JP2005200723A - Method of producing carbon nanofiber-metal based material - Google Patents

Method of producing carbon nanofiber-metal based material Download PDF

Info

Publication number
JP2005200723A
JP2005200723A JP2004009538A JP2004009538A JP2005200723A JP 2005200723 A JP2005200723 A JP 2005200723A JP 2004009538 A JP2004009538 A JP 2004009538A JP 2004009538 A JP2004009538 A JP 2004009538A JP 2005200723 A JP2005200723 A JP 2005200723A
Authority
JP
Japan
Prior art keywords
weight
dispersion
carbon nanofibers
carbon
borax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004009538A
Other languages
Japanese (ja)
Other versions
JP4091551B2 (en
Inventor
Masamoto Suganuma
雅資 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2004009538A priority Critical patent/JP4091551B2/en
Publication of JP2005200723A publication Critical patent/JP2005200723A/en
Application granted granted Critical
Publication of JP4091551B2 publication Critical patent/JP4091551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion technique where carbon nanofibers are satisfactorily dispersed into metal powder. <P>SOLUTION: The production method comprises: a stage where a gel-like dispersion liquid obtained by adding borax to polyvinylalcohol aqueous solution is prepared (ST11); a stage (ST12) where carbon nanofibers are dispersed into the gel-like dispersion liquid; a stage (ST 15) where metal powder is added thereto; and a stage (ST 16) where kneading is performed. It can be estimated that the surroundings of the carbon nanofibers are covered with the thick malt syrup-like dispersion liquid, and, by the presence of the dispersion liquid, the flocculation of the carbon nanofibers each other can be prohibited. Further, in the case the dispersion liquid is mixed into the metal powder, the flocculation of the carbon nanofibers can be prevented since the dispersion liquid exhibits dispersibility. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、カーボンナノファイバ−金属系材料の製造技術に関するものである。   The present invention relates to a technique for producing a carbon nanofiber-metal material.

近年、カーボンナノファイバと称する特殊な炭素繊維を、溶融金属に混入することで繊維強化金属にする技術が注目を浴びている。   In recent years, a technique for making a fiber reinforced metal by mixing a special carbon fiber called a carbon nanofiber into a molten metal has attracted attention.

図4はカーボンナノファイバのモデル図であり、カーボンナノファイバ110は、六角網目状に配列した炭素原子のシートを筒状に巻いた形態のものであり、直径Dが1.0nm(ナノメートル)〜150nmであり、ナノレベルであるため、カーボンナノファイバ、カーボンナノ材料又はカーボンナノチューブと呼ばれる。なお、長さLは数μm〜100μmである。   FIG. 4 is a model diagram of a carbon nanofiber. The carbon nanofiber 110 has a configuration in which a sheet of carbon atoms arranged in a hexagonal network is wound in a cylindrical shape, and a diameter D is 1.0 nm (nanometer). Since it is ˜150 nm and at the nano level, it is called carbon nanofiber, carbon nanomaterial or carbon nanotube. The length L is several μm to 100 μm.

炭素原子が立方格子状に並んだものがダイヤモンドであって、ダイヤモンドは極めて硬い物質である。カーボンナノファイバ110は、ダイヤモンドと同様に規則的な結晶構造を有するために機械的強度は大きい。   A diamond is a very hard substance in which carbon atoms are arranged in a cubic lattice. Since the carbon nanofiber 110 has a regular crystal structure like diamond, the mechanical strength is large.

