JP2005200672A - Dust compact for reduction treatment - Google Patents

Dust compact for reduction treatment Download PDF

Info

Publication number
JP2005200672A
JP2005200672A JP2004005422A JP2004005422A JP2005200672A JP 2005200672 A JP2005200672 A JP 2005200672A JP 2004005422 A JP2004005422 A JP 2004005422A JP 2004005422 A JP2004005422 A JP 2004005422A JP 2005200672 A JP2005200672 A JP 2005200672A
Authority
JP
Japan
Prior art keywords
dust
iron
raw material
molding
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004005422A
Other languages
Japanese (ja)
Other versions
JP4858934B2 (en
Inventor
Daigo Miyata
大吾 宮田
Hirotoku Naka
広徳 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004005422A priority Critical patent/JP4858934B2/en
Publication of JP2005200672A publication Critical patent/JP2005200672A/en
Application granted granted Critical
Publication of JP4858934B2 publication Critical patent/JP4858934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust compact for reduction treatment which is efficiently/stably recycled as an iron raw material even when the iron-oxide-based raw material to be used contains a volatile component such as a Cl element and an F element, and to provide a method for producing reduced iron by using it. <P>SOLUTION: The dust compact for reduction treatment is manufactured by the steps of compacting a mixture of the iron-oxide-based raw material such as ironmaking dust produced in an ironmaking process and charcoal wood, and heating the compact in a rotating bed furnace to reduce it, wherein the iron-oxide-based raw material has such a composition as to satisfy the following expression (A): (A:a ratio of iron concentration (total Fe) in raw material to the total concentration of Cl, F, Zn, Na, K and Pb ≥ 10), and the compact after the mixture has been compacted has a porosity of 30% or less. The method for producing the reduced iron uses the reduced compact. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、製鉄プロセスで発生する製鉄ダストなどの酸化鉄系原料を炭材等と混合して成型し、回転床炉において加熱還元処理を行う還元処理用ダスト成型物およびそれを使用する還元鉄製造方法に関する。   The present invention relates to a dust molding for reduction treatment in which an iron oxide-based raw material such as iron-making dust generated in an iron-making process is mixed with a carbonaceous material and molded, and subjected to a heat reduction treatment in a rotary bed furnace, and reduced iron using the same It relates to a manufacturing method.

近年、製鉄プロセスで発生する製鉄ダストなどの酸化鉄系原料を炭材等と混合して成型し、回転床炉において加熱還元処理を行うことにより、製鉄ダストを鉄原料として利用されており、その処理方法について種々の提案がなされている。
例えば、特開2003−3217号公報には、還元焙焼中のダストに水分を添加することによって、ダストから効率的に塩素および弗素を分離する方法が開示されている。
しかし、この特開2003−3217号公報の方法では水分を添加することにより炉内温度が低下して、還元炉の生産性の悪化および燃料使用量の増加は避けられず、 回転床炉での塩素、弗素を含む鉄鋼ダストの処理方法として有効ではなかった。
特開2003−3217号公報
In recent years, iron oxide dust such as iron dust generated in the iron making process is mixed with carbonaceous material and molded, and heat reduction treatment is carried out in a rotary bed furnace, so that iron dust is used as iron raw material. Various proposals have been made regarding processing methods.
For example, Japanese Patent Application Laid-Open No. 2003-3217 discloses a method for efficiently separating chlorine and fluorine from dust by adding moisture to the dust during reduction roasting.
However, in the method of Japanese Patent Application Laid-Open No. 2003-3217, the temperature inside the furnace is lowered by adding water, so that the productivity of the reduction furnace is deteriorated and the amount of fuel used is inevitably increased. It was not effective as a method for treating steel dust containing chlorine and fluorine.
JP 2003-3217 A

本発明は、前述のような従来技術の問題点を解決し、ClやFなどの揮発成分を含有する酸化鉄系原料を使用しても効率的・安定的に鉄原料として再資源化できる還元処理用ダスト成型物およびそれを使用する還元鉄製造方法を提供することを課題とする。   The present invention solves the problems of the prior art as described above, and can be efficiently and stably recycled as an iron material even when an iron oxide-based material containing volatile components such as Cl and F is used. It is an object to provide a dust molding for treatment and a method for producing reduced iron using the same.

