JP2005200349A - Method for producing phenolic compound - Google Patents

Method for producing phenolic compound Download PDF

Info

Publication number
JP2005200349A
JP2005200349A JP2004008407A JP2004008407A JP2005200349A JP 2005200349 A JP2005200349 A JP 2005200349A JP 2004008407 A JP2004008407 A JP 2004008407A JP 2004008407 A JP2004008407 A JP 2004008407A JP 2005200349 A JP2005200349 A JP 2005200349A
Authority
JP
Japan
Prior art keywords
aromatic compound
packed bed
catalyst
hydrogen peroxide
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004008407A
Other languages
Japanese (ja)
Inventor
Kunio Yube
邦夫 夕部
Kazuhiro Mae
一廣 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004008407A priority Critical patent/JP2005200349A/en
Publication of JP2005200349A publication Critical patent/JP2005200349A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a phenolic compound in high yield through enabling the contact between an aromatic compound and hydrogen peroxide to be improved without using any organic solvent and vigorous physical agitation, etc. <P>SOLUTION: The method for producing the phenolic compound comprises carrying out a reaction between the aromatic compound and hydrogen peroxide in a heterogeneous phase system in the presence of a solid catalyst to effect direct hydroxylation of the aromatic compound. In this method, the reaction is carried out using a micropacked bed catalyst reactor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,芳香族化合物と過酸化水素を固体触媒の存在下で不均一相系にて反応させて芳香族化合物の直接ヒドロキシル化によりフェノール類を製造する方法に関するものである。フェノール類は,医薬品中間体や各種機能材料の合成原料として有用な化合物である。 The present invention relates to a process for producing phenols by direct hydroxylation of an aromatic compound by reacting an aromatic compound and hydrogen peroxide in the presence of a solid catalyst in a heterogeneous phase system. Phenols are useful compounds as synthetic raw materials for pharmaceutical intermediates and various functional materials.

フェノール類の代表例として,フェノール,クレゾールなどが挙げられる。これらは,工業的には,ベンゼンまたはトルエンを原料とし,クメンまたはシメンに変換したのち,酸化により生成したクメンヒドロパーオキシドまたはシメンヒドロパーオキシドを,分解することによって生産されている。しかしながら,このような多工程プロセスは,エネルギー的に不利であるのみならず,アセトンのような非目的生成物が等量生じる,などといった問題点がある。 Representative examples of phenols include phenol and cresol. These are industrially produced by decomposing cumene hydroperoxide or cymene hydroperoxide produced by oxidation after conversion to cumene or cymene from benzene or toluene. However, such a multi-step process is not only energetically disadvantageous, but also has problems such as the generation of an equivalent amount of a non-target product such as acetone.

そこで,一段の工程で,芳香族化合物を直接ヒドロキシル化する方法が,古くから数多く検討されてきた。なかでも酸化剤として過酸化水素を用いる方法は,取扱いが容易である,酸化反応後は水になるため環境への負荷を少なくできる,などの理由から注目されている。 Thus, many methods have been studied for a long time to directly hydroxylate aromatic compounds in a single step. In particular, the method using hydrogen peroxide as an oxidant is attracting attention because it is easy to handle and can be reduced to the environment because it becomes water after the oxidation reaction.

特許文献1〜3には,チタノシリケート触媒存在下,芳香族化合物と過酸化水素を反応させて芳香族化合物を直接ヒドロキシル化する方法が記載されている。一般に,過酸化水素は液体または水溶液の状態では芳香族化合物と実質的に混じり合わない。そこで,これらの方法では,適当な有機溶媒を介在させることで,芳香族化合物と過酸化水素との接触を向上させ,フェノール類の収率を高めている。しかしながら,有機溶媒を使用すると,有機溶媒自身が酸化剤と反応する恐れがある,有機溶媒の分離工程にエネルギーコストがかかる,などの欠点がある。 Patent Documents 1 to 3 describe a method for directly hydroxylating an aromatic compound by reacting an aromatic compound with hydrogen peroxide in the presence of a titanosilicate catalyst. In general, hydrogen peroxide does not substantially mix with aromatic compounds in a liquid or aqueous solution. Therefore, in these methods, by contacting an appropriate organic solvent, the contact between the aromatic compound and hydrogen peroxide is improved, and the yield of phenols is increased. However, when an organic solvent is used, the organic solvent itself may react with the oxidizing agent, and there are disadvantages such as an energy cost for the separation process of the organic solvent.