このような特性を有するカーボンナノファイバを金属粉末に混合する技術が、従来、提案されている(例えば、特許文献1参照。)。
特開平10−168502号公報(請求項1、請求項4、請求項12) 特許文献1の請求項1には「金属粉末と結晶性カーボン材とを混合し、加圧微細化・複合化させることにより得られる複合材粒子。」と記載され、同請求項4には「結晶性カーボン材料が、・・・又はカーボンナノチューブ・・・」と記載され、同請求項12には「金属粉末と結晶性カーボン材との加圧微細化・複合化をボールミルで行う・・・」と記載されている。
A technique for mixing carbon nanofibers having such characteristics with metal powder has been proposed (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-168502 (Claims 1, 4 and 12) Claim 1 of Patent Document 1 states that “a metal powder and a crystalline carbon material are mixed and subjected to pressure refinement / combination. Composite material particles obtained by the above-mentioned method, and in claim 4, "crystalline carbon material is ... or carbon nanotube ..." and in claim 12, "metal powder and "Pressure refinement and compounding with a crystalline carbon material is performed with a ball mill ...".

本発明者らが、実験したところ特許文献1の技術には次の問題があることが分かった。
すなわち、金属粉末としてのアルミニウム粉末に、カーボンナノファイバを混ぜ、ボールミルで混合したところ、カーボンナノファイバ同士が凝集してカーボンナノファイバの玉ができ、アルミニウム粉末中に所望の通り分散させることができなかった。この要因を解析するに当たり、次に述べる実験を追加的に実施した。
When the present inventors experimented, it turned out that the technique of patent document 1 has the following problems.
That is, when carbon nanofibers are mixed with aluminum powder as a metal powder and mixed with a ball mill, the carbon nanofibers aggregate to form carbon nanofiber balls, which can be dispersed in the aluminum powder as desired. There wasn't. In analyzing this factor, the following experiment was additionally conducted.

図5はカーボンナノファイバの凝集性を調べる実験の説明図である。この実験では、金属粉末を媒体に置き換えることで、カーボンナノファイバの凝集性を際だたせることにした。
すなわち、(a)にて、容器111に媒体112を満たし、この媒体112にカーボンナノファイバ113を入れる。
FIG. 5 is an explanatory diagram of an experiment for examining the cohesiveness of carbon nanofibers. In this experiment, we decided to highlight the cohesiveness of carbon nanofibers by replacing metal powder with a medium.
That is, in (a), the container 111 is filled with the medium 112, and the carbon nanofiber 113 is placed in the medium 112.

(b)にて、攪拌機114で十分に撹拌する。この撹拌は振動式攪拌機で行ってもよい。
(c)は、一定時間放置した後の状態を示し、カーボンナノファイバ113が容器111の底に沈殿していることが分かる。
なお、媒体112の比重が大きければ、カーボンナノファイバ113は上に溜まる。
In (b), the agitator 114 is sufficiently stirred. This agitation may be performed with a vibration agitator.
(C) shows a state after being left for a certain period of time, and it can be seen that the carbon nanofiber 113 is deposited on the bottom of the container 111.
In addition, if the specific gravity of the medium 112 is large, the carbon nanofiber 113 is accumulated on the top.

以上の実験から、カーボンナノファイバ同士が凝集し、結果として媒体112に全く分散しないことが確認できた。
媒体112を、溶融金属や金属粉末に置き換えても同様にカーボンナノファイバは凝集すると考えられる。
したがって、ナノレベルの超微細なカーボンナノファイバを、単純に金属粉末に混合しても分散化が得られないことが明らかになった。
From the above experiment, it was confirmed that the carbon nanofibers aggregated, and as a result, did not disperse in the medium 112 at all.
Even if the medium 112 is replaced with molten metal or metal powder, the carbon nanofibers are considered to aggregate.
Therefore, it became clear that dispersion could not be obtained even when nano-level ultrafine carbon nanofibers were simply mixed with metal powder.

本発明は、金属粉末にカーボンナノファイバに良好に分散させる分散技術を提供することを課題とする。   It is an object of the present invention to provide a dispersion technique for favorably dispersing carbon nanofibers in metal powder.

