JP2005199580A - Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite, and method for producing fiber-reinforced resin composite - Google Patents

Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite, and method for producing fiber-reinforced resin composite Download PDF

Info

Publication number
JP2005199580A
JP2005199580A JP2004008913A JP2004008913A JP2005199580A JP 2005199580 A JP2005199580 A JP 2005199580A JP 2004008913 A JP2004008913 A JP 2004008913A JP 2004008913 A JP2004008913 A JP 2004008913A JP 2005199580 A JP2005199580 A JP 2005199580A
Authority
JP
Japan
Prior art keywords
fiber
reinforcing material
reinforced resin
resin composite
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004008913A
Other languages
Japanese (ja)
Inventor
Norihisa Tanaka
礼央 田中
Makoto Yoshida
吉田  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2004008913A priority Critical patent/JP2005199580A/en
Publication of JP2005199580A publication Critical patent/JP2005199580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing material for molding a fiber-reinforced resin composite which is excellent in heat resistance, strength, and noise reduction effect and suitable for the cog of a synthetic resin toothed wheel used under conditions of a high temperature and a high load, the fiber-reinforced resin composite using the reinforcing material, and a method for producing the fiber-reinforced resin composite. <P>SOLUTION: After the reinforcing material composed of core-shell type composite filaments containing fibers having a pyrolysis starting temperature of at least 280°C, tensile strength of at least 3 cN/dtex, and a tensile modulus of elasticity of 40-2,000 cN/dtex is arranged in a mold, a liquid resin is injected into the mold to impregnate the reinforcing material and molded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は繊維強化樹脂複合体成形用の補強材及び該補強材を用いてなる繊維強化樹脂複合体、並びに該繊維強化樹脂複合体の製造方法に関するものであり、さらに詳しくは、熱分解開始温度が280℃以上、引張強度が3cN/dtex以上で、且つ引張弾性率が40〜2000cN/dtexの範囲にある繊維を含む芯鞘型複合糸条から構成されている補強材及び該補強材を用いてなる繊維強化樹脂複合体並びにその製造方法に関するものである。   The present invention relates to a reinforcing material for molding a fiber-reinforced resin composite, a fiber-reinforced resin composite using the reinforcing material, and a method for producing the fiber-reinforced resin composite. Using a reinforcing material composed of a core-sheath type composite yarn containing fibers having a tensile strength of 3 cN / dtex or higher and a tensile elastic modulus in the range of 40 to 2000 cN / dtex. The present invention relates to a fiber reinforced resin composite and a method for producing the same.

従来より、歯車の材料として、特に高負荷が必要な用途においては鋼等の金属材料が一般的であったが、歯車の噛み合い時に生ずる騒音の解消や軽量化などを目的として、最近、歯部に繊維強化樹脂複合体を用いたものが検討されている。   Conventionally, metal materials such as steel have been common as gear materials, especially in applications that require high loads. Recently, tooth parts have been recently developed for the purpose of eliminating noise and reducing weight when gears mesh. The use of a fiber reinforced resin composite is being studied.

このような歯部成形用繊維強化樹脂複合体の補強材としては、例えば、特開2002−273729号公報に示される如く、高強度、高弾性率の繊維が用いられているが、あまりにも高強度、高弾性率の繊維を用いると、歯部の切削加工がやり難くなるという問題があった。   As a reinforcing material for such a fiber reinforced resin composite for forming a tooth part, for example, as shown in JP-A-2002-273729, a fiber having high strength and high elastic modulus is used, but it is too high. When fibers having high strength and high elastic modulus are used, there is a problem that it is difficult to cut teeth.

このような問題を解決するため、特開2001−295913号公報には、高強度繊維(パラ系アラミド繊維)と、該繊維より強度の低い有機繊維との混紡糸を用い、強度と歯部の切削性とを両立させた補強材が、また、特開平7−113458号公報には、高強度のパラ型芳香族ポリアミド繊維と切削加工性に優れたメタ型芳香族ポリアミド繊維とを混合させた不織布製の補強材が開示されているが、これらの補強材においては、高強度繊維とより強度の低い繊維とが短繊維状で均一に混合されているため、より高強度の補強材に対する要求に応えることができないという問題があった。   In order to solve such problems, Japanese Patent Application Laid-Open No. 2001-295913 uses a blended yarn of high-strength fibers (para-aramid fibers) and organic fibers having a lower strength than the fibers, Reinforcing material that achieves both machinability and Japanese Patent Application Laid-Open No. 7-113458 mixed high-strength para-type aromatic polyamide fibers and meta-type aromatic polyamide fibers excellent in machinability. Non-woven reinforcing materials are disclosed, but in these reinforcing materials, high-strength fibers and lower-strength fibers are uniformly mixed in the form of short fibers, so there is a demand for higher-strength reinforcing materials. There was a problem that could not respond to.

特開2002−273729号公報JP 2002-273729 A 特開2001−295913号公報JP 2001-295913 A 特開平7−113458号公報JP-A-7-113458

本発明の目的は、耐熱性、強度及び騒音の低減効果に優れ、高負荷、高温条件下で使用される合成樹脂製歯車の歯部に好適な繊維強化樹脂複合体成形用の補強材及び該補強材を用いてなる繊維強化樹脂複合体並びにその製造方法を提供することにある。   An object of the present invention is to provide a reinforcing material for molding a fiber reinforced resin composite which is excellent in heat resistance, strength and noise reduction effect, and suitable for a tooth portion of a synthetic resin gear used under high load and high temperature conditions. The object is to provide a fiber-reinforced resin composite using a reinforcing material and a method for producing the same.

