JP2005199122A - Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying catalyst device for vehicle - Google Patents

Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying catalyst device for vehicle Download PDF

Info

Publication number
JP2005199122A
JP2005199122A JP2004005523A JP2004005523A JP2005199122A JP 2005199122 A JP2005199122 A JP 2005199122A JP 2004005523 A JP2004005523 A JP 2004005523A JP 2004005523 A JP2004005523 A JP 2004005523A JP 2005199122 A JP2005199122 A JP 2005199122A
Authority
JP
Japan
Prior art keywords
exhaust gas
composite oxide
acid
based composite
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004005523A
Other languages
Japanese (ja)
Inventor
Kazunori Kiguchi
一徳 木口
Yuichi Matsuo
雄一 松尾
Atsushi Furukawa
敦史 古川
Norihiko Suzuki
紀彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004005523A priority Critical patent/JP2005199122A/en
Priority to US11/032,233 priority patent/US20050153836A1/en
Priority to DE200510001467 priority patent/DE102005001467A1/en
Priority to DE102005063419A priority patent/DE102005063419B4/en
Priority to CNB2005100040550A priority patent/CN100488626C/en
Publication of JP2005199122A publication Critical patent/JP2005199122A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purifying catalyst capable of developing excellent purifying characteristics by baking a composite oxide of noble metals same as a conventional one at a low temperature and preventing the lowering in a Pd dispersion degree due to the advance of crystallization caused by baking. <P>SOLUTION: The exhaust gas purifying catalyst is a Pd based composite oxide containing at least one kind selected from alkaline earth metals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、排ガス浄化触媒及びその製造方法、並びに車用排ガス浄化触媒装置に係り、特に、自動車等の内燃機関から排出される排ガス中の窒素酸化物(NOx)、炭化水素(HC)及び一酸化炭素(CO)を同時に効率よく浄化、低減させることのできる排ガス浄化触媒の製造技術に関する。   The present invention relates to an exhaust gas purifying catalyst, a method for producing the same, and an exhaust gas purifying catalyst device for vehicles, and in particular, nitrogen oxides (NOx), hydrocarbons (HC) and one in exhaust gas discharged from an internal combustion engine such as an automobile. The present invention relates to a technology for producing an exhaust gas purification catalyst capable of efficiently purifying and reducing carbon oxide (CO) simultaneously.

排ガス(例えばCO、HC、NO、NO等)の浄化には、貴金属元素(Pt、Rh、Pd、Ir)が高性能を示すことが知られている。このため、排ガス浄化触媒には、上記貴金属元素を用いることが好適である。通常、これらの貴金属は、La、Ce、Ndなどの添加剤とともに、高比表面積担体のAlに混合又は担持されて用いられる。一方、貴金属を複合酸化物化することにより様々な元素と組み合わせることができ、これにより貴金属のみよりも多様な性質が得られ、排ガス浄化性能を向上させることができることが知られている。さらに、Pd系複合酸化物と遷移金属系複合酸化物との固溶状態又は混合状態では、耐熱性に優れた排ガス浄化触媒が得られることが知られている。 It is known that noble metal elements (Pt, Rh, Pd, Ir) exhibit high performance for purification of exhaust gas (for example, CO, HC, NO, NO 2, etc.). For this reason, it is suitable to use the said noble metal element for an exhaust gas purification catalyst. Usually, these noble metals are used by being mixed or supported on Al 2 O 3 as a high specific surface area support together with additives such as La, Ce and Nd. On the other hand, it is known that a noble metal can be combined with various elements by converting it into a complex oxide, whereby various properties can be obtained compared to the noble metal alone and the exhaust gas purification performance can be improved. Furthermore, it is known that an exhaust gas purification catalyst having excellent heat resistance can be obtained in a solid solution state or mixed state of a Pd-based composite oxide and a transition metal-based composite oxide.

このような排ガス浄化触媒には、希土類金属又はアルカリ土類金属から選ばれる少なくとも1種からなるPd系複合酸化物と遷移金属の少なくとも1種からなる複合酸化物が、固溶ないし混合された状態で、共存している複合酸化物として用いられる耐熱性触媒が提案されている(特許文献1参照)。このような従来技術においては、排ガス浄化触媒をPd系複合酸化物とすることで、微細なPd粒子の安定化に基づき耐熱性の向上を図ることができる。また、Pd系複合酸化物と遷移金属系複合酸化物との混合によるPd系複合酸化物のシンタリング防止に基づき耐熱性の向上を図ることができる。   In such an exhaust gas purification catalyst, a state in which a Pd-based composite oxide consisting of at least one selected from rare earth metals or alkaline earth metals and a composite oxide consisting of at least one transition metal are dissolved or mixed. Thus, a heat-resistant catalyst used as a coexisting composite oxide has been proposed (see Patent Document 1). In such a conventional technique, the heat resistance can be improved based on stabilization of fine Pd particles by using a Pd-based composite oxide as the exhaust gas purification catalyst. Further, the heat resistance can be improved based on prevention of sintering of the Pd-based composite oxide by mixing the Pd-based composite oxide and the transition metal-based composite oxide.

特開平10−277393号公報(特許請求の範囲)JP-A-10-277393 (Claims)

しかしながら、上記従来技術においてPd系複合酸化物を生成するには、1000℃以上で焼成する必要がある。このため、結晶化が進行してPd分散度が低下し、優れた浄化特性が得られないおそれがある。したがって、従来と同じ貴金属量の複合酸化物をより低温で焼成しても、結晶化の進行によるPd分散度の低下を防止して、優れた浄化特性を発揮することができる排ガス浄化触媒の開発技術が要請されていた。   However, in order to produce a Pd-based composite oxide in the above prior art, it is necessary to calcinate at 1000 ° C. or higher. For this reason, crystallization progresses, Pd dispersion degree falls, and there exists a possibility that the outstanding purification characteristic may not be acquired. Therefore, development of an exhaust gas purification catalyst capable of preventing the decrease in the Pd dispersion degree due to the progress of crystallization and exhibiting excellent purification characteristics even when a complex oxide having the same amount of noble metal as before is calcined at a lower temperature. Technology was requested.

本発明は、上記事情に鑑みてなされたものであり、従来と同じ貴金属量の複合酸化物をより低温で焼成し、これにより結晶化の進行によるPd分散度の低下を防止して、優れた浄化特性を発揮することができる排ガス浄化触媒及びその製造方法、並びに車用排ガス浄化触媒装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and a composite oxide having the same amount of noble metal as in the prior art is fired at a lower temperature, thereby preventing a decrease in Pd dispersion due to the progress of crystallization, and is excellent. An object of the present invention is to provide an exhaust gas purification catalyst capable of exhibiting purification characteristics, a method for producing the same, and a vehicle exhaust gas purification catalyst device.

本発明者等は、上記目的に沿って優れた浄化特性を発揮することができる排ガス浄化触媒及びその製造方法について、鋭意、研究を重ねた。その結果、アルカリ土類金属を含むPd系複合酸化物を排ガス浄化触媒に用いることで、従来と同じ貴金属量であってもPdを表面により多く存在させてPd分散性を大きく向上させ、Pd同士の粒子成長を抑制することができ、浄化特性を高めることができるとの知見を得た。また、Pd系複合酸化物を、APdO(A:アルカリ土類金属)とするとともに、このAPdOなる組成のPd系複合酸化物を複数共存させることにより、異なるPd系複合酸化物同士において、Pd以外の元素がブロッキング材となって、上記複合酸化物同士の原子間距離をある程度確保することにより、初期のPd分散性及び耐熱性を一層向上させることができるとの知見を得た。さらに、Pd系複合酸化物の熱処理において、Pd系複合酸化物を従来に比して低温で焼成した場合であっても、Pd系複合酸化物中のPdの分散度を高く保持し、浄化特性を向上させることができるとの知見を得た。本発明は、これらの知見に基づいてなされたものである。 The present inventors diligently and researched about an exhaust gas purification catalyst capable of exhibiting excellent purification characteristics in accordance with the above object and a method for producing the same. As a result, by using a Pd-based composite oxide containing an alkaline earth metal for the exhaust gas purification catalyst, even if the amount of the noble metal is the same as the conventional amount, Pd is present more on the surface and the Pd dispersibility is greatly improved. It has been found that the growth of particles can be suppressed and the purification properties can be improved. Further, the Pd-based composite oxide is A 2 PdO 3 (A: alkaline earth metal), and a plurality of Pd-based composite oxides having a composition of A 2 PdO 3 are allowed to coexist so that different Pd-based composite oxides are present. The knowledge that the initial Pd dispersibility and heat resistance can be further improved by securing an interatomic distance between the composite oxides to a certain extent by using an element other than Pd as a blocking material among the objects. Obtained. Further, in the heat treatment of the Pd-based composite oxide, even when the Pd-based composite oxide is fired at a lower temperature than in the past, the dispersion degree of Pd in the Pd-based composite oxide is kept high, and the purification characteristics are maintained. The knowledge that can be improved. The present invention has been made based on these findings.

すなわち、本発明の排ガス浄化触媒は、アルカリ土類金属から選ばれた少なくとも1種を含むPd系複合酸化物であることを特徴としている。ここで、Pd系複合酸化物とは、例えば、Pd系アルカリ土類金属複合酸化物であり、上記Aとしては、例えば、Sr、Ba、Caが挙げられる。   That is, the exhaust gas purification catalyst of the present invention is characterized in that it is a Pd-based composite oxide containing at least one selected from alkaline earth metals. Here, the Pd-based composite oxide is, for example, a Pd-based alkaline earth metal composite oxide, and examples of A include Sr, Ba, and Ca.

このような排ガス浄化触媒においては、上記Pd系複合酸化物が、APdO(A:アルカリ土類金属)であることが望ましい。 In such an exhaust gas purification catalyst, the Pd-based composite oxide is preferably A 2 PdO 3 (A: alkaline earth metal).