請求項1に係る発明は、ポリビニルアルコール水溶液にホウ砂を加えてゲル状の分散液を調整する工程と、この分散液にカーボンナノファイバを加える工程と、このカーボンナノファイバを含む分散液に金属粉末を加えて混練する工程とからなり、
ゲル状の分散液中に金属粉末及びカーボンナノファイバを分散させることで、カーボンナノファイバの凝集を防止するようにしたことを特徴とする。
The invention according to claim 1 is a step of adding borax to an aqueous polyvinyl alcohol solution to prepare a gel-like dispersion, a step of adding carbon nanofibers to the dispersion, and a metal in the dispersion containing the carbon nanofibers. A process of adding powder and kneading,
The metal powder and the carbon nanofibers are dispersed in the gel-like dispersion to prevent the carbon nanofibers from aggregating.

請求項2に係る発明では、ゲル状の分散液は、ポリビニルアルコールが4〜8重量%で、ホウ砂が0.4〜1.0重量%で、残部が水であることを特徴とする。   In the invention according to claim 2, the gel-like dispersion is characterized in that polyvinyl alcohol is 4 to 8% by weight, borax is 0.4 to 1.0% by weight, and the balance is water.

請求項1に係る発明では、水飴状の分散液中にカーボンナノファイバを分散させることで、カーボンナノファイバを分散液で被覆する。この結果、カーボンナノファイバ同士の凝集を防止することができ、金属粉末に良好に分散させることができる。   In the invention which concerns on Claim 1, carbon nanofiber is coat | covered with a dispersion liquid by disperse | distributing carbon nanofiber in a water tank-like dispersion liquid. As a result, aggregation of the carbon nanofibers can be prevented, and the carbon nanofibers can be favorably dispersed in the metal powder.

請求項2に係る発明では、ゲル状の分散液は、ポリビニルアルコールが4〜8重量%で、ホウ砂が0.4〜1.0重量%で、残部が水とした。
ポリビニルアルコールが4重量%未満であると、水に近い液体となり、また、ポリビニルアルコールが8重量%を超えると流動性の乏しい固形状になる。
In the invention according to claim 2, the gel-like dispersion liquid is 4 to 8% by weight of polyvinyl alcohol, 0.4 to 1.0% by weight of borax, and the balance is water.
When the polyvinyl alcohol is less than 4% by weight, it becomes a liquid close to water, and when the polyvinyl alcohol exceeds 8% by weight, it becomes a solid with poor fluidity.

すなわち、粉末を加えた場合、ポリビニルアルコールが4重量%未満では流動性過多となって粉末が沈殿する虞があって好ましくない。また、8重量%を超える流動性が乏しいため、粉末を均等に分散することができなくなる。   That is, when powder is added, if the polyvinyl alcohol is less than 4% by weight, the fluidity is excessive and the powder may be precipitated. Moreover, since the fluidity | liquidity exceeding 8 weight% is scarce, it becomes impossible to disperse | distribute powder uniformly.

また、ホウ砂が0.4重量%未満ではゲル状にならず、ホウ砂が1.0重量%を超えると分散液が塊になる。
ポリビニルアルコールが4〜8重量%で、ホウ砂が0.4〜1.0重量%で、残部が水であれば、水飴状の分散液を得ることができる。
Further, when the borax is less than 0.4% by weight, it does not form a gel, and when the borax exceeds 1.0% by weight, the dispersion becomes a mass.
If polyvinyl alcohol is 4 to 8% by weight, borax is 0.4 to 1.0% by weight, and the balance is water, a syrupy dispersion can be obtained.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。
図1は本発明に係る分散液の製造フロー図である。ST××はステップ番号を示す。
ST01:ポリビニルアルコール、ホウ砂、水、容器及び攪拌機を準備する。水は蒸留水、水道水の何れであっても良い。
ST02:容器にポリビニルアルコールを入れ、水を加えて希釈し、撹拌する。
ST03:ポリビニルアルコールにホウ砂を加える。
ST04:攪拌機で数分〜数十分間撹拌する。
ST05:これでゲル状の分散液を得ることができる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a production flow diagram of a dispersion according to the present invention. STxx indicates a step number.
ST01: Prepare polyvinyl alcohol, borax, water, a container and a stirrer. The water may be either distilled water or tap water.
ST02: Put polyvinyl alcohol in a container, add water to dilute, and stir.
ST03: Add borax to polyvinyl alcohol.
ST04: Stir with a stirrer for several minutes to several tens of minutes.
ST05: A gel-like dispersion can be obtained.