本発明者らは上記目的を達成するために鋭意検討した結果、芯鞘型複合糸条から補強材を構成させるとき、所望の繊維強化樹脂複合体が得られることを究明し、本発明に到達した。   As a result of intensive studies to achieve the above object, the present inventors have determined that a desired fiber-reinforced resin composite can be obtained when a reinforcing material is constituted from a core-sheath type composite yarn, and the present invention has been achieved. did.

かくして本発明によれば、(1)補強材を樹脂で含浸してなる繊維強化樹脂複合体成形用の補強材であって、該補強材が、熱分解開始温度が280℃以上、引張強度が3cN/dtex以上で、且つ引張弾性率が40〜2000cN/dtexの範囲にある繊維を含む芯鞘型複合糸条から構成されていることを特徴とする繊維強化樹脂複合体成形用の補強材、(2)補強材を樹脂で含浸してなる繊維強化樹脂複合体であって、該補強材が、熱分解開始温度が280℃以上、引張強度が3cN/dtex以上で、且つ引張弾性率が40〜2000cN/dtexの範囲にある繊維を含む芯鞘型複合糸条から構成されていることを特徴とする繊維強化樹脂複合体、(3)熱分解開始温度が280℃以上、引張強度が3cN/dtex以上で、且つ引張弾性率が40〜2000cN/dtexの範囲にある繊維を含む芯鞘型複合糸条から構成されている補強材を金型に配置した後、該金型に液状樹脂を注入して該補強材に含浸させ、しかる後に成形することを特徴とする繊維強化樹脂複合体の製造方法が提供される。   Thus, according to the present invention, (1) a reinforcing material for molding a fiber reinforced resin composite obtained by impregnating a reinforcing material with a resin, wherein the reinforcing material has a thermal decomposition starting temperature of 280 ° C. or higher and a tensile strength of A reinforcing material for molding a fiber-reinforced resin composite, characterized in that it is composed of a core-sheath type composite yarn containing fibers having a tensile modulus of elasticity of 3 to cN / dtex and a tensile modulus of 40 to 2000 cN / dtex, (2) A fiber-reinforced resin composite obtained by impregnating a reinforcing material with a resin, wherein the reinforcing material has a thermal decomposition starting temperature of 280 ° C. or higher, a tensile strength of 3 cN / dtex or higher, and a tensile modulus of 40 A fiber-reinforced resin composite comprising a core-sheath composite yarn containing fibers in a range of ˜2000 cN / dtex, (3) a thermal decomposition starting temperature of 280 ° C. or higher, and a tensile strength of 3 cN / dtex or more, and A reinforcing material composed of a core-sheath type composite yarn containing fibers having a tensile modulus of elasticity in the range of 40 to 2000 cN / dtex is placed in the mold, and then a liquid resin is injected into the mold to form the reinforcing material. There is provided a method for producing a fiber reinforced resin composite, which is characterized by impregnating and then molding.

本発明によれば、耐熱性、強度及び騒音の低減効果に優れた繊維強化樹脂複合体成形用の補強材が得られるので、高負荷、高温条件下で使用される合成樹脂製歯車等の用途に好適に使用することができる。   According to the present invention, a reinforcing material for molding a fiber reinforced resin composite excellent in heat resistance, strength, and noise reduction effect can be obtained, so that it can be used for synthetic resin gears used under high load and high temperature conditions. Can be suitably used.

以下、本発明を詳細に説明する。本発明の補強材は、熱分解温度が280℃以上、引張強度が3cN/dtex以上で、且つ引張弾性率が40〜2000cN/dtexの範囲にある繊維を含む芯鞘型複合糸条から構成されている。   Hereinafter, the present invention will be described in detail. The reinforcing material of the present invention is composed of a core-sheath type composite yarn containing fibers having a thermal decomposition temperature of 280 ° C. or higher, a tensile strength of 3 cN / dtex or higher, and a tensile elastic modulus in the range of 40 to 2000 cN / dtex. ing.

つまり、繊維強化樹脂複合体の成形温度、および高温雰囲気下での長時間使用を考慮すると、繊維の熱分解温度は280℃以上であることが必須となる。   That is, considering the molding temperature of the fiber reinforced resin composite and the long-term use in a high temperature atmosphere, it is essential that the thermal decomposition temperature of the fiber is 280 ° C. or higher.

また、上記繊維の引張強度が3cN/dtex未満の場合は、高速回転中の高負荷に耐えられず、繊維強化樹脂複合体が破損したり、充分な耐久性が得られなくなる。   Further, when the fiber has a tensile strength of less than 3 cN / dtex, it cannot withstand a high load during high-speed rotation, and the fiber-reinforced resin composite is damaged or sufficient durability cannot be obtained.

さらに、上記繊維の弾性率が40cN/dtex未満の場合は、瞬間的な負荷がかかった際に変形してしまい、一方、該弾性率が2000cN/dtexを越えると、騒音の低減効果が劣るので、上記繊維の引張弾性率は40〜2000cN/dtexの範囲にあることが必要である。このような弾性率を有する繊維を用いることにより歯車の噛み合い時に生じる騒音、または振動を顕著に減少させることができる。   Furthermore, when the elastic modulus of the fiber is less than 40 cN / dtex, the fiber deforms when an instantaneous load is applied. On the other hand, when the elastic modulus exceeds 2000 cN / dtex, the noise reduction effect is inferior. The tensile elastic modulus of the fiber needs to be in the range of 40 to 2000 cN / dtex. By using a fiber having such an elastic modulus, noise or vibration generated when the gear meshes can be significantly reduced.

