JP2005200603A - Powdered solidifier and its production method - Google Patents

Powdered solidifier and its production method Download PDF

Info

Publication number
JP2005200603A
JP2005200603A JP2004010454A JP2004010454A JP2005200603A JP 2005200603 A JP2005200603 A JP 2005200603A JP 2004010454 A JP2004010454 A JP 2004010454A JP 2004010454 A JP2004010454 A JP 2004010454A JP 2005200603 A JP2005200603 A JP 2005200603A
Authority
JP
Japan
Prior art keywords
quicklime
sludge
powdered
solidified material
concrete sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004010454A
Other languages
Japanese (ja)
Other versions
JP4418244B2 (en
Inventor
Koichiro Yamato
功一郎 大和
Yukio Tasaka
行雄 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Ube Corp
Original Assignee
Mitsubishi Materials Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Ube Industries Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2004010454A priority Critical patent/JP4418244B2/en
Publication of JP2005200603A publication Critical patent/JP2005200603A/en
Application granted granted Critical
Publication of JP4418244B2 publication Critical patent/JP4418244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powdered solidifier obtained from sludge without filtration/dehydration or drying by heating, which is economically utilized as a solidifier for soil and is designed in consideration of difference of soil characteristics etc., and to provide a method for producing the same. <P>SOLUTION: The powdered solidifier is composed of a mixture of concrete sludge with an unslaked lime-containing material. Wherein the mixed ratio of the unslaked lime-containing material to the concrete sludge is 0.3-0.7 mol unslaked lime based on 1 mol water in the concrete sludge. The method for producing the powdered solidifier is carried out by mixing the concrete sludge with the unslaked lime-containing material by the ratio of 1 mol water in the concrete sludge to 0.3-0.7 mol unslaked lime, and then the resultant mixture is subsequently powdered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コンクリートスラッジ(以下、スラッジと称することもある)を有効利用した粉末状固化材およびその製造方法に関するものである。本発明の粉末状固化材は、例えば各種土壌の固化処理に好適に利用できる。   The present invention relates to a powder solidified material that effectively uses concrete sludge (hereinafter sometimes referred to as sludge) and a method for producing the same. The powdery solidified material of the present invention can be suitably used, for example, for solidification treatment of various soils.

スラッジとは、生コンクリート工場、コンクリート製品工場などで発生するもので、生コンクリートの洗い残渣(主としてセメントペーストおよび細骨材微粒部分)からなる泥状の産業廃棄物である。これを有効利用する場合、特に多量の水分が含まれることから、固形分有効利用の際には品質、輸送・運搬や処分時の法規制や経済性などに制約がある。従来、スラッジの水分の除去方法としては、濾過脱水法(フィルタープレス)や、特許文献1〜3に示される加熱乾燥法がある。   Sludge is generated in a ready-mixed concrete factory, a concrete product factory, and the like, and is a mud-like industrial waste consisting of ready-cleaned residue (mainly cement paste and fine aggregate fine particles). When this is used effectively, since a large amount of water is contained in particular, there are restrictions on quality, laws and regulations at the time of transportation / transportation and disposal, and economic efficiency, etc., when using solids effectively. Conventionally, as a method for removing moisture from sludge, there are a filtration dehydration method (filter press) and a heat drying method disclosed in Patent Documents 1 to 3.

しかし、濾過脱水法では、脱水の程度に限度があり、水分の残存が許容できる用途に限定される問題があった。また、加熱乾燥法では、多額の設備費や燃料費がかかり、経済性の面からその実用性に問題があった。
一方、スラッジを土壌の固化材として利用する場合、スラッジを単に加熱乾燥したものは、過熱による固形分の活性低下や粒状化により、所定の固化強度を得るための固化材の添加量が増加するため、コスト面で競争力に欠けるとの問題があった。
特開昭61−209059号公報 特開平5−238790号公報 特開2001−18000号公報
However, the filtration dehydration method has a problem in that there is a limit to the degree of dehydration and the use is limited to applications in which moisture remains. In addition, the heating and drying method requires a large amount of equipment and fuel, and there is a problem in its practicality from the viewpoint of economy.
On the other hand, when sludge is used as a solidification material for soil, the amount of addition of the solidification material to obtain a predetermined solidification strength increases due to the decrease in activity of the solid content due to overheating and granulation when sludge is simply dried by heating. Therefore, there was a problem that it was not competitive in terms of cost.
JP-A 61-209059 JP-A-5-238790 JP 2001-18000 A

本発明は、スラッジを濾過脱水や加熱乾燥することなく、土壌の固化材として経済的に有効利用することができ、且つ土質などの相違による固化材材料設計を考慮した粉末状固化材およびその製造方法を提供することを目的とする。   The present invention is a powdered solidified material that can be economically effectively used as a solidified material for soil without filtering and dewatering or heating and drying sludge, and considering the solidified material design due to differences in soil properties and the like, and its production It aims to provide a method.