次の表1及び表2はポリビニルアルコール、ホウ砂及び水の混合割合と、ゲル化との関係を示す。   The following Table 1 and Table 2 show the relationship between the mixing ratio of polyvinyl alcohol, borax and water and gelation.

Figure 2005200723
Figure 2005200723

試料番号1は、ポリビニルアルコール(PVAという)が1重量%でホウ砂が1重量%で残部を水とした。試料はゲル化しなかったので、×とした。
試料番号2は、PVAが1.6重量%でホウ砂が1重量%で残部を水とした。試料はゲル化しなかったので、×とした。
試料番号3は、PVAが2重量%でホウ砂が1重量%で残部を水とした。試料はゲル化しなかったので、×とした。
Sample No. 1 was 1% by weight of polyvinyl alcohol (referred to as PVA), 1% by weight of borax, and the balance being water. Since the sample did not gel, it was evaluated as x.
In sample No. 2, PVA was 1.6% by weight, borax was 1% by weight, and the balance was water. Since the sample did not gel, it was evaluated as x.
In sample No. 3, PVA was 2% by weight, borax was 1% by weight, and the balance was water. Since the sample did not gel, it was evaluated as x.

試料番号4は、PVAが4重量%でホウ砂が1重量%で残部を水とした。試料はゲル化したので、○とした。
試料番号5は、PVAが5重量%でホウ砂が1重量%で残部を水とした。試料はゲル化が特に良好であったので、◎とした。
試料番号6は、PVAが6重量%でホウ砂が1重量%で残部を水とした。試料はゲル化が特に良好であったので、◎とした。
In sample No. 4, PVA was 4% by weight, borax was 1% by weight, and the balance was water. Since the sample was gelled, it was marked as ◯.
In sample No. 5, PVA was 5% by weight, borax was 1% by weight, and the balance was water. Since the sample had particularly good gelation, it was marked as ◎.
In sample No. 6, PVA was 6% by weight, borax was 1% by weight, and the balance was water. Since the sample had particularly good gelation, it was marked as ◎.

試料番号7は、PVAが8重量%でホウ砂が1重量%で残部を水とした。試料はゲル化したので、○とした。
この表から、PVAは4〜8重量%とすることが適当であり、5〜6重量%が好適であることが判明した。
In sample No. 7, PVA was 8% by weight, borax was 1% by weight, and the balance was water. Since the sample was gelled, it was marked as ◯.
From this table, it was found that PVA is suitably 4 to 8% by weight, and preferably 5 to 6% by weight.

Figure 2005200723
Figure 2005200723

試料番号8は、PVAが5重量%でホウ砂が0.1重量%で残部を水とした。試料はゲル化しなかったので、×とした。
試料番号9は、PVAが5重量%でホウ砂が0.2重量%で残部を水とした。試料はゲル化しなかったので、×とした。
In sample No. 8, PVA was 5% by weight, borax was 0.1% by weight, and the balance was water. Since the sample did not gel, it was evaluated as x.
In sample No. 9, PVA was 5% by weight, borax was 0.2% by weight, and the balance was water. Since the sample did not gel, it was evaluated as x.

試料番号10は、PVAが5重量%でホウ砂が0.3重量%で残部を水とした。試料はゲル化したが不十分であるため、△とした。
試料番号11は、PVAが5重量%でホウ砂が0.4重量%で残部を水とした。試料はゲル化が特に良好であったので、◎とした。
In sample No. 10, PVA was 5% by weight, borax was 0.3% by weight, and the balance was water. The sample gelled but was insufficient, so Δ.
In sample No. 11, PVA was 5% by weight, borax was 0.4% by weight, and the balance was water. Since the sample had particularly good gelation, it was marked as ◎.