本発明の補強材は、上記繊維を含む芯鞘型複合糸条から構成されていることが肝要である。ここで、芯鞘型複合糸条とは、比較的強度の高い繊維が主として芯部に、それよりも強度の低い繊維が主として鞘部に配されてなる複合糸条を言う。   It is important that the reinforcing material of the present invention is composed of a core-sheath type composite yarn containing the fiber. Here, the core-sheath type composite yarn means a composite yarn in which fibers having relatively high strength are mainly arranged in the core portion and fibers having lower strength are mainly arranged in the sheath portion.

上記複合糸条における芯糸は、実質的に直線状に配列していることが必要である。何故なら、芯糸が曲線状に配列していると、引張荷重が複合糸に掛かった場合、その曲線状の繊維が直線状に引き揃ってはじめて抗張力が働くことになるので、たとえ芯糸の弾性率が高くても複合糸条としてその機能が発揮されず、補強材の寸法安定性が失われることになるからである。ここで、実質的に直線状とは、構成単繊維本数の70%以上が糸軸に対して45°以下の角度で配列した状態をいう。
従って、本発明においては、上記芯糸が長繊維糸条であることが好ましい。
It is necessary that the core yarns in the composite yarn are arranged substantially linearly. This is because, when the core yarns are arranged in a curved line, when the tensile load is applied to the composite yarn, the tensile force does not work until the curved fibers are linearly aligned. This is because even if the elastic modulus is high, the function is not exhibited as a composite yarn, and the dimensional stability of the reinforcing material is lost. Here, “substantially linear” refers to a state in which 70% or more of the number of constituent single fibers is arranged at an angle of 45 ° or less with respect to the yarn axis.
Therefore, in the present invention, the core yarn is preferably a long fiber yarn.

また、上記複合糸条における鞘糸は、芯糸との脱離を起こさないように、芯糸と部分的に交絡していることが好ましい。ここで、鞘糸が芯糸と部分的に交絡しているとは、複合糸条を2cm程度の長さに切断した場合、その芯糸を構成する単繊維を容易に引き抜くことができない状態をいう。この交絡は、芯糸と鞘糸とが共に長繊維で、部分的に交絡していても良いが、鞘糸が紡績糸、粗糸、牽切加工糸などのスパン状糸であり、紡績糸由来の毛羽により、芯糸と交絡していることがさらに好ましい。   The sheath yarn in the composite yarn is preferably partially entangled with the core yarn so as not to be detached from the core yarn. Here, when the sheath yarn is partially entangled with the core yarn, when the composite yarn is cut into a length of about 2 cm, the single fiber constituting the core yarn cannot be easily pulled out. Say. In this entanglement, the core yarn and the sheath yarn are both long fibers and may be partially entangled, but the sheath yarn is a spun yarn such as spun yarn, coarse yarn, check yarn, etc. More preferably, it is entangled with the core yarn by the fuzz of origin.

複合糸条を構成する繊維として、短繊維を使用する場合の短繊維長は、15〜90mmの範囲が好ましい。該短繊維長が15mm未満の場合、開繊が困難となるばかりでなく、繊維の絡みが低下することから補強材の強力が低下し、繊維強化樹脂複合体の耐久性、耐衝撃性が低下することがある。一方、該短繊維長が90mmより長い場合、開繊する際の均一性が阻害されるため、補強材の強力のばらつきが大きくなるので好ましくない。また、複数の素材を混合する場合、公知の混合開繊機で開繊することもできる。   The short fiber length in the case of using short fibers as the fibers constituting the composite yarn is preferably in the range of 15 to 90 mm. When the short fiber length is less than 15 mm, not only fiber opening becomes difficult, but also the fiber entanglement decreases, so the strength of the reinforcing material decreases, and the durability and impact resistance of the fiber reinforced resin composite decrease. There are things to do. On the other hand, when the short fiber length is longer than 90 mm, the uniformity at the time of opening is hindered, and therefore, the variation in strength of the reinforcing material becomes large, which is not preferable. Moreover, when mixing a some raw material, it can also open with a well-known mixing opening machine.

上記複合糸条の横断面における芯部分の占める比率は、20%〜80%であることが好ましい。該比率が20%未満の場合は、複合糸条の強度に対する芯糸の寄与が少なくなり、一方、該比率が80%を越える場合は歯部の切削加工が困難となる。   The ratio of the core portion in the cross section of the composite yarn is preferably 20% to 80%. When the ratio is less than 20%, the contribution of the core yarn to the strength of the composite yarn is reduced. On the other hand, when the ratio exceeds 80%, cutting of the teeth becomes difficult.

上記複合糸条に使用する繊維としては、全芳香族ポリエステル繊維(高強力ポリアリレート繊維を含む)、ポリパラフェニレンベンゾビスオキサゾール繊維(以下PBO繊維)、パラ型アラミド繊維、メタ型アラミド繊維、ポリフェニレンサルファイド繊維(以下PPS繊維)、ポリイミド繊維、或いは超高分子量ポリエチレン繊維等の耐熱性合成繊維が例示され、特に機械的強度が必要とされる場合は、カーボン繊維、ガラス繊維を用いることもできる。   The fibers used in the composite yarn include wholly aromatic polyester fibers (including high-strength polyarylate fibers), polyparaphenylene benzobisoxazole fibers (hereinafter referred to as PBO fibers), para-type aramid fibers, meta-type aramid fibers, and polyphenylenes. Examples thereof include heat-resistant synthetic fibers such as sulfide fibers (hereinafter referred to as PPS fibers), polyimide fibers, or ultrahigh molecular weight polyethylene fibers. When mechanical strength is particularly required, carbon fibers and glass fibers can also be used.