また,非特許文献1,2には,チタノシリケート触媒存在下,有機溶媒を使用しない液液固三相系にて,芳香族化合物と過酸化水素を反応させて芳香族化合物を直接ヒドロキシル化する方法が記載されている。しかしながら,これらの方法では,芳香族化合物と過酸化水素との接触を向上させるために,激しい物理的撹拌が必要である。激しい物理的撹拌を行うと,使用する固体触媒が粉砕されてしまい反応後の触媒回収が困難になる,などの欠点がある。 Non-Patent Documents 1 and 2 describe that an aromatic compound is directly hydroxylated by reacting an aromatic compound with hydrogen peroxide in a liquid-liquid solid three-phase system without using an organic solvent in the presence of a titanosilicate catalyst. How to do is described. However, these methods require vigorous physical agitation to improve the contact between the aromatic compound and hydrogen peroxide. When vigorous physical agitation is performed, the solid catalyst to be used is crushed and it becomes difficult to recover the catalyst after the reaction.

一方,マイクロ反応器を用いて,芳香族化合物と過酸化水素を反応させる方法も,検討されている。マイクロ反応器とは,マイクロメートルスケール(数μm〜数千μm)の微小空間を有する反応装置を意味する。 On the other hand, a method of reacting an aromatic compound with hydrogen peroxide using a microreactor has been studied. The microreactor means a reactor having a micro space on a micrometer scale (several μm to several thousand μm).

特許文献4には,マイクロ反応器を用いて,芳香族化合物と反応剤を反応させる方法が記載されている。また,特許文献5,6には,マイクロ反応器を用いて,有機化合物と過酸化物を反応させる方法が記載されている。マイクロ反応器を用いると,酸化反応の際に生じる反応熱を効率的に除去できることは公知である。しかしながら,これらの方法で,芳香族化合物と過酸化水素とを反応させた場合,過酸化水素は液体または水溶液の状態では芳香族化合物と実質的に混じり合わないため,芳香族化合物と過酸化水素の接触が不足し,充分なフェノール類の収率が得られない。 Patent Document 4 describes a method of reacting an aromatic compound and a reactant using a microreactor. Patent Documents 5 and 6 describe a method of reacting an organic compound and a peroxide using a microreactor. It is known that reaction heat generated during an oxidation reaction can be efficiently removed by using a microreactor. However, when an aromatic compound and hydrogen peroxide are reacted by these methods, hydrogen peroxide does not substantially mix with the aromatic compound in the liquid or aqueous solution state. Insufficient phenol yields cannot be obtained.

また,非特許文献3には,マイクロ反応器を用いて,チタノシリケート触媒存在下で,有機化合物と過酸化水素を反応させる方法が記載されている。これらの方法では,チタノシリケート触媒をマイクロ反応器の壁面に固着してあるため,反応後に劣化した触媒を交換・回収することは困難である。マイクロ反応器自身を交換せざるを得ないため,コスト的に不利となる。
米国特許第4396783号明細書 英国特許第2116974号明細書 特開平11―240847号公報 特表2001―521913号公報 欧州特許第903174号明細書 特開平11―171857号公報 Journal of Catalysis, 178 (1998) 101-107 Catalysis Today, 49 (1999) 185-191 Chemical Communications, (2002) 878-879
Non-Patent Document 3 describes a method of reacting an organic compound and hydrogen peroxide in the presence of a titanosilicate catalyst using a microreactor. In these methods, since the titanosilicate catalyst is fixed to the wall surface of the microreactor, it is difficult to exchange and recover the deteriorated catalyst after the reaction. The microreactor itself must be replaced, which is disadvantageous in terms of cost.
US Pat. No. 4,396,783 British Patent No. 2169974 Japanese Patent Laid-Open No. 11-240847 Special table 2001-521913 EP 903174 specification JP-A-11-171857 Journal of Catalysis, 178 (1998) 101-107 Catalysis Today, 49 (1999) 185-191 Chemical Communications, (2002) 878-879

本発明の目的は,従来技術における上記したような課題を解決し,芳香族化合物の直接ヒドロキシル化によるフェノール類の製造方法を提供することにある。 An object of the present invention is to solve the above-described problems in the prior art and to provide a method for producing phenols by direct hydroxylation of an aromatic compound.

本発明者らは,鋭意研究を重ねた結果,マイクロ充填層触媒反応器を用いることによって,有機溶媒や激しい物理的撹拌などを用いずに,芳香族化合物と過酸化水素との接触を改善させることが可能となり,フェノール類の収率を向上できることを見出し,本発明を達成した。 As a result of extensive research, the present inventors have improved contact between an aromatic compound and hydrogen peroxide without using an organic solvent or vigorous physical stirring by using a micro packed bed catalytic reactor. And the present invention has been achieved by finding that the yield of phenols can be improved.

すなわち,本発明は,芳香族化合物と過酸化水素を固体触媒の存在下で不均一相系にて反応させて芳香族化合物の直接ヒドロキシル化によりフェノール類を製造する方法において,芳香族化合物と過酸化水素の反応をマイクロ充填層触媒反応器を用いて行うことを特徴とする,フェノール類の製造方法である。マイクロ充填層触媒反応器とは,触媒が充填された微小空間を有する反応器を意味する。触媒が充填された微小空間の形状は、管状が好ましい。 That is, the present invention relates to a process for producing a phenol by direct hydroxylation of an aromatic compound by reacting the aromatic compound with hydrogen peroxide in a heterogeneous phase system in the presence of a solid catalyst. This is a method for producing phenols, characterized in that the reaction of hydrogen oxide is carried out using a micro packed bed catalytic reactor. The micro packed bed catalyst reactor means a reactor having a minute space filled with a catalyst. The shape of the minute space filled with the catalyst is preferably tubular.

本発明によれば,有機溶媒や激しい物理的撹拌などを用いずに,芳香族化合物と過酸化水素との接触を改善させることが可能となり,高い収率でフェノール類を製造できる。また,有機溶媒の分離工程に必要なエネルギーコストが省略できる。さらに,激しい物理的撹拌による固体触媒の粉砕も生じないため,反応後の触媒回収も容易に実施できる。 According to the present invention, it is possible to improve the contact between an aromatic compound and hydrogen peroxide without using an organic solvent or vigorous physical stirring, and phenols can be produced in a high yield. Moreover, the energy cost required for the organic solvent separation step can be omitted. Furthermore, since the solid catalyst is not pulverized by vigorous physical agitation, the catalyst can be easily recovered after the reaction.

また,本発明によれば,酸化反応の際に生じる反応熱を効率的に除去できる。したがって,精密な温度制御が可能となり,フェノール類の収率を向上できる。また,生産時の安全性を向上できる。また,過熱による触媒の劣化を抑えることができる。 Further, according to the present invention, heat of reaction generated during the oxidation reaction can be efficiently removed. Therefore, precise temperature control becomes possible and the yield of phenols can be improved. In addition, safety during production can be improved. In addition, deterioration of the catalyst due to overheating can be suppressed.

また,本発明によれば,固体触媒をマイクロ反応器の壁面に固着していないため,反応後に劣化した触媒の交換・回収が容易に実施できる。また,回収後の触媒を再生し,再び反応に使用することも可能である。 In addition, according to the present invention, since the solid catalyst is not fixed to the wall surface of the microreactor, the catalyst deteriorated after the reaction can be easily replaced and recovered. It is also possible to regenerate the recovered catalyst and use it again in the reaction.

本発明において,マイクロ充填層触媒反応器として,好ましくは,2以上の流入路及び1以上の流出路,並びに,該2以上の流入路が合流する空間を有し,該空間が最短径1〜10000μm、好適には最短径10〜2000μmの寸法の微小空間である反応器を用いる。また,特に好ましくは,最短径1〜10000μm、好適には最短径10〜2000μmの寸法の微小空間を有する管状反応器を用いる。 In the present invention, the micro packed bed catalyst reactor preferably has two or more inflow channels and one or more outflow channels, and a space where the two or more inflow channels merge, and the space has the shortest diameter 1 to 1. A reactor which is a minute space having a size of 10,000 μm, preferably a shortest diameter of 10 to 2000 μm is used. Particularly preferably, a tubular reactor having a minute space with a shortest diameter of 1 to 10,000 μm, preferably a shortest diameter of 10 to 2000 μm is used.

本発明において,用いられるマイクロ充填層触媒反応器の流入路,合流空間,および,流出路の形状に制限はなく,流れ方向に垂直な断面の形状が円形であってもよいし,四角形であってもよい。また,本発明において,用いられるマイクロ充填層触媒反応器の流入路を合流空間の上流で2以上に分岐し,2以上の合流空間を有する反応装置を用いてもよい。 In the present invention, there are no restrictions on the shape of the inflow path, the merge space, and the outflow path of the micro packed bed catalyst reactor used, and the cross-sectional shape perpendicular to the flow direction may be circular or rectangular. May be. In the present invention, a reactor having two or more merge spaces may be used in which the inflow path of the micro packed bed catalyst reactor used is branched into two or more upstream of the merge space.

本発明では,種々の金属触媒,金属酸化物触媒などの固体触媒をマイクロ反応器に充填する。好ましくはゼオライト触媒を用い,さらに好ましくは,チタノシリケート触媒を用いる。また,固体触媒は,単一で用いてもよいし,複数の固体触媒を複合させて用いてもよい。また,固体触媒を担体に担持したものを用いてもよいし,固体触媒をバインダーで希釈したものを用いてもよい。 In the present invention, the microreactor is filled with a solid catalyst such as various metal catalysts and metal oxide catalysts. A zeolite catalyst is preferably used, and a titanosilicate catalyst is more preferably used. Moreover, a solid catalyst may be used alone or a plurality of solid catalysts may be used in combination. Further, a solid catalyst supported on a carrier may be used, or a solid catalyst diluted with a binder may be used.

また,本発明は,その構成の一つとしてマイクロ静止型混合器を有するマイクロ反応器を用いてもよい。マイクロ静止型混合器とは,マイクロメートルスケール(数μm〜数千μm)の微小空間を有する静止型混合器を意味する。 In the present invention, a microreactor having a microstatic mixer may be used as one of its configurations. The micro static mixer means a static mixer having a micro space on a micrometer scale (several μm to several thousand μm).

また,本発明は,好ましくは,温度制御可能なマイクロ反応器を用いる。温度の制御方法としては,マイクロ反応器をオイルバス等の恒温槽中に浸けてもよいし,マイクロ反応器に電気ヒーターや熱媒流路を取り付けてもよい。 The present invention preferably uses a microreactor capable of controlling the temperature. As a method for controlling the temperature, the microreactor may be immersed in a thermostat such as an oil bath, or an electric heater or a heat medium flow path may be attached to the microreactor.

本発明では,酸化剤として,過酸化水素を,液体もしくは水溶液の状態で用いる。 In the present invention, hydrogen peroxide is used as an oxidizing agent in a liquid or aqueous solution state.

本発明において,用いられる芳香族化合物に制限はなく,例えば,ベンゼンの他,トルエン,エチルベンゼン,キシレン類,トリメチルベンゼン類などのアルキル置換芳香族炭化水素類,ベンズアルデヒドなどの芳香族アルデヒド類,フェノール,クレゾールなどのフェノール類,ベンジルアルコール,フェネチルアルコールなどの芳香族アルコール類,クロロベンゼン,ブロモベンゼンなどのハロゲン化ベンゼン類,アニソール,ジフェニルエーテルなど芳香族エーテル類,などを挙げることができる。 In the present invention, the aromatic compound used is not limited. For example, in addition to benzene, alkyl-substituted aromatic hydrocarbons such as toluene, ethylbenzene, xylenes and trimethylbenzenes, aromatic aldehydes such as benzaldehyde, phenol, Examples thereof include phenols such as cresol, aromatic alcohols such as benzyl alcohol and phenethyl alcohol, halogenated benzenes such as chlorobenzene and bromobenzene, and aromatic ethers such as anisole and diphenyl ether.

本発明において,製造されるフェノール類とは,芳香族化合物の芳香環を形成する炭素における炭素―水素結合が少なくとも1個以上,炭素―ヒドロキシ結合に変換された化合物であり,例えば,ベンゼンからは,フェノール,カテコール,ヒドロキノン,レゾルシンなどが生成し,トルエンからは,クレゾール類,ポリヒドロキシトルエン類などが生成し,フェノールからは,カテコール,ヒドロキノン,レゾルシンなどが生成し,アニソールからは,メトキシフェノール,メトキシレゾルシンなどが生成する。また,反応条件によっては,上記のフェノール類とともに,ベンゾキノンなどのキノン類も同時に生成する場合がある。 In the present invention, the produced phenols are compounds in which at least one carbon-hydrogen bond in the carbon forming the aromatic ring of the aromatic compound is converted to a carbon-hydroxy bond. , Phenol, catechol, hydroquinone, resorcin, etc. are produced. From toluene, cresols, polyhydroxytoluenes, etc. are produced. From phenol, catechol, hydroquinone, resorcin, etc. are produced. From anisole, methoxyphenol, Methoxyresorcin is produced. Depending on the reaction conditions, quinones such as benzoquinone may be produced at the same time as the above phenols.

図1は,本発明に用いられるマイクロ充填層触媒反応器の一例を示し,図1(a)は斜視図であり,図1(b)は流れ方向に平行な断面の形状の概略図である。図中1は流入路,2は流出路,3は流入路が合流する空間である。例えば,1および2の内径が500μmであり,流出路の合流空間よりも下流側に固体触媒4を充填する。 FIG. 1 shows an example of a micro packed bed catalytic reactor used in the present invention, FIG. 1 (a) is a perspective view, and FIG. 1 (b) is a schematic diagram of a cross-sectional shape parallel to the flow direction. . In the figure, 1 is an inflow channel, 2 is an outflow channel, and 3 is a space where the inflow channel merges. For example, the inner diameters of 1 and 2 are 500 μm, and the solid catalyst 4 is filled downstream from the merge space of the outflow path.

図2は,本発明に用いられるマイクロ充填層触媒反応器の別の一例を示し,図2(a)は斜視図であり,図2(b)は流れ方向に平行な断面の形状の概略図である。図中1は流入路,2は流出路,3は流入路が合流する空間である。例えば,1および2の幅および高さが500μmであり,流出路の合流空間よりも下流側に固体触媒4を充填する。
図3は,本発明に用いられるマイクロ充填層触媒反応器の別の一例を示し,図3(a)は斜視図であり,図3(b)は流れ方向に平行な断面の形状の概略図である。図中1は流入路,2は流出路,3は流入路が合流する空間である。例えば,1および2の幅が5000μmであり,1および2の高さが50μmであり,流出路の合流空間よりも下流側に固体触媒4を充填する。
FIG. 2 shows another example of the micro packed bed catalytic reactor used in the present invention, FIG. 2 (a) is a perspective view, and FIG. 2 (b) is a schematic diagram of a cross-sectional shape parallel to the flow direction. It is. In the figure, 1 is an inflow channel, 2 is an outflow channel, and 3 is a space where the inflow channel merges. For example, the widths and heights of 1 and 2 are 500 μm, and the solid catalyst 4 is filled downstream from the merge space of the outflow path.
FIG. 3 shows another example of the micro packed bed catalyst reactor used in the present invention, FIG. 3 (a) is a perspective view, and FIG. 3 (b) is a schematic view of a cross-sectional shape parallel to the flow direction. It is. In the figure, 1 is an inflow channel, 2 is an outflow channel, and 3 is a space where the inflow channel merges. For example, the width of 1 and 2 is 5000 μm, the height of 1 and 2 is 50 μm, and the solid catalyst 4 is filled downstream of the merge space of the outflow path.

図4は,本発明に用いられるマイクロ充填層触媒反応器の別の一例を示し,流れ方向に平行な断面の形状の概略図である。図中1は流入路,2は流出路,3は流入路が合流する空間である。例えば,2つの流入路1が合流空間の上流で2つに分岐し,2つの合流空間3を形成しており,1および2の幅および高さが50μmであり,2つの流出路の合流空間よりも下流側に固体触媒4を充填する。 FIG. 4 shows another example of the micro packed bed catalyst reactor used in the present invention, and is a schematic view of a cross-sectional shape parallel to the flow direction. In the figure, 1 is an inflow channel, 2 is an outflow channel, and 3 is a space where the inflow channel merges. For example, two inflow paths 1 are branched into two upstream of the merge space to form two merge spaces 3, and the width and height of 1 and 2 are 50 μm, and the merge space of the two outflow paths Further, the solid catalyst 4 is filled downstream.

次に,実施例により更に具体的に説明する。ただし,本発明は,これらの実施例により制限されるものではない。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples.