試料番号12は、PVAが5重量%でホウ砂が0.5重量%で残部を水とした。試料はゲル化したので、○とした。
試料番号13は、PVAが5重量%でホウ砂が1重量%で残部を水とした。試料はゲル化したので、○とした。
この表から、ホウ砂は0.4〜1重量%とすることが適当であり、0.4重量%が好適であることが判明した。
In sample No. 12, PVA was 5% by weight, borax was 0.5% by weight, and the balance was water. Since the sample was gelled, it was marked as ◯.
In sample No. 13, PVA was 5% by weight, borax was 1% by weight, and the balance was water. Since the sample was gelled, it was marked as ◯.
From this table, it was found that borax is suitably 0.4 to 1% by weight, and 0.4% by weight is preferred.

図2は本発明に係るカーボンナノファイバ−金属系粉末の製造フロー図である。
ST11:カーボンナノファイバと、ゲル状分散液(図1により製造した物)と、容器と、攪拌機と、金属粉末と、ミルを準備する。金属粉末は、アルミニウム粉末、マグネシウム粉末、亜鉛粉末、銅粉末、その他の合金粉末が採用できる。
FIG. 2 is a production flow diagram of the carbon nanofiber-metal powder according to the present invention.
ST11: A carbon nanofiber, a gel dispersion (manufactured according to FIG. 1), a container, a stirrer, a metal powder, and a mill are prepared. As the metal powder, aluminum powder, magnesium powder, zinc powder, copper powder, and other alloy powders can be adopted.

ST12:ゲル状分散液に少量のカーボンナノファイバを添加する。
ST13:10分間程度撹拌する。
ST14:カーボンナノファイバの添加が未了の時にはST12に戻して、工程を繰り返す。全量の添加が終了したら、ST15に進む。
ST12: A small amount of carbon nanofiber is added to the gel dispersion.
ST13: Stir for about 10 minutes.
ST14: When the addition of the carbon nanofiber has not been completed, the process returns to ST12 and the process is repeated. When the addition of the entire amount is completed, the process proceeds to ST15.

ST15:カーボンナノファイバを含む分散液に金属粉末を添加する。
ST16:そして、分散液と金属粉末とを十分に混練する。
ST17:混練物を乾燥させて、液体を蒸発・除去する。乾燥は自然乾燥であれば、24時間程度、200℃での強制乾燥であれば、10分間程度で十分である。
ST18:乾燥物をミルで破砕し、粉化する。
ST19:得られた粉末は、カーボンナノファイバ−金属系粉末である。
ST15: Add metal powder to the dispersion containing carbon nanofibers.
ST16: The dispersion and the metal powder are sufficiently kneaded.
ST17: The kneaded product is dried to evaporate and remove the liquid. For natural drying, about 24 hours is sufficient, and for forced drying at 200 ° C., about 10 minutes is sufficient.
ST18: The dried product is crushed with a mill and pulverized.
ST19: The obtained powder is a carbon nanofiber-metal powder.

このカーボンナノファイバ−金属系粉末で圧粉成形体を製造し、加熱して焼結品を得ることができる。また、カーボンナノファイバ−金属系粉末を溶融金属に添加することもできる。   A compacted product can be produced from the carbon nanofiber-metal powder and heated to obtain a sintered product. In addition, carbon nanofiber-metal based powder can be added to the molten metal.

図3は本発明による処理物の模式図であり、ST14における処理物は、カーボンナノファイバ10の周囲を水飴状の分散液11で覆っていると推定できる。この分散液11の存在により、カーボンナノファイバ10同士の凝集を阻止することができるとともに、金属粉末に混合した場合、分散液11が分散性を発揮することで、カーボンナノファイバの凝集を防止することができると考えられる。   FIG. 3 is a schematic diagram of the treated product according to the present invention, and it can be estimated that the treated product in ST14 covers the periphery of the carbon nanofiber 10 with a water tank-like dispersion 11. The presence of the dispersion 11 can prevent the carbon nanofibers 10 from aggregating with each other, and when mixed with the metal powder, the dispersion 11 exhibits dispersibility, thereby preventing the carbon nanofibers from aggregating. It is considered possible.