本発明は、前記課題を解決するために鋭意検討の結果なされたものであり、FeとClやFなどの揮発成分との比率およびダスト成型時の気孔率を特定範囲にすることによって、ClやFなどの揮発成分を含有する酸化鉄系原料を使用しても効率的・安定的に鉄原料として再資源化できる還元処理用ダスト成型物およびそれを使用する還元鉄製造方法を提供するものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)製鉄プロセスで発生する製鉄ダストなどの酸化鉄系原料を炭材等と混合して成型し、回転床炉において加熱還元処理を行う還元処理用ダスト成型物であって、前記酸化鉄系原料の組成が下記(A)式を満足し、かつ、ダスト成型時の気孔率が30%以下であることを特徴とする還元処理用ダスト成型物。
原料中の鉄濃度 (以下、T.Feとも言う)/Cl、F、Zn、Na、K、Pbの合計濃度≧10・・・(A)
(2)前記酸化鉄系原料の組成が下記(B)式を満足し、かつ、ダスト成型時の気孔率が30%以下であることを特徴とする(1)に記載の還元処理用ダスト成型物。
原料中の鉄濃度 (T.Fe)/Cl、F、Zn、Na、K、Pbの合計濃度≧20・・・(B)
(3)前記ダスト成型時の気孔率が下記(C)式を満足することを特徴とする(2)に記載の還元処理用ダスト成型物。
1/(原料中の鉄濃度 (T.Fe)/Cl、F、Zn、Na、K、Pbの合計濃度)
+0.019×(ダスト成型時の気孔率)<0.71・・・(C)
(4)前記酸化鉄系原料が二種類以上の製鉄ダストを混合した原料であることを特徴とする(1)乃至(3)に記載の還元処理用ダスト成型物
(5)(1)乃至(4)に記載の還元処理用ダスト成型物を使用して、回転床炉にて加熱還元することを特徴とする還元鉄製造方法。
The present invention has been made as a result of intensive studies in order to solve the above problems, and by adjusting the ratio of Fe to volatile components such as Cl and F and the porosity during dust molding within a specific range, Cl and Provided is a dust molding for reduction treatment that can be efficiently and stably recycled as an iron raw material even when an iron oxide-based raw material containing a volatile component such as F is used, and a method for producing reduced iron using the same. The gist thereof is as follows, as described in the claims.
(1) A reduced dust forming product that is formed by mixing an iron oxide-based material such as iron-making dust generated in an iron-making process with a carbonaceous material and performing a heat reduction treatment in a rotary bed furnace, the iron oxide-based A dust molding for reduction treatment, wherein the composition of the raw material satisfies the following formula (A) and the porosity during dust molding is 30% or less.
Iron concentration in raw material (hereinafter also referred to as T.Fe) / Total concentration of Cl, F, Zn, Na, K, Pb ≧ 10 (A)
(2) Dust molding for reduction treatment according to (1), wherein the composition of the iron oxide-based raw material satisfies the following formula (B) and the porosity during dust molding is 30% or less object.
Iron concentration in raw material (T.Fe) / Total concentration of Cl, F, Zn, Na, K, Pb ≧ 20 (B)
(3) The dust molded product for reduction treatment according to (2), wherein the porosity during the dust molding satisfies the following formula (C):
1 / (Concentration of iron in raw material (T.Fe) / Total concentration of Cl, F, Zn, Na, K, Pb)
+ 0.019 × (porosity during dust molding) <0.71 (C)
(4) The reduction molding dust molded product (5) (1) to (1) according to (1) to (3), wherein the iron oxide-based raw material is a raw material in which two or more types of ironmaking dust are mixed. A method for producing reduced iron, characterized in that the reduction molding dust molded product according to 4) is used for heat reduction in a rotary bed furnace.

本発明によれば、FeとClやFなどの揮発成分との比率およびダスト成型時の気孔率を特定範囲にすることによって、ClやFなどの揮発成分を含有する酸化鉄系原料を使用しても効率的・安定的に鉄原料として再資源化できる還元処理用ダスト成型物、および、それを使用して回転床炉にて加熱還元する還元鉄製造方法を提供することができ、産業上有用な著しい効果を奏する。 According to the present invention, the iron oxide raw material containing volatile components such as Cl and F is used by setting the ratio of Fe and volatile components such as Cl and F and the porosity during dust molding to a specific range. However, it is possible to provide a reduced dust processing molding that can be efficiently and stably recycled as an iron raw material, and a reduced iron production method that uses it to heat and reduce in a rotary bed furnace. Useful and significant effect.