実施例1
以下,開発したマイクロ充填層触媒反応器の一例を挙げる。内径が1000μm,長さが50mmのポリテトラフルオロエチレン製チューブに,孔径が2μmのインラインフィルターを付け,粒子径が2〜1000μmのチタノシリケート触媒TS−1を15mg充填した.この触媒を充填したチューブを,流路幅が30μmの静的マイクロミキサー(ドイツ国 IMM社 Single Mixer)の出口に接続して,マイクロ充填層触媒反応器を作製した。接続部には高速液体クロマトグラフィー用のコネクターを使用したため,簡単に取り付け・取り外しが可能であり,触媒の回収・交換も容易に実施できた。また,マイクロ反応器を所定の温度に設定した恒温槽中に浸けることで,温度制御した。
Example 1
An example of the developed micro packed bed catalyst reactor is given below. A polytetrafluoroethylene tube having an inner diameter of 1000 μm and a length of 50 mm was provided with an in-line filter having a pore diameter of 2 μm and filled with 15 mg of titanosilicate catalyst TS-1 having a particle diameter of 2 to 1000 μm. A tube packed with this catalyst was connected to the outlet of a static micromixer (Single Mixer, IMM, Germany) with a flow path width of 30 μm to produce a micro packed bed catalyst reactor. Since the connector for high performance liquid chromatography was used for the connection part, it could be easily attached and removed, and the catalyst could be easily recovered and replaced. The temperature was controlled by immersing the microreactor in a thermostat set at a predetermined temperature.

2台のシリンジポンプ(米国 Harvard社製 Model 11-IW)を用いて,ベンゼンと10wt%過酸化水素水を送液し,上述のマイクロ反応器に導入した。ベンゼンと過酸化水素の物質量比を1:1とし,所定の滞留時間となるようにポンプ流量を設定し,25℃で反応を実施した。
図5は,本発明の実施例1で使用したマイクロ充填層触媒反応器の模式図である。一方の流入路1aからベンゼンを導入し,他方の流入路1bから10wt%過酸化水素水を導入し,マイクロ静止型混合器5の内部で合流した液を,フィルター6を付けて固体触媒4を充填したチューブ7の内部を通過させることで反応を実施した後,流出路2から取り出して分析試料とする。
Using two syringe pumps (Model 11-IW manufactured by Harvard, USA), benzene and 10 wt% hydrogen peroxide solution were fed and introduced into the microreactor described above. The mass ratio of benzene and hydrogen peroxide was 1: 1, the pump flow rate was set to achieve a predetermined residence time, and the reaction was carried out at 25 ° C.
FIG. 5 is a schematic diagram of the micro packed bed catalyst reactor used in Example 1 of the present invention. Benzene is introduced from one inflow path 1a, 10 wt% hydrogen peroxide water is introduced from the other inflow path 1b, and the liquid that has been merged inside the micro static mixer 5 is attached to a solid catalyst 4 with a filter 6. The reaction is carried out by passing the inside of the filled tube 7, and then taken out from the outflow passage 2 to be an analysis sample.

反応後の混合溶液を,冷却した容器に一定量はかりとり,アセトニトリルを加えて均一溶液としたのち,ガスクロマトグラフィー(島津製作所(株)製 GC-17A)にて分析したところ,主生成物としてフェノールが得られた。そのほか,逐次的な酸化反応生成物としてベンゾキノンも検出された。15秒の滞留時間で,フェノール収率は0.4%に達した。また,150秒の滞留時間では,フェノール収率は1.0%に達した(フェノール選択率82.1%)。なお,フェノール収率およびフェノール選択率は,供給したベンゼンの物質量を基準とした。 A certain amount of the mixed solution after the reaction is weighed in a cooled container, and acetonitrile is added to make a homogeneous solution. Phenol was obtained. In addition, benzoquinone was also detected as a sequential oxidation reaction product. With a residence time of 15 seconds, the phenol yield reached 0.4%. In addition, at a residence time of 150 seconds, the phenol yield reached 1.0% (phenol selectivity 82.1%). The phenol yield and phenol selectivity were based on the amount of benzene supplied.

比較例1
比較のため,撹拌器付き丸底フラスコを用いて同様の反応を実施した。コンデンサー連結した丸底フラスコに,粒子径が2〜1000μmのチタノシリケート触媒TS−1を1gとベンゼンとを入れ,激しく撹拌しながら加熱して25℃に設定したのち,10wt%過酸化水素水を投入し(ベンゼンと過酸化水素の物質量比は1:1),撹拌および温度を保持したまま反応を実施した。
Comparative Example 1
For comparison, a similar reaction was performed using a round bottom flask with a stirrer. Place 1g of titanosilicate catalyst TS-1 with a particle size of 2-1000μm and benzene in a condenser-connected round bottom flask, heat it with vigorous stirring and set to 25 ° C. Was added (the substance ratio of benzene and hydrogen peroxide was 1: 1), and the reaction was carried out while stirring and maintaining the temperature.

反応後の混合溶液を,実施例1と同様にガスクロマトグラフィーにて分析したところ,フェノール収率が1.0%に達するには30分を要した(フェノール選択率81.6%)。このことは,実施例1に示したマイクロ充填層触媒反応器の方が,単位時間あたりのフェノール収率が向上していることを示す。 The mixed solution after the reaction was analyzed by gas chromatography in the same manner as in Example 1. As a result, 30 minutes were required for the phenol yield to reach 1.0% (phenol selectivity 81.6%). This shows that the phenol packed bed catalytic reactor shown in Example 1 has improved phenol yield per unit time.

実施例2〜6
さらに,反応温度を35℃,45℃,55℃,65℃または75℃に変えた以外は,実施例1と同様にして反応を実施した。15秒の滞留時間での,フェノール収率を表1に示す。
Examples 2-6
Furthermore, the reaction was carried out in the same manner as in Example 1 except that the reaction temperature was changed to 35 ° C, 45 ° C, 55 ° C, 65 ° C or 75 ° C. Table 1 shows the phenol yield at a residence time of 15 seconds.

Figure 2005200349
Figure 2005200349

本発明に用いられるマイクロ充填層触媒反応器の一例の斜視図と流れ方向に平行な断面の形状を示す概略図。The schematic which shows the shape of the cross section parallel to the perspective view and example of a flow direction of an example of the micro packed bed catalyst reactor used for this invention. 本発明に用いられるマイクロ充填層触媒反応器の別の一例の斜視図と流れ方向に平行な断面の形状を示す概略図。The schematic which shows the shape of the cross section parallel to the perspective view and flow direction of another example of the micro packed bed catalyst reactor used for this invention. 本発明に用いられるマイクロ充填層触媒反応器の別の一例の斜視図と流れ方向に平行な断面の形状を示す概略図。The schematic which shows the shape of the cross section parallel to the perspective view and flow direction of another example of the micro packed bed catalyst reactor used for this invention. 本発明に用いられるマイクロ充填層触媒反応器の別の一例の流れ方向に平行な断面の形状を示す概略図。Schematic which shows the shape of the cross section parallel to the flow direction of another example of the micro packed bed catalyst reactor used for this invention. 本発明に用いられるマイクロ充填層触媒反応器の一例の模式図。The schematic diagram of an example of the micro packed bed catalyst reactor used for this invention.

符号の説明Explanation of symbols

1,1a,1b 流入路
2 流出路
3 合流空間
4 固体触媒
5 マイクロ静止型混合器
6 フィルター
7 チューブ
1, 1a, 1b Inlet channel
2 Outflow channel
3 Junction space
4 Solid catalyst
5 Micro static mixer
6 Filter
7 tubes

Claims (6)

芳香族化合物と過酸化水素を固体触媒の存在下で不均一相系にて反応させて芳香族化合物の直接ヒドロキシル化によりフェノール類を製造する方法において,
芳香族化合物と過酸化水素の反応をマイクロ充填層触媒反応器を用いて行うことを特徴とする,フェノール類の製造方法。
In a method for producing phenols by direct hydroxylation of an aromatic compound by reacting an aromatic compound with hydrogen peroxide in the presence of a solid catalyst in a heterogeneous phase system,
A process for producing phenols, wherein a reaction between an aromatic compound and hydrogen peroxide is carried out using a micro packed bed catalytic reactor.
マイクロ充填層触媒反応器が,2以上の流入路及び1以上の流出路,並びに,該2以上の流入路が合流する空間を有し,該空間が最短径1〜10000μmの寸法の微小空間である反応装置である,請求項1に記載の方法。 The micro packed bed catalytic reactor has two or more inflow channels, one or more outflow channels, and a space where the two or more inflow channels merge, and the space is a minute space having a shortest diameter of 1 to 10,000 μm. The method of claim 1, which is a reactor. マイクロ充填層触媒反応器が,最短径10〜2000μmの寸法の微小空間を有することを特徴とする,請求項2に記載の方法。 3. A process according to claim 2, characterized in that the micro packed bed catalytic reactor has a microspace with a shortest diameter of 10 to 2000 [mu] m. マイクロ充填層触媒反応器が,その構成の一つとしてマイクロ静止型混合器を有する,請求項1に記載の方法。 The process according to claim 1, wherein the micro packed bed catalytic reactor comprises a micro static mixer as one of its configurations. マイクロ充填層触媒反応器が,温度制御可能である,請求項1に記載の方法。 The method of claim 1, wherein the micro packed bed catalytic reactor is temperature controllable. 固体触媒が,チタノシリケート触媒である請求項1に記載の方法。 The process according to claim 1, wherein the solid catalyst is a titanosilicate catalyst.
JP2004008407A 2004-01-15 2004-01-15 Method for producing phenolic compound Pending JP2005200349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008407A JP2005200349A (en) 2004-01-15 2004-01-15 Method for producing phenolic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008407A JP2005200349A (en) 2004-01-15 2004-01-15 Method for producing phenolic compound