尚、カーボンナノファイバ−金属系材料は、実施例で説明した粉末の他、ペレット(塊)、又は未乾燥の混練物であってもよく、形状及び状態は任意である。   The carbon nanofiber-metal material may be pellets (lumps) or undried kneaded material in addition to the powder described in the examples, and the shape and state are arbitrary.

本発明は、カーボンナノファイバ−金属系材料の製造方法に好適である。   The present invention is suitable for a method for producing a carbon nanofiber-metal material.

本発明に係る分散液の製造フロー図である。It is a manufacturing flow figure of the dispersion liquid concerning the present invention. 本発明に係るカーボンナノファイバ−金属系粉末の製造フロー図である。It is a manufacturing flow figure of the carbon nanofiber metal powder concerning the present invention. 本発明による処理物の模式図Schematic diagram of processed product according to the present invention カーボンナノファイバのモデル図である。It is a model figure of a carbon nanofiber. カーボンナノファイバの凝集性を調べる実験の説明図Explanatory drawing of experiment to investigate cohesion of carbon nanofiber

符号の説明Explanation of symbols

10…カーボンナノファイバ、11…分散液。   10 ... carbon nanofibers, 11 ... dispersion.

Claims (2)

ポリビニルアルコール水溶液にホウ砂を加えてゲル状の分散液を調整する工程と、この分散液にカーボンナノファイバを加える工程と、このカーボンナノファイバを含む分散液に金属粉末を加えて混練する工程とからなり、
ゲル状の分散液中に金属粉末及びカーボンナノファイバを分散させることで、カーボンナノファイバの凝集を防止するようにしたことを特徴とするカーボンナノファイバ−金属系材料の製造方法。
A step of adding borax to an aqueous polyvinyl alcohol solution to prepare a gel-like dispersion; a step of adding carbon nanofibers to the dispersion; and a step of adding metal powder to the dispersion containing the carbon nanofibers and kneading the dispersion. Consists of
A method for producing a carbon nanofiber-metal material, characterized in that metal nanofibers and carbon nanofibers are dispersed in a gel-like dispersion to prevent aggregation of carbon nanofibers.
前記ゲル状の分散液は、ポリビニルアルコールが4〜8重量%で、ホウ砂が0.4〜1.0重量%で、残部が水であることを特徴とする請求項1記載のカーボンナノファイバ−金属系材料の製造方法。
2. The carbon nanofiber according to claim 1, wherein the gel-like dispersion liquid is 4 to 8 wt% polyvinyl alcohol, 0.4 to 1.0 wt% borax, and the balance is water. -Manufacturing method of metal-based material.
JP2004009538A 2004-01-16 2004-01-16 Production method of carbon nanofiber-metal-based material Expired - Fee Related JP4091551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009538A JP4091551B2 (en) 2004-01-16 2004-01-16 Production method of carbon nanofiber-metal-based material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009538A JP4091551B2 (en) 2004-01-16 2004-01-16 Production method of carbon nanofiber-metal-based material

Publications (2)

Publication Number Publication Date
JP2005200723A true JP2005200723A (en) 2005-07-28
JP4091551B2 JP4091551B2 (en) 2008-05-28

Family

ID=34822550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009538A Expired - Fee Related JP4091551B2 (en) 2004-01-16 2004-01-16 Production method of carbon nanofiber-metal-based material

Country Status (1)