本発明を実施するための最良の形態について、図1乃至図8を用いて詳細に説明する。
図1は、本発明におけるダスト成型物の還元前の断面写真であり、図2はその還元後の断面写真である。
製鉄プロセスで発生する製鉄ダストなどの酸化鉄系原料を炭材(約10%)等と混合して成型し、回転床炉において加熱還元処理を行う還元処理用ダスト成型物は、図2の断面写真のように還元過程でダスト原料中の鉄粒子同士がネットワークを組むことにより、強度が向上する。
ここに、製鉄ダストとしては、高炉製銑工程・転炉製鋼工程・電気炉製鋼工程などでの発生ダスト、圧延工程での発生 スケール、メッキ工程で発生するスラッジ類が挙げられる。
一方で、Cl, F, Zn, Na, K, Pb (以下揮発物質) を多量に含むダスト類を原料として用いた場合、加熱、還元過程においてこれらの物質が揮発(酸化物として存在する揮発物質は、回転床炉内で還元されると同時に揮発)するため、還元物の気孔率が高くなり、また鉄粒子同士のネットワークもできにくい。
その結果、還元物の強度が低くなり、回転床炉から排出スクリューにより払い出される過程において崩壊し、歩留まりの低下、操業上の問題(岩盤炉床成長、排ガス吸引ダクト閉塞)を引き起こす要因となる。
The best mode for carrying out the present invention will be described in detail with reference to FIGS.
FIG. 1 is a cross-sectional photograph of the dust molding according to the present invention before the reduction, and FIG. 2 is a cross-sectional photograph after the reduction.
Fig. 2 shows a cross-sectional view of the dust molding for reduction treatment, in which iron oxide-based materials such as iron-making dust generated in the iron-making process are mixed with carbonaceous materials (about 10%) and then heated and reduced in a rotary bed furnace. As shown in the photo, the iron particles in the dust raw material form a network during the reduction process, thereby improving the strength.
Here, examples of the ironmaking dust include dust generated in the blast furnace ironmaking process, converter steelmaking process, electric furnace steelmaking process, etc., the generation scale in the rolling process, and sludge generated in the plating process.
On the other hand, when dusts containing a large amount of Cl, F, Zn, Na, K, Pb (hereinafter referred to as volatile substances) are used as raw materials, these substances are volatilized (volatile substances present as oxides) during the heating and reduction process. Is reduced in the rotating bed furnace and volatilizes at the same time), the porosity of the reduced product becomes high and it is difficult to form a network of iron particles.
As a result, the strength of the reduced product becomes low, and it collapses in the process of being discharged from the rotary bed furnace by the discharge screw, causing a decrease in yield and operational problems (rock bed hearth growth, exhaust gas suction duct blockage).

図3は、鉄濃度(T.Fe)/揮発物質濃度≒1の揮発物質を多量に含むダスト成型物を還元試験した後のサンプルを示す図である。
ここに、
原料中の鉄濃度(T.Fe):還元前のダスト成型物中の合計Fe濃度(質量%)、
揮発物質濃度:還元前のCl、F、Zn、Na、K、Pbの合計濃度(質量%)を示す。
図3に示すように、揮発物質濃度が高いダスト成型物の還元後試料は非常に多孔質となり、鉄粒子同士のネットワークも弱く、強度は低い。
FIG. 3 is a diagram showing a sample after a reduction test of a dust molding containing a large amount of volatile substances of iron concentration (T.Fe) / volatile substance concentration≈1.
here,
Iron concentration in raw material (T.Fe): Total Fe concentration (% by mass) in the dust molding before reduction
Volatile substance concentration: Total concentration (% by mass) of Cl, F, Zn, Na, K, and Pb before reduction.
As shown in FIG. 3, the sample after reduction of the dust molding with a high concentration of volatile substances is very porous, the network of iron particles is weak, and the strength is low.

一方、図4は、原料中の鉄濃度(T.Fe)/揮発物質濃度≒10の揮発物質が比較的少ないダスト成型物を還元試験した後のサンプルを示す図である。
図4に示すように、揮発物質が少ないため、還元後試料は緻密であり鉄粒子同士がネットワークを組みやすく、強度は高い。
回転床炉払い出し部での崩壊を抑制するためには、還元物強度を確保する必要がある。還元物強度確保のためには、ダスト原料中の揮発物質の濃度と鉄濃度(T,Fe)のバランス及び造粒物の気孔率が重要となる。
そこで、本発明においては、ダスト成型物を形成する酸化鉄系原料の組成が下記(A)式を満足し、かつ、ダスト成型時の気孔率が30%以下であることを特徴とする。
原料中の鉄濃度 (T.Fe)/Cl、F、Zn、Na、K、Pbの合計濃度≧10・・・(A)
さらに、下記(B)式を満足することが好ましい。
原料中の鉄濃度 (T.Fe)/Cl、F、Zn、Na、K、Pbの合計濃度≧20・・・(B)
ここに、
原料中の鉄濃度(T.Fe):還元前のダスト成型物中の合計Fe濃度(質量%)、
揮発物質濃度:還元前のCl、F、Zn、Na、K、Pbの合計濃度(質量%)を示す。
また、ダスト成型時の気孔率とは、
気孔率 (%)= (ダスト真比重-ダスト成型時嵩比重) × 100 / ダスト真比重を示す。
On the other hand, FIG. 4 is a diagram showing a sample after a reduction test of a dust molding having a relatively small amount of volatile substances of iron concentration (T.Fe) / volatile substance concentration≈10 in the raw material.
As shown in FIG. 4, since there are few volatile substances, the sample after reduction | restoration is dense, iron particles are easy to form a network, and intensity | strength is high.
In order to suppress collapse at the rotary bed furnace discharge section, it is necessary to ensure the reduced product strength. In order to ensure the strength of the reduced product, the balance between the concentration of volatile substances and the concentration of iron (T, Fe) in the dust material and the porosity of the granulated product are important.
Therefore, the present invention is characterized in that the composition of the iron oxide-based raw material forming the dust molding satisfies the following formula (A) and the porosity during dust molding is 30% or less.
Iron concentration in raw material (T.Fe) / Total concentration of Cl, F, Zn, Na, K, Pb ≧ 10 (A)
Furthermore, it is preferable to satisfy the following formula (B).
Iron concentration in raw material (T.Fe) / Total concentration of Cl, F, Zn, Na, K, Pb ≧ 20 (B)
here,
Iron concentration in raw material (T.Fe): Total Fe concentration (% by mass) in the dust molding before reduction
Volatile substance concentration: Total concentration (% by mass) of Cl, F, Zn, Na, K, and Pb before reduction.
Also, the porosity during dust molding is
Porosity (%) = (Dust True Specific Gravity-Bulk Specific Gravity at Dust Molding) x 100 / Dust True Specific Gravity.

<還元後試料強度とT.Fe/揮発物質濃度の関係>
図5は、T.Fe/揮発物質濃度と還元後試料強度との関係を示す図である。
T.Fe/揮発物質濃度 < 10の場合は、揮発物質を多量に含むため、還元後試料は非常にポーラスとなり、鉄粒子同士もネットワークを組みにくいため、還元後試料強度は30kg以下と低い。
10 ≦ T.Fe/揮発物質濃度 < 20の場合は、揮発物質が少なくなり、鉄粒子同士が比較的ネットワークを組みやすくなるため、還元後試料の圧壊強度は30kg以上で、回転床炉からの払い出し時の崩壊は抑制される。
T.Fe/揮発物質濃度 ≧ 20の場合は、鉄粒子同士がネットワークを十分に組み、揮発成分も少ないため還元後試料は緻密になり、強度は50kg以上と高く、回転床炉からの払い出し時の崩壊も問題ないレベルであり、もっとも好ましい。
<Relationship between sample strength after reduction and T.Fe / volatile substance concentration>
FIG. 5 is a diagram showing the relationship between the T.Fe / volatile substance concentration and the sample strength after reduction.
When T.Fe / volatile substance concentration <10, since a large amount of volatile substances are contained, the sample after reduction becomes very porous, and the iron particles are difficult to form a network, so the sample strength after reduction is as low as 30 kg or less.
When 10 ≤ T.Fe / volatile substance concentration <20, the volatile substances are reduced and the iron particles are relatively easy to form a network, so the crushing strength of the sample after reduction is 30 kg or more, Collapse at the time of payout is suppressed.
When T.Fe / volatile substance concentration is ≧ 20, the iron particles are sufficiently networked together, and there are few volatile components, so the sample after reduction becomes dense and the strength is as high as 50 kg or more. The collapse of is at a level where there is no problem, and is most preferable.

<還元後試料強度とダスト成型時気孔率の関係>
図6は、ダスト成型時気孔率と還元物の圧壊強度の関係を示す図である。
図6において、○印は鉄濃度(T.Fe)/揮発成分濃度>20の場合、△印は鉄濃度(T.Fe)/揮発成分濃度≒10の場合、□印は鉄濃度(T.Fe)/揮発成分濃度≒1の場合をそれぞれ示している。
ここに、ダスト成型時気孔率とは、
気孔率 (%)= (ダスト真比重-ダスト成型時嵩比重) × 100 / ダスト真比重を示す。
ダスト成型物の還元後強度は鉄粒子同士がネットワークを組むことにより向上する。従って還元物の気孔率が高い場合、ネットワークが形成されにくくなり強度は低下する。還元後の気孔率については、ダスト中の揮発成分濃度だけでなく、ダスト成型時の気孔率にも大きく影響を受ける。
仮に上記条件を十分に満足した場合でも、成型時の気孔率が高すぎる場合、還元物は鉄粒子同士のネットワークが十分に形成されず、強度は低下する。
図6に示すように、原料中の鉄濃度 (T.Fe)/Cl、F、Zn、Na、K、Pbの合計濃度≧10を満足している場合でも、ダスト成型時の気孔率が30%を超えるレベルになると、還元物の強度は著しく低下することがわかる。
ただし、本発明者らは、気孔率が30%を超えるレベルでも、ある条件を満足すれば還元後試料の圧壊強度は30kg以上で、回転床炉からの払い出し時の崩壊は抑制されることを見出した。
図9に示す様に、還元後試料強度とT.Fe/揮発成分濃度、タ゛スト成型時気孔率を用いた指標
強度ハ゜ラメーター(指標) = 1/(タ゛スト中鉄分濃度/揮発成分濃度) + 0.019×気孔率
(ただし、30<気孔率の範囲)
と圧壊強度の間に以下のような良好な相関関係があることを見いだした。
上記式右辺の第1項は、成分の圧壊強度に対する寄与の項であり、第2項は組織構造の圧壊強度に対する寄与の項であり、気孔率に対し実験的に求めた寄与度(係数)を0.019としている。
つまり、図9より、還元後試料強度>30kgを確保するためには
強度ハ゜ラメータ(指標) < 0.71
を満足することが必要である。
<Relationship between sample strength after reduction and porosity during dust molding>
FIG. 6 is a diagram showing the relationship between the porosity during dust molding and the crushing strength of the reduced product.
In FIG. 6, ◯ indicates iron concentration (T.Fe) / volatile component concentration> 20, △ indicates iron concentration (T.Fe) / volatile component concentration≈10, and □ indicates iron concentration (T.Fe. Fe) / volatile component concentration≈1 respectively.
Here, the porosity during dust molding is
Porosity (%) = (Dust True Specific Gravity-Bulk Specific Gravity at Dust Molding) x 100 / Dust True Specific Gravity.
The strength after reduction of the dust molding is improved by forming a network of iron particles. Therefore, when the porosity of the reduced product is high, a network is hardly formed and the strength is lowered. The porosity after reduction is greatly influenced not only by the concentration of volatile components in the dust but also by the porosity during dust molding.
Even if the above conditions are sufficiently satisfied, if the porosity at the time of molding is too high, the reduced product does not sufficiently form a network of iron particles, and the strength decreases.
As shown in FIG. 6, even when the total concentration of iron concentration in the raw material (T.Fe) / Cl, F, Zn, Na, K, and Pb ≧ 10 is satisfied, the porosity during dust molding is 30 It can be seen that when the level exceeds%, the strength of the reduced product is significantly reduced.
However, the present inventors have found that even if the porosity exceeds 30%, if a certain condition is satisfied, the crushing strength of the sample after reduction is 30 kg or more, and the collapse at the time of withdrawal from the rotary bed furnace is suppressed. I found it.
As shown in Fig. 9, the sample strength after reduction, T.Fe / volatile component concentration, index strength parameter (index) using the dust molding porosity (index) = 1 / (iron concentration in the dust / volatile component concentration) + 0.019 × Porosity
(However, 30 <porosity range)
The following good correlations were found between crushing strength and crushing strength.
The first term on the right side of the above formula is the term of contribution to the crushing strength of the component, the second term is the term of contribution to the crushing strength of the tissue structure, and the contribution (coefficient) obtained experimentally for the porosity. Is set to 0.019.
In other words, from FIG. 9, in order to secure the sample strength after reduction> 30 kg, the strength parameter (index) <0.71
It is necessary to satisfy

図7および図8は、本発明におけるダスト成型物の還元後の強度確保による効果を示す図である。
< 岩盤炉床成長抑制効果>
図7は、ダスト処理量に対する岩盤炉床成長量(mm/t-ダスト)を示す図である。
回転床炉によりダスト類を用いて還元鉄を製造する方法において、ダスト還元鉄は、排出スクリューにより回転炉床より払い出される。この過程において、ダスト還元鉄が崩壊し粉が発生、粉と炉床材と反応し、融着物が成長していく「岩盤炉床」と呼ばれる現象が起こり、この現象が継続すると、炉床レベルが上昇するため、操業上問題となる。
図7の右側のグラフに示すように、T.Fe/揮発物質濃度 < 10の場合は、還元物の強度が低く排出過程で多量の粉が発生するため、岩盤炉床成長を助長することになる。
これに対して、図7の左側のグラフに示すように、T.Fe/揮発物質濃度 >20の場合は、還元物の強度が確保されるため岩盤炉床成長が抑制される。
FIG. 7 and FIG. 8 are diagrams showing the effect of ensuring the strength after reduction of the dust molding in the present invention.
<Rock bed hearth growth suppression effect>
FIG. 7 is a diagram showing the rock hearth growth amount (mm / t-dust) with respect to the dust processing amount.
In the method for producing reduced iron using dust in a rotary bed furnace, the dust reduced iron is discharged from the rotary hearth by a discharge screw. During this process, dust-reduced iron breaks down, generates powder, reacts with the powder and hearth material, and a phenomenon called a “rock bed hearth” occurs in which the fused material grows. Will raise operational problems.
As shown in the graph on the right side of FIG. 7, when T.Fe / volatile substance concentration <10, the strength of the reduced product is low and a large amount of powder is generated during the discharge process. Become.
On the other hand, as shown in the graph on the left side of FIG. 7, when T.Fe / volatile substance concentration> 20, the strength of the reduced product is ensured, and the rock hearth growth is suppressed.

<ダスト還元物の歩留まり低減抑制効果>
図8は、粒径が1mm未満(-1mm)の粉率(%)を比較する図である。
回転床炉内で発生する排ガス(バーナー燃焼ガス、ダスト還元時発生ガス等)については、炉入り口付近に設けられた排ガス吸引ダクトより排出される。
この回転床炉からダスト還元鉄排出時に排出スクリューにより壊されて発生した粉(特に微粉)の一部は、巻上げられて排ガス吸引ダクトに吸引され、歩留まり低下の要因となる。
図8の右側のグラフに示すように、T.Fe/揮発物質濃度 < 10の場合は、還元鉄の強度が低く排出時に多量に粉が発生するため、歩留まり低下が大きくなる。
これに対して、図8の左側のグラフに示すように、T.Fe/揮発物質濃度 >20の場合は、還元物の強度が確保されるため、排出時の粉発生を抑え、歩留まり低下を抑制することができる。
<Inhibition of yield reduction of reduced dust products>
FIG. 8 is a diagram comparing the powder ratio (%) when the particle size is less than 1 mm (−1 mm).
Exhaust gas (burner combustion gas, gas generated during dust reduction, etc.) generated in the rotary bed furnace is exhausted from an exhaust gas suction duct provided near the furnace entrance.
Part of the powder (particularly fine powder) generated by being broken by the discharge screw when dust-reduced iron is discharged from the rotary bed furnace is wound up and sucked into the exhaust gas suction duct, which causes a reduction in yield.
As shown in the graph on the right side of FIG. 8, when T.Fe / volatile substance concentration <10, the strength of reduced iron is low and a large amount of powder is generated at the time of discharge, resulting in a large decrease in yield.
On the other hand, as shown in the graph on the left side of FIG. 8, when T.Fe / volatile substance concentration> 20, the strength of the reduced product is secured, so that the generation of powder during discharge is suppressed and the yield is reduced. Can be suppressed.

<排出系ダクト内壁への飛散ダスト付着抑制効果>
排ガス吸引ダクトに吸引された飛散ダストは、その一部が酸化鉄系ダストとその他の酸化物系ダストとの間で低融点化合物を形成、ダクト通過過程で温度が下がり、ダクト内壁に付着する。ダクト内壁へのダスト付着量は飛ダスト量に依存する。
従って、図8の左側のグラフに示すように、T.Fe/揮発物質濃度 >20の場合は、還元物の強度を確保し、排出時の排出スクリューによる粉発生を低減することにより、ダクト内壁へのダスト付着を抑制することができる。
<Inhibition effect of scattered dust on the inner wall of the exhaust duct>
Part of the scattered dust sucked into the exhaust gas suction duct forms a low-melting-point compound between iron oxide dust and other oxide dust, and the temperature drops during the passage through the duct and adheres to the inner wall of the duct. The amount of dust attached to the inner wall of the duct depends on the amount of flying dust.
Therefore, as shown in the graph on the left side of FIG. 8, when T.Fe / volatile substance concentration> 20, the strength of the reduced product is ensured and the generation of powder by the discharge screw during discharge is reduced, thereby reducing the duct inner wall. It is possible to suppress dust adhesion to the surface.

本発明におけるダスト成型物の還元前の断面写真である。It is a cross-sectional photograph before the reduction | restoration of the dust molding in this invention. 本発明におけるダスト成型物の還元後の断面写真である。It is a cross-sectional photograph after the reduction | restoration of the dust molding in this invention. 鉄濃度(T.Fe)/不揮発物質濃度≒1の揮発物質を多量に含むダスト成型物を還元試験した後の原料中のサンプルを示す図である。It is a figure which shows the sample in the raw material after carrying out the reduction | restoration test of the dust molding containing a large amount of volatile substances of iron concentration (T.Fe) / nonvolatile substance density | concentration ≒ 1. 原料中の鉄濃度(T.Fe)/不揮発物質濃度≒10の揮発物質が比較的少ないダスト成型物を還元試験した後のサンプルを示す図である。It is a figure which shows the sample after carrying out the reduction | restoration test of the dust molding which has comparatively few volatile substances of iron concentration (T.Fe) / nonvolatile substance density | concentration ≒ 10 in a raw material. T.Fe/揮発物質濃度と還元後試料強度との関係を示す図である。It is a figure which shows the relationship between a T.Fe / volatile substance density | concentration and the sample strength after a reduction | restoration. ダスト成型時気孔率と還元物の圧壊強度の関係を示す図である。It is a figure which shows the relationship between the porosity at the time of dust molding, and the crushing strength of a reduced product. ダスト処理量に対する岩盤炉床成長量(mm/t-ダスト)を示す図である。It is a figure which shows the bedrock hearth growth amount (mm / t-dust) with respect to the amount of dust processing. 粒径が1mm未満(-1mm)の粉率(%)を比較する図である。It is a figure which compares the powder rate (%) whose particle size is less than 1 mm (-1 mm). 強度ハ゜ラメータと圧壊強度の関係を示す図である。It is a figure which shows the relationship between a strength parameter and crushing strength.

Claims (5)

製鉄プロセスで発生する製鉄ダストなどの酸化鉄系原料を炭材等と混合して成型し、回転床炉において加熱還元処理を行う還元処理用ダスト成型物であって、
前記酸化鉄系原料の組成が下記(A)式を満足し、かつ、ダスト成型時の気孔率が30%以下であることを特徴とする還元処理用ダスト成型物。
原料中の鉄濃度 (T.Fe)/Cl、F、Zn、Na、K、Pbの合計濃度≧10・・・(A)
It is a dust molding for reduction treatment in which iron oxide-based raw materials such as iron-making dust generated in the iron making process are mixed with carbonaceous material and molded, and heat reduction treatment is performed in a rotary bed furnace,
A reduction molding dust molded product characterized in that the composition of the iron oxide-based raw material satisfies the following formula (A) and the porosity during dust molding is 30% or less.
Iron concentration in raw material (T.Fe) / Total concentration of Cl, F, Zn, Na, K, Pb ≧ 10 (A)
前記酸化鉄系原料の組成が下記(B)式を満足し、かつ、ダスト成型時の気孔率が30%以下であることを特徴とする請求項1に記載の還元処理用ダスト成型物。
原料中の鉄濃度 (T.Fe)/Cl、F、Zn、Na、K、Pbの合計濃度≧20・・・(B)
2. The dust molded product for reduction treatment according to claim 1, wherein the composition of the iron oxide-based raw material satisfies the following formula (B) and the porosity at the time of dust molding is 30% or less.
Iron concentration in raw material (T.Fe) / Total concentration of Cl, F, Zn, Na, K, Pb ≧ 20 (B)
前記ダスト成型時の気孔率が下記(C)式を満足することを特徴とする請求項2に記載の還元処理用ダスト成型物。
1/(原料中の鉄濃度 (T.Fe)/Cl、F、Zn、Na、K、Pbの合計濃度)
+0.019×(ダスト成型時の気孔率)<0.71・・・(C)
The dust molded product for reduction treatment according to claim 2, wherein the porosity during the dust molding satisfies the following formula (C).
1 / (Concentration of iron in raw material (T.Fe) / Total concentration of Cl, F, Zn, Na, K, Pb)
+ 0.019 × (porosity during dust molding) <0.71 (C)
前記酸化鉄系原料が二種類以上の製鉄ダストを混合した原料であることを特徴とする請求項1乃至請求項3に記載の還元処理用ダスト成型物   4. The dust molding for reduction treatment according to claim 1, wherein the iron oxide-based raw material is a raw material in which two or more types of iron-making dust are mixed. 請求項1乃至請求項4に記載の還元処理用ダスト成型物を使用して、回転床炉にて加熱還元することを特徴とする還元鉄製造方法。   A method for producing reduced iron, characterized in that the reduction molding dust molding according to any one of claims 1 to 4 is used for heat reduction in a rotary bed furnace.
JP2004005422A 2004-01-13 2004-01-13 Dust molding for reduction treatment Expired - Lifetime JP4858934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005422A JP4858934B2 (en) 2004-01-13 2004-01-13 Dust molding for reduction treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005422A JP4858934B2 (en) 2004-01-13 2004-01-13 Dust molding for reduction treatment

Publications (2)

Publication Number Publication Date
JP2005200672A true JP2005200672A (en) 2005-07-28
JP4858934B2 JP4858934B2 (en) 2012-01-18

Family

ID=34819755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005422A Expired - Lifetime JP4858934B2 (en) 2004-01-13 2004-01-13 Dust molding for reduction treatment

Country Status (1)

Country Link
JP (1) JP4858934B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248622A (en) * 2009-03-27 2010-11-04 Nippon Steel Corp Method for producing reduced iron
KR101460198B1 (en) 2012-11-07 2014-11-10 주식회사 포스코 Manufacturing method of reduced iron
WO2015005187A1 (en) * 2013-07-08 2015-01-15 株式会社神戸製鋼所 Method for producing reduced iron

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194410A (en) * 2000-10-18 2002-07-10 Nippon Steel Corp Method for operating rotary furnace hearth type reducing furnace, method for producing pig iron and granular iron oxide-reduced material
JP2003003217A (en) * 2001-06-21 2003-01-08 Sumitomo Metal Mining Co Ltd Method for treating steel dust containing chlorine and fluorine
JP2003089813A (en) * 2001-09-14 2003-03-28 Nippon Steel Corp Method for reduction of iron oxide
JP2003129142A (en) * 2001-10-24 2003-05-08 Kobe Steel Ltd Method for manufacturing agglomerated product of oxidized metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194410A (en) * 2000-10-18 2002-07-10 Nippon Steel Corp Method for operating rotary furnace hearth type reducing furnace, method for producing pig iron and granular iron oxide-reduced material
JP2003003217A (en) * 2001-06-21 2003-01-08 Sumitomo Metal Mining Co Ltd Method for treating steel dust containing chlorine and fluorine
JP2003089813A (en) * 2001-09-14 2003-03-28 Nippon Steel Corp Method for reduction of iron oxide
JP2003129142A (en) * 2001-10-24 2003-05-08 Kobe Steel Ltd Method for manufacturing agglomerated product of oxidized metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248622A (en) * 2009-03-27 2010-11-04 Nippon Steel Corp Method for producing reduced iron
KR101460198B1 (en) 2012-11-07 2014-11-10 주식회사 포스코 Manufacturing method of reduced iron
WO2015005187A1 (en) * 2013-07-08 2015-01-15 株式会社神戸製鋼所 Method for producing reduced iron
JP2015014042A (en) * 2013-07-08 2015-01-22 株式会社神戸製鋼所 Method of producing reduced iron

Also Published As

Publication number Publication date
JP4858934B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JPH11310832A (en) Treatement of metal oxide of steel making waste
JP5375742B2 (en) Granulation method of sintering raw material
JP4858934B2 (en) Dust molding for reduction treatment
TW200944493A (en) Cement manufacturing method
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JP7151404B2 (en) Method for producing zinc oxide ore
JP2013036049A (en) Method of producing raw material for sintering
JP6094468B2 (en) Method for producing zinc oxide ore
JP2012007211A (en) Slag fuming operation method
JP6939842B2 (en) Sintered ore manufacturing method
JP3050493B2 (en) Method for producing sintered ore using limonite ore as raw material
JP2020158849A (en) Method for promoting combustion of carbonaceous material in sintering
JP7456762B2 (en) Rotary hearth furnace and method for using the same, and method for producing reduced iron-containing products and zinc-containing products
JP2005313009A (en) Treatment method of substance containing zinc, lead and chlorine
JPH10219361A (en) Treatment of sintering raw material
JP6004191B2 (en) Sintering raw material manufacturing method
JP7095562B2 (en) Sintered ore manufacturing method
JP5801752B2 (en) Sintered ore
JP2010248622A (en) Method for producing reduced iron
JP2009221491A (en) Method for sintering raw sulfide material containing raw oxide material
RU2074893C1 (en) Method of blast furnace heat
JP6772719B2 (en) Pretreatment method for steelmaking dust
JP6357842B2 (en) Sinter ore manufacturing method
JPH07323350A (en) Riser heat insulating material for casting
JP6885164B2 (en) Sintered ore manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100329

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

R151 Written notification of patent or utility model registration

Ref document number: 4858934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term