本発明者らは、上記目的を達成すべく種々検討した結果、生石灰含有物とスラッジ中の水分とを効率的に接触させることによって、生石灰と水との均質な水和反応による水の効率的な固定化がなされ、また、その際の水和発熱による過度の温度上昇が抑制されスラッジ中の固形分(セメント水和物)が熱分解することなく活性の維持が可能となることを知見した。また、スラッジを生石灰含有物と接触させることにより、スラッジを乾燥粉状化できることを知見した。   As a result of various studies to achieve the above-mentioned object, the present inventors have made efficient contact of quicklime and water in sludge, thereby efficiently using water by a homogeneous hydration reaction between quicklime and water. It has been found that the immobilization is carried out, and the excessive temperature rise due to hydration heat generation at that time is suppressed, and the solid content in the sludge (cement hydrate) can be maintained without thermal decomposition. . Moreover, it discovered that sludge can be made into dry powder form by making sludge contact with a quicklime containing material.

本発明は、上記知見に基づいてなされたもので、コンクリートスラッジと生石灰含有物との混合物からなる粉末状固化材であって、コンクリートスラッジと生石灰含有物との混合割合が、コンクリートスラッジ中の水分1モルに対し生石灰分が0.3〜0.7モルであることを特徴とする粉末状固化材を提供するものである。
また、本発明は、上記の本発明の粉末状固化材の製造方法として、コンクリートスラッジと生石灰含有物とを、コンクリートスラッジ中の水分1モルに対し生石灰分が0.3〜0.7モルになるように混合し、粉状化することを特徴とする粉末状固化材の製造方法を提供するものである。
The present invention has been made on the basis of the above knowledge, and is a powdered solidified material composed of a mixture of concrete sludge and quicklime-containing material, and the mixing ratio of concrete sludge and quicklime-containing material is the moisture content in the concrete sludge. The present invention provides a powdered solidified material characterized in that quicklime content is 0.3 to 0.7 mol per mol.
In addition, the present invention provides a method for producing the above-mentioned powdered solidified material of the present invention, in which concrete sludge and quicklime-containing material have a quicklime content of 0.3 to 0.7 mol with respect to 1 mol of water in the concrete sludge. Thus, the present invention provides a method for producing a powdered solidified material, which is mixed and powdered.

本発明によれば、従来廃棄していたスラッジを、取扱い性の良い粉末状固化材として有効利用することができる。また、スラッジを乾燥粉状化する手段として、スラッジ中の水分と生石灰との水和反応を利用していることから、光熱費が不要である。
また、本発明の粉末状固化材は、ローム土をはじめ、有機質土、砂質土など、各種土壌の固化処理に好適に利用できる。
According to the present invention, sludge that has been conventionally discarded can be effectively used as a powdery solidified material with good handleability. Moreover, since the hydration reaction of the water | moisture content in sludge and quicklime is utilized as a means of making sludge into dry powder form, a utility bill is unnecessary.
Moreover, the powdery solidification material of this invention can be utilized suitably for the solidification process of various soils, such as loam soil, organic soil, sandy soil.

以下に、本発明の粉末状固化材およびその製造方法について詳しく説明する。
本発明で使用するスラッジとは、生コンクリート工場、コンクリート製品工場などで発生する汚泥状物質であり、主にアジテータ車のドラム内部に付着したモルタルや残コンクリート、戻りコンクリートの洗い残渣である。本発明では、スラッジ中の水分量は40〜70質量%であることが好ましい。スラッジ中の固形分は、例えば、セメント水和物や未水和物(セメントおよび高炉スラグ、フライアッシュや石灰石粉などの混和材)が50〜95質量%、残部が細骨材の微粒部からなり、このうちセメント水和物はケイ酸カルシウム水和物(C−S−H)、水酸化カルシウムおよびカルシウムアルミノサルフェート水和物などであるが、これらの種類および含有量は生コンクリート工場あるいはコンクリート製品工場で通常発生するものであれば特に制限されるものではない。さらに、スラッジ水にはコンクリート用各種化学混和剤が溶解しているが、これについてもその存在の可否が特に限定されるものではない。
Below, the powdery solidified material of the present invention and the production method thereof will be described in detail.
The sludge used in the present invention is a sludge-like substance generated in a ready-mixed concrete factory, a concrete product factory, and the like, and is mainly mortar, residual concrete, and return concrete washing residue adhering inside the drum of an agitator car. In this invention, it is preferable that the moisture content in sludge is 40-70 mass%. The solid content in the sludge is, for example, 50% to 95% by mass of cement hydrate and non-hydrate (admixtures such as cement and blast furnace slag, fly ash and limestone powder), and the remainder from fine aggregates of fine aggregate Among them, cement hydrates include calcium silicate hydrate (C—S—H), calcium hydroxide and calcium aluminosulfate hydrate, etc., but the type and content of these are ready-mixed concrete factory or concrete There is no particular limitation as long as it normally occurs in a product factory. Furthermore, although various chemical admixtures for concrete are dissolved in the sludge water, the presence or absence of this is not particularly limited.

本発明で使用する生石灰含有物としては、まず生石灰が挙げられる。生石灰は、一般的な工業製品である粒状物(径1〜5mm程度)や粉末が使用できる。また、生石灰に変えてセメント製造装置のプレヒーター部分より抜出した仮焼原料を使用することができる。この仮焼原料は、通常、セメント製造装置のプレヒーターのサイクロン最下段からキルンへの投入シュート付近から抜出すことにより得られるものである。プレヒーター部は、セメント製造工程で石灰石の熱分解を主目的とするものであり、仮焼原料中の遊離酸化カルシウムの含有量は、仮焼炉の有無(NSP方式またはSP方式)あるいは仮焼炉の方式によって異なるが、概ね20〜45質量%である。本発明では、仮焼原料中の遊離酸化カルシウム含有量に制限を受けるものではないが、25質量%を超えるものが好ましい。   As a quicklime containing material used by this invention, quicklime is mentioned first. Quick lime can use the granular material (diameter 1-5 mm grade) and powder which are general industrial products. Moreover, the calcined raw material extracted from the preheater part of the cement manufacturing apparatus can be used instead of quicklime. This calcined raw material is usually obtained by extracting from the vicinity of the introduction chute to the kiln from the lowermost cyclone stage of the preheater of the cement manufacturing apparatus. The preheater section is mainly intended for the thermal decomposition of limestone in the cement manufacturing process, and the content of free calcium oxide in the calcining raw material is determined by the presence or absence of a calcining furnace (NSP method or SP method) or calcining. Although it depends on the type of furnace, it is generally 20 to 45% by mass. In this invention, although it does not receive a restriction | limiting in the free calcium oxide content in a calcining raw material, What exceeds 25 mass% is preferable.

本発明では、これらの生石灰含有物をスラッジと混合して、スラッジを乾燥粉状化させる。該混合に使用する混合機は特に限定されるものではないが、スラッジの粘性が高い場合には、せん断力が大きいミキサーが好ましい。また、該混合機として、生コンクリートの輸送に使用されているアジテータ車のミキサー部を好適に使用することができる。   In this invention, these quicklime containing materials are mixed with sludge, and sludge is made into dry powder form. The mixer used for the mixing is not particularly limited, but when the sludge has a high viscosity, a mixer having a large shearing force is preferable. Moreover, the mixer part of the agitator vehicle currently used for transport of ready-mixed concrete can be used suitably as this mixer.

石灰含有物のスラッジに対する添加量は、スラッジ中の水分1モルに対して生石灰分0.3〜0.7モルとするのが好ましく、0.45〜0.6モルとするのがさらに好ましい。生石灰分が0.3モル未満ではスラッジの十分な粉状化ができず、これを用いた固化材では貯蔵や輸送中に固結したり、土壌との混合が不十分となることがある。一方、生石灰分が0.7モル超では、固化材中に遊離酸化カルシウムが多量に残存するため、固化処理の際の固化材スラリーでの施工が困難となり好ましくない。
石灰含有物の添加量は、本発明の粉末状固化材中の水分が0.1〜5.0質量%となるようにするのが好ましく、0.2〜5.0質量%となるようにするのがより好ましく、0.5〜2.0質量%となるようにするのがさらに好ましい。
The amount of lime-containing material added to the sludge is preferably 0.3 to 0.7 mol, more preferably 0.45 to 0.6 mol, with respect to 1 mol of water in the sludge. When the quicklime content is less than 0.3 mol, the sludge cannot be sufficiently pulverized, and a solidified material using the sludge may solidify during storage or transportation or may be insufficiently mixed with soil. On the other hand, if the quicklime content exceeds 0.7 mol, a large amount of free calcium oxide remains in the solidified material, which makes it difficult to apply the solidified material slurry during the solidification treatment.
The amount of lime-containing material added is preferably such that the water content in the powdered solidified material of the present invention is 0.1 to 5.0% by mass, and is 0.2 to 5.0% by mass. More preferably, it is more preferably 0.5 to 2.0% by mass.

スラッジと生石灰含有物との混合は、生石灰含有物とスラッジとを混合機に同時に投入しても、一方を投入してから他方を投入しても良いが、生石灰含有物を混合機に投入後、攪拌しながら、スラッジを投入する方法が、より均一な混合が行えるのに加え、遊離酸化カルシウムの局部的な水和反応の進行に起因する過度の温度上昇によるスラッジ中の固形分(特に、セメント水和物)の活性劣化を抑制できるため好ましい。
このようにして得られるスラッジと生石灰含有物との粉状化物は、通常、解砕操作は不要であるが、必要であれば解砕操作を行ってもよい。
Mixing sludge and quicklime-containing material can be done by adding quicklime-containing material and sludge to the mixer at the same time, or one of them and then the other, but after adding the quicklime-containing material to the mixer In addition to stirring, the method of adding the sludge while stirring allows more uniform mixing, and in addition, the solid content in the sludge due to excessive temperature rise caused by the progress of the local hydration reaction of free calcium oxide (especially, Cement hydrate) is preferable because it can suppress the deterioration of activity.
The pulverized product of sludge and quicklime-containing material obtained in this manner usually does not require a crushing operation, but may be subjected to a crushing operation if necessary.

上記粉状化物は、そのまま本発明の粉末状固化材として使用できるが、各種土質の固化性能の確保のため、高炉スラグ、セメントおよび石膏から選ばれる1種以上を添加することができる。このうち、セメントとしては、JIS R 5210に規定のポルトランドセメントのほかに、アルミナセメントなども使用することができる。石膏としては、2水や無水石膏を使用する。このうち、高炉スラグおよび石膏は、生石灰含有物とスラッジとの混合時に添加してもよい。   The powdered product can be used as it is as the powdered solidified material of the present invention, but one or more selected from blast furnace slag, cement and gypsum can be added to ensure the solidification performance of various soils. Of these, as cement, alumina cement or the like can be used in addition to Portland cement specified in JIS R 5210. As the gypsum, 2 water or anhydrous gypsum is used. Among these, blast furnace slag and gypsum may be added at the time of mixing quicklime containing material and sludge.

上記の高炉スラグ、セメントあるいは石膏の添加は、固化材の品質調整のためであり、それらの添加量は、好ましくは、スラッジと生石灰含有物との混合物100質量部に対して、高炉スラグ200質量部以下、より好ましくは30〜150質量部、セメント200質量部以下、より好ましくは40〜150質量部、石膏60質量部以下、より好ましくは10〜50質量部である。
本発明の粉末状固化材は、ローム土の固化改良に、より効果を発揮するが、砂質土、粘性土や高有機質土には上記のような高炉スラグ、セメントあるいは石膏の併用が好ましい。
The addition of the above blast furnace slag, cement or gypsum is for adjusting the quality of the solidified material, and the amount of addition is preferably 200 parts by mass of blast furnace slag with respect to 100 parts by mass of the mixture of sludge and quicklime. Part or less, more preferably 30 to 150 parts by weight, cement 200 parts by weight or less, more preferably 40 to 150 parts by weight, gypsum 60 parts by weight or less, more preferably 10 to 50 parts by weight.
The powdered solidified material of the present invention is more effective in improving the solidification of loam soil, but it is preferable to use blast furnace slag, cement, or gypsum as described above for sandy soil, viscous soil, and highly organic soil.

以下、実施例を比較例とともに挙げ、本発明を具体的に説明する。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples together with comparative examples.

[実施例1]
下記表1に示す配合割合(スラッジ中の水分量1モルに対し生石灰量0.3モル)により、含水率50質量%のスラッジと生石灰(粒径5mm以下)とを、JIS R 5201「セメントの物理試験方法」に準じたモルタルミキサーで5分間混合して粉状化し、粉末状固化材を得た。各材料のミキサー内への投入は、始めに生石灰を投入した後、スラッジを投入する順序で行った。
得られた粉末状固化材の含水率を下記表1に示した。
[Example 1]
Sludge having a moisture content of 50% by mass and quicklime (particle size of 5 mm or less) were mixed with JIS R 5201 “cement of cement” according to the blending ratio shown in Table 1 (the amount of quicklime 0.3 mol with respect to 1 mol of water in the sludge). The mixture was pulverized by mixing for 5 minutes with a mortar mixer according to “Physical Test Method” to obtain a powdery solidified material. The materials were charged into the mixer in the order of adding quick lime and then adding sludge.
The moisture content of the obtained powdery solidified material is shown in Table 1 below.

[実施例2〜4]および[比較例1、2]
生石灰量を下記表1に示す量に変化させた以外は、実施例1と同様の方法により粉末状固化材をそれぞれ得た。得られた各粉末状固化材の含水率を下記表1に示した。
[Examples 2 to 4] and [Comparative Examples 1 and 2]
A powdery solidified material was obtained in the same manner as in Example 1 except that the amount of quicklime was changed to the amount shown in Table 1 below. The moisture content of each powdered solidified material obtained is shown in Table 1 below.

[実施例5]
生石灰の代わりに仮焼原料を用いた以外は、実施例1と同様の方法により粉末状固化材を得た。得られた粉末状固化材の含水率を下記表1に示した。
[Example 5]
A powdery solidified material was obtained by the same method as in Example 1 except that the calcined raw material was used instead of quicklime. The moisture content of the obtained powdery solidified material is shown in Table 1 below.

[実施例6〜7]
生石灰の含有量の異なる仮焼原料を用いた以外は、実施例5と同様の方法により粉末状固化材をそれぞれ得た。得られた各粉末状固化材の含水率を下記表1に示した。
[Examples 6 to 7]
Powdered solidified materials were obtained in the same manner as in Example 5 except that calcined raw materials having different quicklime contents were used. The moisture content of each powdered solidified material obtained is shown in Table 1 below.

[実施例8]
スラッジおよび生石灰のミキサー内への投入順序を変えた(すなわち、始めにスラッジを投入した後、生石灰を投入した)以外は、実施例1と同様の方法により粉末状固化材を得た。得られた粉末状固化材の含水率を下記表1に示した。
[Example 8]
A powdered solidified material was obtained by the same method as in Example 1 except that the order in which sludge and quicklime were charged into the mixer was changed (that is, sludge was first charged and then quicklime was charged). The moisture content of the obtained powdery solidified material is shown in Table 1 below.

[実施例9]
生石灰量を下記表1に示す量に変化させた以外は、実施例8と同様の方法により粉末状固化材を得た。得られた粉末状固化材の含水率を下記表1に示した。
[Example 9]
A powdery solidified material was obtained by the same method as in Example 8 except that the amount of quicklime was changed to the amount shown in Table 1 below. The moisture content of the obtained powdery solidified material is shown in Table 1 below.

Figure 2005200603
Figure 2005200603

上記表1から明らかなように、比較例1の粉末状固化材は、含水率が高いことから、スラッジの粉状化が不十分であることがわかる。また、比較例2の粉末状固化材は、含水率が0であり、固化処理の際の固化材スラリーでの施工が困難である。
これに対し、実施例1〜9の粉末状固化材は、何れも、含水率が0.1〜5.0質量%の範囲内であり、粉末状固化材としてスラッジの乾燥、粉状化が適正に行われたことがわかる。
As is clear from Table 1 above, the powdered solidified material of Comparative Example 1 has a high moisture content, and thus it is understood that sludge powderization is insufficient. Moreover, the powdery solidified material of Comparative Example 2 has a moisture content of 0, and it is difficult to construct with the solidified material slurry during the solidification treatment.
On the other hand, the powdery solidified materials of Examples 1 to 9 all have a moisture content in the range of 0.1 to 5.0% by mass, and the sludge is dried and powdered as the powdered solidified material. You can see that it was done properly.

[実施例10]
実施例3で得られた粉末状固化材について、次のようにして、軟弱土壌に添加してその性能評価を行った。上記粉末状固化材を関東ローム土1m3 当たり150kg添加した場合の一軸圧縮強度を求めた。粉末状固化材と関東ローム土との混合は、JIS R 5201「セメントの物理試験方法」に準じたモルタルミキサーで3分間行った。一軸圧縮試験の供試体は、セメント協会標準試験方法L−01「セメント系固化材による安定処理土の試験方法」に準じ、径5cm×長さ10cmとした。一軸圧縮試験は、JIS A 1216「土の一軸圧縮試験方法」に準じた。材齢は7日および28日とした。その結果を下記表2に示した。
[Example 10]
About the powdery solidification material obtained in Example 3, it added to the soft soil as follows, and performed the performance evaluation. The uniaxial compressive strength when 150 kg of the above powder solidified material was added per 1 m 3 of Kanto loam soil was determined. The powdered solidified material and the Kanto loam soil were mixed for 3 minutes with a mortar mixer according to JIS R 5201 “Cement physical testing method”. The specimen for the uniaxial compression test was 5 cm in diameter and 10 cm in length according to the Cement Association Standard Test Method L-01 “Test Method for Stabilized Soil with Cement-Based Solidified Material”. The uniaxial compression test conformed to JIS A 1216 “Soil uniaxial compression test method”. The age was 7 and 28 days. The results are shown in Table 2 below.

[実施例11]
実施例3で得られた粉末状固化材100質量部にII型無水石膏15質量部を添加した粉末状固化材を用いて、実施例10と同様の方法により一軸圧縮強度を求めた。その結果を下記表2に示した。
[Example 11]
The uniaxial compressive strength was determined by the same method as in Example 10 using the powdered solidified material obtained by adding 15 parts by mass of type II anhydrous gypsum to 100 parts by mass of the powdered solidified material obtained in Example 3. The results are shown in Table 2 below.

[比較例3〜5]
固化材として、消石灰(比較例3)、市販の一般軟弱土用固化材(比較例4)、および含水率50質量%の含水スラッジ(比較例5)を用いて、実施例10と同様の方法により一軸圧縮強度を求めた。ただし、比較例5の含水スラッジについては、固化材と土に含まれる水分量が実施例10と同じになるように、関東ローム土の含水比を調整した。その結果を下記表2に示した。
[Comparative Examples 3 to 5]
The same method as in Example 10 using slaked lime (Comparative Example 3), a commercially available general soft soil solidifying material (Comparative Example 4), and hydrous sludge having a water content of 50% by mass (Comparative Example 5) as the solidifying material. Was used to determine the uniaxial compressive strength. However, for the hydrous sludge of Comparative Example 5, the water content ratio of Kanto Loam soil was adjusted so that the moisture content contained in the solidified material and the soil was the same as in Example 10. The results are shown in Table 2 below.

[実施例12]
実施例3で得られた粉末状固化材100質量部に高炉スラグ100質量部、普通ポルトランドセメント100質量部およびII型無水石膏30質量部を添加した粉末状固化材を用いて、含水率60質量%の有機質土に適用した以外は実施例10と同様の方法により一軸圧縮強度を求めた。その結果を下記表2に示した。
[Example 12]
Using the powdered solidified material obtained by adding 100 parts by mass of blast furnace slag, 100 parts by mass of ordinary Portland cement and 30 parts by mass of type II anhydrous gypsum to 100 parts by mass of the powdered solidified material obtained in Example 3, the water content was 60 masses. The uniaxial compressive strength was determined in the same manner as in Example 10 except that the application was applied to the organic soil. The results are shown in Table 2 below.

[比較例6]
固化材として市販の一般軟弱土用固化材を用いて、実施例12と同様の方法により一軸圧縮強度を求めた。その結果を下記表2に示した。
[Comparative Example 6]
The uniaxial compressive strength was calculated | required by the method similar to Example 12 using the commercially available general soft soil solidification material as a solidification material. The results are shown in Table 2 below.

[実施例13]
実施例3で得られた粉末状固化材100質量部に普通ポルトランドセメント100質量部およびII型無水石膏30質量部を添加した粉末状固化材を用いて、含水率17質量%の砂質土に適用した以外は実施例10と同様の方法により一軸圧縮強度を求めた。その結果を下記表2に示した。
[Example 13]
Using the powdered solidified material obtained by adding 100 parts by weight of ordinary Portland cement and 30 parts by weight of type II anhydrous gypsum to 100 parts by weight of the powdered solidified material obtained in Example 3, sandy soil having a water content of 17% by mass was used. The uniaxial compressive strength was determined by the same method as in Example 10 except that it was applied. The results are shown in Table 2 below.

[比較例7]
固化材として市販の一般軟弱土用固化材を用いて、実施例13と同様の方法により一軸圧縮強度を求めた。その結果を下記表2に示した。
[Comparative Example 7]
The uniaxial compressive strength was calculated | required by the method similar to Example 13 using the commercially available general soft soil solidification material as a solidification material. The results are shown in Table 2 below.

Figure 2005200603
Figure 2005200603

上記表2から次のことがわかる。実施例10および11と比較例3〜5との対比から明らかなように、スラッジと生石灰との混合物からなる本発明の粉末状固化材を関東ローム土に混合した場合、得られた固化処理土の一軸圧縮強度は、消石灰、市販の一般軟弱土用固化材、または含水スラッジを用いた場合よりも大きい。また、実施例12と比較例6との対比および実施例13と比較例7との対比から明らかなように、スラッジと生石灰との混合物に、さらに高炉スラグ、普通ポルトランドセメント、石膏などを混合した本発明の粉末状固化材を有機質土または砂質土に混合した場合、得られた固化処理土の一軸圧縮強度は、一般軟弱土用固化材を用いた場合よりも大きい。   The following can be seen from Table 2 above. As is clear from the comparison between Examples 10 and 11 and Comparative Examples 3 to 5, when the powdered solidified material of the present invention consisting of a mixture of sludge and quicklime was mixed with Kanto loam soil, the obtained solidified soil was obtained. The uniaxial compressive strength is larger than when slaked lime, a commercially available general soft soil solidifying material, or hydrous sludge is used. Further, as is clear from the comparison between Example 12 and Comparative Example 6 and the comparison between Example 13 and Comparative Example 7, blast furnace slag, ordinary Portland cement, gypsum and the like were further mixed with the mixture of sludge and quicklime. When the powdery solidified material of the present invention is mixed with organic soil or sandy soil, the uniaxial compressive strength of the obtained solidified soil is larger than when a general soft soil solidified material is used.

Claims (7)

コンクリートスラッジと生石灰含有物との混合物からなる粉末状固化材であって、コンクリートスラッジと生石灰含有物との混合割合が、コンクリートスラッジ中の水分1モルに対し生石灰分が0.3〜0.7モルであることを特徴とする粉末状固化材。   It is a powdery solidified material composed of a mixture of concrete sludge and quicklime containing material, and the mixing ratio of concrete sludge and quicklime containing material is 0.3 to 0.7 quicklime content with respect to 1 mol of water in the concrete sludge. A powdered solidified material characterized by being a mole. 上記生石灰含有物が、生石灰またはセメント製造装置のプレヒーター部分より抜出された仮焼原料である請求項1記載の粉末状固化材。   The powdered solidified material according to claim 1, wherein the quicklime-containing material is a calcined raw material extracted from quicklime or a preheater portion of a cement manufacturing apparatus. さらに高炉スラグ、セメントおよび石膏から選ばれる1種以上を含有する請求項1または2記載の粉末状固化材。   Furthermore, the powdery solidification material of Claim 1 or 2 containing 1 or more types chosen from blast furnace slag, cement, and gypsum. 上記の高炉スラグ、セメントおよび石膏の含有量が、上記のコンクリートスラッジと生石灰含有物との混合物100質量部に対して、高炉スラグ200質量部以下、セメント200質量部以下、石膏60質量部以下である請求項3記載の粉末状固化材。   The content of the blast furnace slag, cement and gypsum is 200 parts by mass or less of blast furnace slag, 200 parts by mass or less of cement, and 60 parts by mass or less of gypsum with respect to 100 parts by mass of the mixture of the concrete sludge and the quicklime content. The powdery solidified material according to claim 3. コンクリートスラッジと生石灰含有物とを、コンクリートスラッジ中の水分1モルに対し生石灰分が0.3〜0.7モルになるように混合し、粉状化することを特徴とする粉末状固化材の製造方法。   A powdered solidified material characterized by mixing concrete sludge and quicklime-containing material so that quicklime content is 0.3 to 0.7 mol with respect to 1 mol of water in the concrete sludge, and pulverizing. Production method. コンクリートスラッジと生石灰含有物との混合および粉状化を、ミキサーに生石灰含有物を投入後、攪拌しながら、コンクリートスラッジを投入することにより行う請求項5記載の粉末状固化材の製造方法。   6. The method for producing a powdered solidified material according to claim 5, wherein the mixing and pulverization of the concrete sludge and the quicklime-containing material are performed by adding the concrete sludge while stirring, after adding the quicklime-containing material to the mixer. 上記ミキサーが、生コンクリートアジテータ車のミキサー部である請求項6記載の粉末状固化材の製造方法。
The method for producing a powdery solidified material according to claim 6, wherein the mixer is a mixer part of a ready-mixed concrete agitator vehicle.
JP2004010454A 2004-01-19 2004-01-19 Method for producing powdered solidified material Expired - Lifetime JP4418244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010454A JP4418244B2 (en) 2004-01-19 2004-01-19 Method for producing powdered solidified material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010454A JP4418244B2 (en) 2004-01-19 2004-01-19 Method for producing powdered solidified material

Publications (2)

Publication Number Publication Date
JP2005200603A true JP2005200603A (en) 2005-07-28
JP4418244B2 JP4418244B2 (en) 2010-02-17