Country Link
JP (1) JP4091551B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077457A (en) * 2005-09-15 2007-03-29 Nissan Motor Co Ltd Metal-matrix carbon nanotube composite material and its manufacturing method
WO2009054309A1 (en) 2007-10-25 2009-04-30 National University Corporation Hokkaido University Composite metal material and process for production thereof
WO2017115707A1 (en) * 2015-12-28 2017-07-06 日本ゼオン株式会社 Container holding nanostructure liquid dispersion, method for storing and method for transporting nanostructure liquid dispersion, and method for producing aggregate and composition for composite material using nanostructure liquid dispersion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077457A (en) * 2005-09-15 2007-03-29 Nissan Motor Co Ltd Metal-matrix carbon nanotube composite material and its manufacturing method
WO2009054309A1 (en) 2007-10-25 2009-04-30 National University Corporation Hokkaido University Composite metal material and process for production thereof
US8273290B2 (en) 2007-10-25 2012-09-25 National University Corporation Hokkaido University Composite metal material and method for producing the same
WO2017115707A1 (en) * 2015-12-28 2017-07-06 日本ゼオン株式会社 Container holding nanostructure liquid dispersion, method for storing and method for transporting nanostructure liquid dispersion, and method for producing aggregate and composition for composite material using nanostructure liquid dispersion
JPWO2017115707A1 (en) * 2015-12-28 2018-10-18 日本ゼオン株式会社 Nanostructure dispersion-contained container, nanostructure dispersion storage method and transport method, and composite material composition and assembly manufacturing method using nanostructure dispersion liquid
US10752506B2 (en) 2015-12-28 2020-08-25 Zeon Corporation Nanostructure dispersion liquid-containing container, method of storing and method of transporting nanostructure dispersion liquid, and methods of producing composite material composition and aggregate using nanostructure dispersion liquid

Also Published As

Publication number Publication date
JP4091551B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
Hidalgo-Manrique et al. Copper/graphene composites: a review
CN111940723B (en) Nano ceramic metal composite powder for 3D printing and application
Chen et al. Strengthening behavior of carbon nanotube-graphene hybrids in copper matrix composites
Duarte et al. An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes
CN102133634B (en) The preparation method of carbon nano tube metal powder mix and metallic composite
JP5407867B2 (en) Method for producing composite metal material
JP4812381B2 (en) Method for producing metal-based carbon nanotube composite material
WO2010147101A1 (en) Carbon nanotube-rich resin composition and method for producing same
Wang et al. An electrodeposition approach to obtaining carbon nanotubes embedded copper powders for the synthesis of copper matrix composites
CN106583451A (en) Method for preparing multilayer-structured metal/nanoparticle composite material prepared by accumulation pack rolling and heat treatment
JP2013505353A (en) Composite materials containing metals and nanoparticles
TWI265062B (en) Electrode for discharge surface treatment, method for making an electrode for discharge surface treatment, discharge surface treatment apparatus and method
CN103992114A (en) Preparation method of boron carbide ceramic powder dispersion
US20120175547A1 (en) Compound material comprising a metal and nanoparticles
JP2011177661A (en) Filter made of metal, and method for manufacturing the same
JP4091551B2 (en) Production method of carbon nanofiber-metal-based material
JP5533240B2 (en) Manufacturing method of anisotropic thermoelectric conversion nanoparticles and manufacturing method of anisotropic thermoelectric conversion sintered body using the same
CN114147214B (en) Preparation method of carbon nano tube reinforced magnesium-based composite material
CN104711496B (en) Carbon Nanotubes/Magnesiuum Matrix Composite and preparation method thereof
WO2011032791A1 (en) A compound material comprising a metal and nanoparticles
JP3877729B2 (en) Dispersion method of carbon nanofiber
Guo et al. Influence of different preparation processes on the mechanical properties of carbon nanotube-reinforced copper matrix composites
Anderson et al. Production of Ultrafine Single‐Crystal Copper Wires through Electron Beam Irradiation of Cu‐containing Zeolite X
JP2008115211A (en) Method for producing core body
JP2017109189A (en) Method for producing granulated body, and granulated body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees