B2 (en) * 2018-05-31 2022-11-08 Toray Industries, Inc. Liquid layer thickness measurement method, measurement device, film production method

Similar Documents

Publication Publication Date Title
US10365163B2 (en) Optical critical dimension metrology
KR101841776B1 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
TWI410603B (en) Method for measuring thickness or surface profile
KR20160114080A (en) Film thickness measurement method and film thickness measurement device
KR20220097543A (en) Measurement of multiple patterning parameters
US20140028993A1 (en) Process control using non-zero order diffraction
US7466428B2 (en) Method of measuring thickness of thin layer in semiconductor device and apparatus for performing method
CN112629421B (en) Film thickness measuring method based on fast Fourier transform
JP6363819B2 (en) Film thickness measuring method and film thickness measuring apparatus
US20130050687A1 (en) Method and apparatus for supervision of optical material production
US8321821B2 (en) Method for designing two-dimensional array overlay targets and method and system for measuring overlay errors using the same
TW201339564A (en) White-light interference measuring device and interfere measuring method thereof
TWI598565B (en) Method of measuring thickness of thin film
JP4911437B2 (en) Multi-layer film thickness measuring device
JP2005201634A (en) Film thickness measuring method and apparatus
WO2015084303A1 (en) Integrated computational element fabrication methods and systems
CN110118754A (en) A kind of ultrathin membrane optical constant method for fast measuring
JP6023485B2 (en) Optical characteristic measuring system and optical characteristic measuring method
JP2010048802A (en) Device, method, and system for measuring image profiles produced by optical lithography system
JP2003279324A (en) Film thickness measuring method and device thereof
CN112986185A (en) Optical material refractive index spectrum measurement system and method based on phase detection
KR20220043339A (en) An Apparatus For Measuring Phase Shift For Blank Phase Shift Mask
JP2005221366A (en) Film thickness measuring apparatus
JP2011102751A (en) Method and apparatus for measuring plate thickness of birefringent substrate
KR100627187B1 (en) methods for measuring the thickness of coated film and devices thereof