Family

ID=34823175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010454A Expired - Lifetime JP4418244B2 (en) 2004-01-19 2004-01-19 Method for producing powdered solidified material

Country Status (1)

Country Link
JP (1) JP4418244B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240907A (en) * 2005-03-02 2006-09-14 Omori Kensetsu Kk Cement recovery method, cement recovered by the method, and method of reusing cement
JP6174280B1 (en) * 2017-02-07 2017-08-02 三和石産株式会社 Fluid backfill material
CN110184869A (en) * 2019-06-17 2019-08-30 中交第三公路工程局有限公司 The improvement of laterite pellet roadbed and construction method
CN114808581A (en) * 2022-05-13 2022-07-29 保利长大工程有限公司 Construction method for deep soft foundation low embankment shallow layer
CN115321788A (en) * 2022-09-09 2022-11-11 太原理工大学 Rapid sludge curing agent and preparation method and application thereof
CN115340325A (en) * 2022-08-25 2022-11-15 北京中鼎长信科技有限公司 Curing agent for premixed fluid curing soil and preparation and use methods thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240907A (en) * 2005-03-02 2006-09-14 Omori Kensetsu Kk Cement recovery method, cement recovered by the method, and method of reusing cement
JP4630690B2 (en) * 2005-03-02 2011-02-09 大森建設株式会社 Cement recovery method, cement recovered by the method, and cement reuse method
JP6174280B1 (en) * 2017-02-07 2017-08-02 三和石産株式会社 Fluid backfill material
JP2018127529A (en) * 2017-02-07 2018-08-16 三和石産株式会社 Fluid backfilling material
CN110184869A (en) * 2019-06-17 2019-08-30 中交第三公路工程局有限公司 The improvement of laterite pellet roadbed and construction method
CN110184869B (en) * 2019-06-17 2021-06-29 中交第三公路工程局有限公司 Improvement and construction method of laterite granule roadbed
CN114808581A (en) * 2022-05-13 2022-07-29 保利长大工程有限公司 Construction method for deep soft foundation low embankment shallow layer
CN115340325A (en) * 2022-08-25 2022-11-15 北京中鼎长信科技有限公司 Curing agent for premixed fluid curing soil and preparation and use methods thereof
CN115321788A (en) * 2022-09-09 2022-11-11 太原理工大学 Rapid sludge curing agent and preparation method and application thereof
CN115321788B (en) * 2022-09-09 2023-07-21 太原理工大学 Rapid curing agent for sludge and preparation method and application thereof

Also Published As

Publication number Publication date
JP4418244B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP2002362949A (en) Method of manufacturing solidifying material utilizing oyster shell
JP5776749B2 (en) Cement-based solidified concrete sludge heat-dried powder and method for producing the same
NL8800513A (en) METHOD FOR MANUFACTURING A GRANULAR BUILDING MATERIAL FROM WASTE.
JP4418244B2 (en) Method for producing powdered solidified material
JP4663999B2 (en) Soil neutral solidification material and soil neutral solidification improvement method
JP4694434B2 (en) By-product processing method
JP2018127529A (en) Fluid backfilling material
JP4630690B2 (en) Cement recovery method, cement recovered by the method, and cement reuse method
JP3847531B2 (en) Steelmaking slag aggregate processing method
JPH09279142A (en) Solidifying material for stabilizing treatment of soil property
JPH105800A (en) Dehydration treating material for sludge and dehydration treatment
JP2002512935A (en) Cementitious mixture
JP2000334418A (en) Method for solidifying steel making slag
JP2003183653A (en) Soil treating material composition and method for producing the same
JPH11228209A (en) Hydraulic cement composition
JP7062225B2 (en) Strength-enhancing agent, its manufacturing method, and Portland cement strength-enhancing method
JPH10273661A (en) Solidifying material having low alkali content and its production
JP4275268B2 (en) Solidified material
JP4583148B2 (en) Mud reforming method
JP2005154590A (en) Dust-free solidification material and method for producing the same
JP2005060125A (en) Method for producing cement
JP2003211153A (en) Agent and method for removing organic substance in water recovered from concrete, and concrete manufacturing method
JPH10265777A (en) Soil-stabilizing material and its production
JP2006056989A (en) Hydraulic alumina, neutral solidification material for water-containing soil obtained by using the same, method for producing hydraulic alumina, method for preventing heavy metal from being eluted, and method of dehydration and solidification treatment of highly water-containing soil
JP2008088007A (en) Cement and cement composition using treated product of shochu-distillation waste liquid as raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4418244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250