また、これら繊維は1種に限定されるものではなく、2種以上を複合して使用することも可能であり、加工性を向上させるために、本発明の目的を損なわない範囲で、ポリエステル繊維を少量分散させてもよい。   In addition, these fibers are not limited to one type, and two or more types can be used in combination. In order to improve processability, polyester fibers are used within the range not impairing the object of the present invention. May be dispersed in a small amount.

上記繊維の単繊維繊度には特に制限はないが、好ましくは0.4〜5.0dtexである。該単繊維繊度が5.0dtexより大きいと繊維の剛直性が高くなり、補強材を製造する工程で均一な目付けとすることが困難になるばかりでなく、同一重量当たりの単繊維本数が少なくなって、樹脂補強効果が低下する場合がある。また、単位重量あたりの単繊維数が減少すれば繊維表面積が減少し、樹脂との接着性が阻害されるので、歯車の耐久性が低下することもある。   Although there is no restriction | limiting in particular in the single fiber fineness of the said fiber, Preferably it is 0.4-5.0 dtex. When the single fiber fineness is greater than 5.0 dtex, the rigidity of the fiber is increased, and it is difficult to obtain a uniform basis weight in the process of manufacturing the reinforcing material, and the number of single fibers per weight is reduced. As a result, the resin reinforcing effect may be reduced. Further, if the number of single fibers per unit weight is reduced, the fiber surface area is reduced and the adhesion with the resin is hindered, so that the durability of the gear may be lowered.

一方、該単繊維繊度が0.4dtex未満の場合は、単繊維強力が低くなることから補強材の強力が低下し、繊維強化樹脂複合体の耐久性が低下することがある。また、補強材の製造工程で繊維の切断や交絡などが発生しやすくなって、生産性も低下するので好ましくない。   On the other hand, when the single fiber fineness is less than 0.4 dtex, the strength of the reinforcing material is lowered because the strength of the single fiber is lowered, and the durability of the fiber-reinforced resin composite may be lowered. Further, it is not preferable because the fiber is easily cut or entangled in the manufacturing process of the reinforcing material, and the productivity is lowered.

上記繊維の中でも、芯糸に配する繊維としては、芳香族ポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、パラ型アラミド繊維などの、張強度が20cN/dtex以上で、かつ引張弾性率が450〜1100cN/dtexの範囲にある繊維が好ましく例示される。引張強度が20cN/dtex以上の繊維であれば、複合糸条の強度が充分なものとなり、また、引張弾性率が450〜1100cN/dtexであれば、芯糸に瞬間的にかかる応力にも耐えることができ、騒音低減効果も充分である。   Among the above fibers, the fibers to be arranged on the core yarn are aromatic polyester fibers, polyparaphenylene benzobisoxazole fibers, para type aramid fibers, etc., and have a tensile strength of 20 cN / dtex or more and a tensile elastic modulus of 450 to A fiber in the range of 1100 cN / dtex is preferably exemplified. If the fiber has a tensile strength of 20 cN / dtex or more, the composite yarn has sufficient strength, and if the tensile elastic modulus is 450 to 1100 cN / dtex, it can withstand the momentary stress applied to the core yarn. And the noise reduction effect is sufficient.

一方、鞘糸配する繊維としてはメタ型アラミド繊維、PPS繊維などの、引張強度が3〜10cN/dtexの範囲にある繊維が好ましい。   On the other hand, fibers having a tensile strength in the range of 3 to 10 cN / dtex, such as meta-type aramid fibers and PPS fibers, are preferable as the fibers to be arranged as the sheath yarn.

さらに、上記繊維には、補強材と樹脂との含浸性を向上させるために、種々の界面活性剤を付着させたり、また、元来繊維に付着している油剤や精練加工剤(いずれも界面活性剤を含んでいるもの)などを完全に洗浄せずに微量残存させることにより、樹脂との含浸性を向上させることもできる。   Furthermore, in order to improve the impregnation property between the reinforcing material and the resin, various surfactants are attached to the above fibers, and the oil agent and the scouring agent (both of which are interfaced originally) It is possible to improve the impregnation property with the resin by leaving a trace amount of the compound containing an activator) without thoroughly washing.

上記複合糸条は、編織布や不織布等任意の形態で補強材とすることができる。この際、例えば筒編地に編成した後、裏返しながら巻き込むことにより、ドーナツ状にしたものを補強材として用いれば、機械的強度が弱くなる繋ぎ目が存在しなくなるので、歯車の全周にわたって機械的強度を均一にできる。   The composite yarn can be used as a reinforcing material in any form such as a woven fabric or a non-woven fabric. In this case, for example, after knitting into a tubular knitted fabric, if the doughnut-shaped material is used as a reinforcing material by winding it upside down, there will be no joint that weakens the mechanical strength. Uniform strength.

尚、ドーナツ状とは筒編布の一端から裏返しながら、あるいは表返しながら巻き込んだ状態を指し、両端から裏返しながら、あるいは表返しながら巻き込み二重のドーナツ状に形成してもよく、また、裏返し、あるいは表返しに折って二重にした後、裏返しながら、あるいは表返しながら巻き込んでもよい。   The donut shape refers to a state in which the tubular knit fabric is turned upside down or turned upside down, and may be formed into a double donut shape turned upside down or turned upside down. Or, after turning it over and making it double, it may be rolled up or turned over.

また、補強材を継ぎ目の無い円筒状の不織布とし、裏返しながら、また表返しながら巻き込むことによりドーナツ状にしても構わないし、径の異なる円筒状不織布を複数枚重ねてもよい。さらに、通常の不織布をスリット状に裁断し、歯車のブッシュを中心に渦を描くように巻いてもよい。   Further, the reinforcing material may be a seamless cylindrical nonwoven fabric, and may be formed into a donut shape by being turned upside down or turned upside down, or a plurality of cylindrical nonwoven fabrics having different diameters may be stacked. Further, a normal nonwoven fabric may be cut into a slit shape and wound so as to draw a vortex around the gear bush.

上記編織布や不織布の目付けや厚みは歯車の径、或いは補強材への樹脂の含浸性、必要とされる機械的強度に応じて適宜設定すればよい。   What is necessary is just to set suitably the fabric weight and thickness of the said woven fabric or a nonwoven fabric according to the diameter of a gear, the impregnation property of the resin to a reinforcing material, and the required mechanical strength.

本発明の繊維強化樹脂複合体を製造する方法には特に限定はなく、従来公知の方法が任意に採用できるが、例えば、上記複合糸条を筒編布或いは円筒状不織布とし、これらを裏返しながらドーナツ状に形成したものを1つ、あるいは複数個、金型に配置した後、該金型に液状樹脂を注入して該補強材に含浸させ成形する。   The method for producing the fiber reinforced resin composite of the present invention is not particularly limited, and a conventionally known method can be arbitrarily employed. For example, the composite yarn is formed into a tubular knitted fabric or a cylindrical nonwoven fabric, and these are turned over. One or a plurality of doughnut-shaped ones are arranged in a mold, and then a liquid resin is injected into the mold and impregnated into the reinforcing material.

ここで、事前に金型を減圧状態にしたり、温度を上げておくことで、樹脂の補強材への含浸性がさらに向上する。また、上記筒編布或いは円筒状不織布に熱硬化性樹脂を含浸乾燥して半硬化状態とした後、これを金型に配置して成形してもよい。   Here, the impregnation property of the resin to the reinforcing material is further improved by reducing the mold in advance or raising the temperature. Alternatively, the tubular knitted fabric or the cylindrical nonwoven fabric may be impregnated with a thermosetting resin and dried to be in a semi-cured state, and then placed in a mold for molding.

また、特に歯車を成形する場合は一般に歯部を機械切削により構成するが、歯車型の金型成形によって構成してもよい。   In particular, when a gear is formed, the tooth portion is generally formed by mechanical cutting, but may be formed by gear-type mold forming.

不織布に含浸させる樹脂としては、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミノアミド樹脂、PES(ポリエーテルサルフォン)樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、CPレジン(架橋ポリエステルアミド、架橋ポリアミノアミド)などの熱硬化性樹脂或いは熱可塑性樹脂が例示され、これらは1種、または1種以上の混合物にして利用することが可能である。   The resin impregnated into the nonwoven fabric is phenol resin, epoxy resin, polyester resin, polyamide resin, polyimide resin, polyaminoamide resin, PES (polyethersulfone) resin, PEEK (polyetheretherketone) resin, CP resin (crosslinked polyester) Examples thereof include thermosetting resins such as amides and cross-linked polyaminoamides, and thermoplastic resins, and these can be used as one kind or a mixture of one or more kinds.

以下、実施例により本発明をさらに詳細に説明する。なお、実施例中で用いた試験条件、測定法などは次の通りである。   Hereinafter, the present invention will be described in more detail with reference to examples. The test conditions and measurement methods used in the examples are as follows.

(1)繊維の熱分解開始温度
熱分析装置(理学株式会社製TAS−200)を用いて測定した。
(1) Thermal decomposition start temperature of fiber It measured using the thermal analyzer (Rigaku Corporation TAS-200).

(2)繊維の引張強度
JIS L−1013に基づいて測定した。
(2) Tensile strength of fiber It measured based on JIS L-1013.

(3)繊維の引張弾性率
JIS L−1013に基づいて測定した。
(3) Tensile modulus of fiber Measured based on JIS L-1013.

(4)繊維強化樹脂複合体の機械的強度
歯車を成形し、該歯車から一定寸法のテストピースを作製し、3.5mm径のピンゲージを2.5mm/minの速さで歯と歯の間に押し込み、歯が破壊されるときの押し込み強度を測定した。歯の破壊は歯元に亀裂が入ることにより起こった。
(4) Mechanical strength of fiber reinforced resin composite A gear is molded, a test piece of a certain size is produced from the gear, and a 3.5 mm diameter pin gauge is formed between teeth at a speed of 2.5 mm / min. The indentation strength was measured when the teeth were broken. The destruction of the tooth occurred due to a crack in the tooth base.

(5)繊維強化樹脂複合体の騒音
歯車を成形し、該歯車を鉄製歯車(材質:JIS S45C)とかみ合わせて130℃の潤滑油中で回転させ、歯車同士がかみ合うときに生じる騒音を官能判定した。騒音が小さいものを○、大きいものを×として表した。
(5) Noise of fiber reinforced resin composite A gear is molded, and the gear is meshed with an iron gear (material: JIS S45C) and rotated in lubricating oil at 130 ° C., and the noise generated when the gears mesh with each other is sensory-determined. did. A low noise level was indicated by ○, and a high level noise was indicated by ×.

(6)繊維強化樹脂複合体の切削性
歯車を成形した後、歯部を形成させるために切削加工を行い、その切削加工部を顕微鏡により観察して判定した。判定基準は切削面が均一であるものを○、切削することが困難であったり、切削面の繊維がきれいに切断されずに、切削加工面に多本数ヒゲ状に飛び出しているものは×とした。
(6) Cutting property of fiber reinforced resin composite After forming a gear, cutting was performed in order to form a tooth portion, and the cutting portion was observed and determined with a microscope. Judgment criteria are ○ when the cutting surface is uniform, and × when it is difficult to cut or the fibers on the cutting surface are not cut cleanly and protruded into the cutting surface in a multiple beard shape. .

[実施例1]
110dtexのパラ型アラミド繊維(帝人テクノプロダクツ(株):テクノーラ)を芯糸とし、該芯糸に対し、40番手のメタ型アラミド繊維(帝人テクノプロダクツ(株):コーネックス)を精紡工程にて被覆するコアスパン法により、20番手の芯鞘型複合糸条を得た。
[Example 1]
110dtex para-aramid fiber (Teijin Techno Products Co., Ltd .: Technora) is used as the core yarn, and 40th meta-aramid fiber (Teijin Techno Products Co., Ltd .: Conex) is used for the spinning process. The core-sheath type composite yarn of 20th was obtained by the core span method.

該複合糸条を筒編地にした後、この筒編地を一端から裏返しながら巻き込むことでドーナツ状に形成し、約200℃に加温した金型に配置し、減圧下、ポリアミノアミド樹脂を注入して補強材に含浸し、含浸した樹脂を硬化させて繊維強化樹脂複合体を成形した。   After the composite yarn is made into a tubular knitted fabric, the tubular knitted fabric is wound upside down from one end to be formed into a donut shape, placed in a mold heated to about 200 ° C., and the polyaminoamide resin is placed under reduced pressure. The reinforcing material was injected and impregnated, and the impregnated resin was cured to form a fiber reinforced resin composite.

次いで、該複合体を機械切削加工して歯部を成形し、繊維強化樹脂複合体製歯車を得た。   Next, the composite was machined to form teeth, and a fiber reinforced resin composite gear was obtained.

該歯車の製造に使用した繊維の熱分解開始温度、引張強度、引張弾性率を表1に、また、得られた繊維強化樹脂複合体歯車の機械的強度、騒音並びに歯車成形の際の切削性を表2に示す。   The thermal decomposition starting temperature, tensile strength, and tensile modulus of the fiber used for manufacturing the gear are shown in Table 1, and the mechanical strength, noise, and machinability at the time of gear molding of the obtained fiber reinforced resin composite gear. Is shown in Table 2.

[実施例2]
実施例1において、芯糸として、1560dtexのパラ型アラミド繊維(帝人テクノプロダクツ(株):テクノーラ)を牽切加工することにより得た、110dtexの牽切加工糸(帝人テクノプロダクツ(株):GTN)を使用した以外は実施例1と同様に実施した。
[Example 2]
In Example 1, 110dtex check-processed yarn (Teijin Techno Products Co., Ltd .: GTN) obtained by check-cutting 1560 dtex para-type aramid fiber (Teijin Techno Products Co., Ltd .: Technora) as the core yarn. ) Was used in the same manner as in Example 1, except that

該歯車の製造に使用した繊維の熱分解開始温度、引張強度、引張弾性率を表1に、また、得られた繊維強化樹脂複合体歯車の機械的強度、騒音並びに歯車成形の際の切削性を表2に示す。   The thermal decomposition starting temperature, tensile strength, and tensile modulus of the fiber used for manufacturing the gear are shown in Table 1, and the mechanical strength, noise, and machinability at the time of gear molding of the obtained fiber reinforced resin composite gear. Is shown in Table 2.

[実施例3]
実施例1において、芯糸として、110dtexの全芳香族ポリエステル繊維(クラレ(株):ベクトラン)を使用した以外は実施例1と同様に実施した。
[Example 3]
In Example 1, 110 dtex wholly aromatic polyester fiber (Kuraray Co., Ltd .: Vectran) was used as the core yarn.

該歯車の製造に使用した繊維の熱分解開始温度、引張強度、引張弾性率を表1に、また、得られた繊維強化樹脂複合体歯車の機械的強度、騒音並びに歯車成形の際の切削性を表2に示す。   The thermal decomposition starting temperature, tensile strength, and tensile modulus of the fiber used for manufacturing the gear are shown in Table 1, and the mechanical strength, noise, and machinability at the time of gear molding of the obtained fiber reinforced resin composite gear. Is shown in Table 2.

[実施例4]
実施例1において、芯糸として、110dtexのポリパラフェニレンベンゾビスオキサゾール繊維(東洋紡(株):ザイロン−HM)を使用した以外は実施例1と同様に実施した。
[Example 4]
In Example 1, it carried out like Example 1 except having used 110 dtex polyparaphenylene benzobisoxazole fiber (Toyobo Co., Ltd .: Zylon-HM) as a core thread.

該歯車の製造に使用した繊維の熱分解開始温度、引張強度、引張弾性率を表1に、また、得られた繊維強化樹脂複合体歯車の機械的強度、騒音並びに歯車成形の際の切削性を表2に示す。   The thermal decomposition starting temperature, tensile strength, and tensile modulus of the fiber used for manufacturing the gear are shown in Table 1, and the mechanical strength, noise, and machinability at the time of gear molding of the obtained fiber reinforced resin composite gear. Is shown in Table 2.

[実施例5]
実施例1において、鞘糸として、40番手のPPS繊維紡績糸(東レ(株):トルコン)を使用した以外は実施例1と同様に実施して繊維強化樹脂複合体製歯車を作製した。
[Example 5]
A fiber reinforced resin composite gear was produced in the same manner as in Example 1 except that 40th PPS fiber spun yarn (Toray Industries, Inc .: Torcon) was used as the sheath yarn in Example 1.

該歯車の製造に使用した繊維の熱分解開始温度、引張強度、引張弾性率を表1に、また、得られた繊維強化樹脂複合体歯車の機械的強度、騒音並びに歯車成形の際の切削性を表2に示す。   The thermal decomposition starting temperature, tensile strength, and tensile modulus of the fiber used for manufacturing the gear are shown in Table 1, and the mechanical strength, noise, and machinability at the time of gear molding of the obtained fiber reinforced resin composite gear. Is shown in Table 2.

[比較例1]
実施例1において、複合糸条として、単繊維繊度2.2dtexのメタ型アラミド短繊維(帝人テクノプロダクツ(株):コーネックス)と、単繊維繊度1.7dtexのパラ型アラミド短繊維(帝人テクノプロダクツ(株):テクノーラ)とを混紡してなる、20番手の紡績糸を使用した以外は実施例1と同様に実施した。
[Comparative Example 1]
In Example 1, as a composite yarn, a meta-aramid short fiber having a single fiber fineness of 2.2 dtex (Teijin Techno Products Co., Ltd .: Conex) and a para-aramid short fiber having a single fiber fineness of 1.7 dtex (Teijin Techno) This was carried out in the same manner as in Example 1 except that 20th spun yarn obtained by blending products (Technology Co., Ltd .: Technora) was used.

該歯車の製造に使用した繊維の熱分解開始温度、引張強度、引張弾性率を表1に、また、得られた繊維強化樹脂複合体歯車の機械的強度、騒音並びに歯車成形の際の切削性を表2に示す。   The thermal decomposition starting temperature, tensile strength, and tensile modulus of the fiber used for manufacturing the gear are shown in Table 1, and the mechanical strength, noise, and machinability at the time of gear molding of the obtained fiber reinforced resin composite gear. Is shown in Table 2.

[比較例2]
実施例1において、複合糸条に代えて、単繊維繊度2.2dtexのメタ型アラミド短繊維(帝人テクノプロダクツ(株):コーネックス)の40番手紡績糸双糸を使用した以外は実施例1と同様に実施した。
[Comparative Example 2]
In Example 1, instead of the composite yarn, Example 1 except that a 40-count spun yarn of a meta-type aramid short fiber (Teijin Techno Products Co., Ltd .: Conex) having a single fiber fineness of 2.2 dtex was used. It carried out like.

該歯車の製造に使用した繊維の熱分解開始温度、引張強度、引張弾性率を表1に、また、得られた繊維強化樹脂複合体歯車の機械的強度、騒音並びに歯車成形の際の切削性を表2に示す。   The thermal decomposition starting temperature, tensile strength, and tensile modulus of the fiber used for manufacturing the gear are shown in Table 1, and the mechanical strength, noise, and machinability at the time of gear molding of the obtained fiber reinforced resin composite gear. Is shown in Table 2.

Figure 2005199580
Figure 2005199580

Figure 2005199580
Figure 2005199580

本発明によれば、耐熱性、強度及び騒音の低減効果に優れた繊維強化樹脂複合体成形用の補強材が得られるので、高負荷、高温条件下で使用される合成樹脂製歯車等の用途に好適に使用することができる。   According to the present invention, a reinforcing material for molding a fiber reinforced resin composite excellent in heat resistance, strength, and noise reduction effect can be obtained, so that it can be used for synthetic resin gears used under high load and high temperature conditions. Can be suitably used.

Claims (7)