Publications (1)

Publication Number Publication Date
JP2005200349A true JP2005200349A (en) 2005-07-28

Family

ID=34821761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008407A Pending JP2005200349A (en) 2004-01-15 2004-01-15 Method for producing phenolic compound

Country Status (1)

Country Link
JP (1) JP2005200349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178678A (en) * 2010-02-26 2011-09-15 Dic Corp Method for producing alkyl-substituted benzenediol
JP2012077066A (en) * 2010-09-10 2012-04-19 Shimane Prefecture Method for producing aromatic hydroxide
JP2014513041A (en) * 2011-02-17 2014-05-29 ロディア オペレーションズ Process for hydroxylation of phenol and phenol ether
CN113461494A (en) * 2021-07-26 2021-10-01 武亚梅 Method for synthesizing benzenediol by hydroxylating phenol and hydrogen peroxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178678A (en) * 2010-02-26 2011-09-15 Dic Corp Method for producing alkyl-substituted benzenediol
JP2012077066A (en) * 2010-09-10 2012-04-19 Shimane Prefecture Method for producing aromatic hydroxide
JP2014513041A (en) * 2011-02-17 2014-05-29 ロディア オペレーションズ Process for hydroxylation of phenol and phenol ether
US9035106B2 (en) 2011-02-17 2015-05-19 Rhodia Operations Method for the hydroxylation of phenols and phenol ethers
CN113461494A (en) * 2021-07-26 2021-10-01 武亚梅 Method for synthesizing benzenediol by hydroxylating phenol and hydrogen peroxide
CN113461494B (en) * 2021-07-26 2023-08-04 武亚梅 Method for synthesizing benzenediol by hydroxylation of phenol and hydrogen peroxide

Similar Documents

Publication Publication Date Title
Mallia et al. The use of gases in flow synthesis
JP5030222B2 (en) Photocatalytic microreactor
Newman et al. The role of flow in green chemistry and engineering
Gutmann et al. Homogeneous liquid-phase oxidation of ethylbenzene to acetophenone in continuous flow mode
Bhaumik et al. Triphase catalysis over titanium–silicate molecular sieves under solvent-free conditions: I. Direct hydroxylation of benzene
Pieber et al. Aerobic oxidations in continuous flow
Sun et al. Application of microfluidics technology in chemical engineering for enhanced safety
Mayadevi Reactions in supercritical carbon dioxide
Yube et al. Selective oxidation of phenol with hydrogen peroxide using two types of catalytic microreactor
WO2014101374A1 (en) A process for the production of cresol
Wang et al. Selective oxidation of styrene to acetophenone over supported Au–Pd catalyst with hydrogen peroxide in supercritical carbon dioxide
Nagaki et al. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling
Nagaki et al. Synthesis of unsymmetrically substituted biaryls via sequential lithiation of dibromobiaryls using integrated microflow systems
Kobayashi et al. Hydrogenation reactions using scCO 2 as a solvent in microchannel reactors
US9035106B2 (en) Method for the hydroxylation of phenols and phenol ethers
JP2014518850A (en) Process for the production of acid anhydrides
Yube et al. Efficient oxidation of aromatics with peroxides under severe conditions using a microreaction system
JP2005200349A (en) Method for producing phenolic compound
Laufer et al. Propylene epoxidation with hydrogen peroxide over palladium containing titanium silicalite
Yuanbin et al. Oxidation of p/o-Cresols to p/o-Hydroxybenzaldehydes Catalyzed by Metalloporphyrins with Molecular Oxygen
JP5916209B2 (en) Process for producing useful compounds from acetonitrile
JP4978864B2 (en) Capillary, catalyst immobilization method to capillary, microreactor and solid-liquid-gas phase reaction method using the same
Mandai et al. Rapid gas–liquid reaction in flow. Continuous synthesis and production of cyclohexene oxide
Mao et al. Organic Solvent‐Free Process for Cyclohexanone Ammoximation by a Ceramic Membrane Distributor
Al-Megren et al. Liquid phase benzene hydroxylation to phenol using semi-batch and continuous membrane reactors