補強材を樹脂で含浸してなる繊維強化樹脂複合体成形用の補強材であって、該補強材が、熱分解開始温度が280℃以上、引張強度が3cN/dtex以上で、且つ引張弾性率が40〜2000cN/dtexの範囲にある繊維を含む芯鞘型複合糸条から構成されていることを特徴とする繊維強化樹脂複合体成形用の補強材。   A reinforcing material for molding a fiber reinforced resin composite obtained by impregnating a reinforcing material with a resin, wherein the reinforcing material has a thermal decomposition starting temperature of 280 ° C. or higher, a tensile strength of 3 cN / dtex or higher, and a tensile elastic modulus. Is composed of a core-sheath type composite yarn containing fibers in the range of 40 to 2000 cN / dtex, and a reinforcing material for molding a fiber-reinforced resin composite. 芯糸が長繊維糸条である請求項1記載の繊維強化樹脂複合体成形用の補強材。   The reinforcing material for molding a fiber-reinforced resin composite according to claim 1, wherein the core yarn is a long fiber yarn. 鞘糸が紡績糸である請求項1又は2記載の繊維強化樹脂複合体成形用の補強材。   The reinforcing material for molding a fiber-reinforced resin composite according to claim 1 or 2, wherein the sheath yarn is a spun yarn. 芯糸が、全芳香族ポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、パラ型アラミド繊維からなる群から選ばれた少なくとも1種の繊維である請求項1、2又は3記載の繊維強化樹脂複合体成形用の補強材。   4. The fiber-reinforced resin composite according to claim 1, wherein the core yarn is at least one fiber selected from the group consisting of wholly aromatic polyester fibers, polyparaphenylene benzobisoxazole fibers, and para-type aramid fibers. Reinforcing material for molding. 鞘糸が、メタ型アラミド繊維及び/又はPPS繊維を含む請求項1〜4のいずれか1項に記載の繊維強化樹脂複合体成形用の補強材。   The reinforcing material for molding a fiber-reinforced resin composite according to any one of claims 1 to 4, wherein the sheath yarn includes a meta-type aramid fiber and / or a PPS fiber. 補強材を樹脂で含浸してなる繊維強化樹脂複合体であって、該補強材が、熱分解開始温度が280℃以上、引張強度が3cN/dtex以上で、且つ引張弾性率が40〜2000cN/dtexの範囲にある繊維を含む芯鞘型複合糸条から構成されていることを特徴とする繊維強化樹脂複合体。   A fiber-reinforced resin composite obtained by impregnating a reinforcing material with a resin, wherein the reinforcing material has a thermal decomposition starting temperature of 280 ° C. or higher, a tensile strength of 3 cN / dtex or higher, and a tensile modulus of 40 to 2000 cN / A fiber-reinforced resin composite comprising a core-sheath type composite yarn containing fibers in the range of dtex. 熱分解開始温度が280℃以上、引張強度が3cN/dtex以上で、且つ引張弾性率が40〜2000cN/dtexの範囲にある繊維を含む芯鞘型複合糸条から構成されている補強材を金型に配置した後、該金型に液状樹脂を注入して該補強材に含浸させ、しかる後に成形することを特徴とする繊維強化樹脂複合体の製造方法。   A reinforcing material composed of a core-sheath type composite yarn including a fiber having a thermal decomposition starting temperature of 280 ° C. or higher, a tensile strength of 3 cN / dtex or higher, and a tensile elastic modulus in the range of 40 to 2000 cN / dtex is gold. A method for producing a fiber-reinforced resin composite, comprising: placing a mold in a mold, pouring a liquid resin into the mold, impregnating the reinforcing material, and then molding the mold.
JP2004008913A 2004-01-16 2004-01-16 Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite, and method for producing fiber-reinforced resin composite Pending JP2005199580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008913A JP2005199580A (en) 2004-01-16 2004-01-16 Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite, and method for producing fiber-reinforced resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008913A JP2005199580A (en) 2004-01-16 2004-01-16 Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite, and method for producing fiber-reinforced resin composite

Publications (1)

Publication Number Publication Date
JP2005199580A true JP2005199580A (en) 2005-07-28

Family

ID=34822098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008913A Pending JP2005199580A (en) 2004-01-16 2004-01-16 Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite, and method for producing fiber-reinforced resin composite

Country Status (1)

Country Link
JP (1) JP2005199580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002026A (en) * 2011-06-21 2013-01-07 Teijin Techno Products Ltd Core-sheath type composite yarn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002026A (en) * 2011-06-21 2013-01-07 Teijin Techno Products Ltd Core-sheath type composite yarn

Similar Documents

Publication Publication Date Title
KR100985938B1 (en) Polyethylene Fiber and Process for Producing the Same
Mirdehghan Fibrous polymeric composites
JP5717852B2 (en) Yarn or sewing thread and method for manufacturing thread or sewing thread
JP5899053B2 (en) Inorganic fiber sewing thread and method for producing inorganic fiber sewing thread
JP7121663B2 (en) Hybrid fabrics for reinforcing composites
JP3310484B2 (en) Fiber reinforced resin composite
CN114981493B (en) Method and system for forming composite yarn
JP2007138146A (en) Fiber reinforcement material for gear made of fiber-reinforced resin, gear made of fiber-reinforced resin and method for producing the same
Latifi Engineered Polymeric Fibrous Materials
JP2015059274A (en) Composite fiber and method for producing the same
JP2020066836A (en) gloves
JP2005199580A (en) Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite, and method for producing fiber-reinforced resin composite
JP2011089060A (en) Fiber-reinforced resin composite material
RU2008101255A (en) FIXING THREAD FOR SEWING REINFORCING FIBERS
JP5726584B2 (en) Silicon carbide fiber sewing thread and method for producing silicon carbide fiber sewing thread
JP2002273729A (en) Reinforcing material for molding fiber-reinforced resin composite, fiber-reinforced resin composite and its manufacturing method
JP2006161225A (en) Fiber cord for rubber reinforcement and hose
JP2009013512A (en) Method for producing carbon fiber cord for rubber reinforcement, and rubber reinforcing carbon fiber cord
KR20050106608A (en) The high tenacious conjugate textured yarn and the manufacturing method of textile fabric using it
JP2003314666A (en) Fiber-reinforced resinous gear wheel
JPH06228837A (en) Thermoplastic yarn for composite
JP5631248B2 (en) Carbon fiber sewing thread and manufacturing method thereof
Lehmann et al. Yarn Constructions and Yarn Formation Techniques
JP5519267B2 (en) Fiber reinforced plastic gear
JP2002113788A (en) Fiber-reinforced resin composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Effective date: 20090616

Free format text: JAPANESE INTERMEDIATE CODE: A02