また、このような排ガス浄化触媒は、原料となる金属塩を溶液として混合する際、有機酸を共存させ、錯体を形成することが望ましい。具体的には、上記排ガス浄化触媒においては、上記Pd系複合酸化物が、化合物群(OH基又はSH基を有する炭素数2〜20のカルボン酸、炭素数2又は3のジカルボン酸、及び炭素数1〜20のモノカルボン酸)から選ばれた少なくとも1種を構成元素の硝酸塩水溶液に添加する工程を経て製造されたことが望ましい。   Further, it is desirable that such an exhaust gas purification catalyst forms a complex by coexisting an organic acid when mixing a metal salt as a raw material as a solution. Specifically, in the exhaust gas purification catalyst, the Pd-based composite oxide is a compound group (an OH group or an SH group having 2 to 20 carbon atoms, a carbon number 2 or 3 dicarboxylic acid, and carbon. It is desirable that it is produced through a step of adding at least one selected from (monocarboxylic acids of several 1 to 20) to the nitrate aqueous solution of the constituent elements.

なお、OH基又はSH基を有する炭素数2〜20のカルボン酸の具体例としては、オキシカルボン酸及びオキシカルボン酸のOH基の酸素原子を硫黄原子に置換した化合物が挙げられる。これらのカルボン酸の炭素数は、水への溶解性の観点から2〜20であり、2〜12が好ましく、2〜8がより好ましく、2〜6がさらに好ましい。また、モノカルボン酸の炭素数は、水への溶解性の観点から1〜20であり、1〜12が好ましく、1〜8がより好ましく、1〜6がさらに好ましい。さらに、OH基又はSH基を有する炭素数2〜20のカルボン酸の具体例としては、グリコール酸、メルカプトコハク酸、チオグリコール酸、乳酸、β−ヒドロキシプロピオン酸、リンゴ酸、酒石酸、クエン酸、イソクエン酸、アロクエン酸、グルコン酸、グリオキシル酸、グリセリン酸、マンデル酸、トロパ酸、ベンジル酸、及びサリチル酸等が挙げられる。モノカルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、ヘキサン酸、ヘプタン酸、2−メチルヘキサン酸、オクタン酸、2−エチルヘキサン酸、ノナン酸、デカン酸、及びラウリン酸等が挙げられる。これらの中でも、酢酸、シュウ酸、マロン酸、グリコール酸、乳酸、リンゴ酸、酒石酸、グリオキシル酸、クエン酸及びグルコン酸が好ましく、シュウ酸、マロン酸、グリコール酸、乳酸、リンゴ酸、酒石酸、グリオキシル酸、クエン酸及びグルコン酸がさらに好ましい。   In addition, as a specific example of a C2-C20 carboxylic acid which has OH group or SH group, the compound which substituted the oxygen atom of OH group of oxycarboxylic acid and oxycarboxylic acid by the sulfur atom is mentioned. Carbon number of these carboxylic acids is 2-20 from a soluble viewpoint to water, 2-12 are preferable, 2-8 are more preferable, and 2-6 are more preferable. Moreover, carbon number of monocarboxylic acid is 1-20 from a soluble viewpoint to water, 1-12 are preferable, 1-8 are more preferable, and 1-6 are more preferable. Further, specific examples of the carboxylic acid having 2 to 20 carbon atoms having an OH group or an SH group include glycolic acid, mercaptosuccinic acid, thioglycolic acid, lactic acid, β-hydroxypropionic acid, malic acid, tartaric acid, citric acid, Examples include isocitric acid, allocic acid, gluconic acid, glyoxylic acid, glyceric acid, mandelic acid, tropic acid, benzylic acid, and salicylic acid. Specific examples of monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid, heptanoic acid, 2-methylhexanoic acid, octanoic acid, 2-ethylhexanoic acid, and nonane. Examples include acid, decanoic acid, and lauric acid. Among these, acetic acid, oxalic acid, malonic acid, glycolic acid, lactic acid, malic acid, tartaric acid, glyoxylic acid, citric acid and gluconic acid are preferable, and oxalic acid, malonic acid, glycolic acid, lactic acid, malic acid, tartaric acid, glyoxyl More preferred are acids, citric acid and gluconic acid.

さらに、このような排ガス浄化触媒においては、上記硝酸塩水溶液を蒸発乾固させて、カルボン酸錯体重合物を作製する工程と、上記カルボン酸錯体重合物を焼成する焼成工程とを経て製造されたことが望ましい。なお、上記焼成工程の一例としては、空気中での仮焼成により有機酸及び塩根を除去して仮焼成体を作製し、仮焼成体を紛糾した後、空気中で750℃で10時間本焼成を行なうものが挙げられる。   Furthermore, in such an exhaust gas purification catalyst, the nitrate aqueous solution was evaporated to dryness to produce a carboxylic acid complex polymer, and a calcination step of firing the carboxylic acid complex polymer. Is desirable. In addition, as an example of the said baking process, an organic acid and salt root are removed by temporary baking in the air, a temporary baking body is produced, and after the temporary baking body is wrought, this is performed at 750 ° C. for 10 hours in the air. What performs baking is mentioned.

次に、本発明の排ガス浄化触媒の製造方法は、上記排ガス浄化触媒を好適に製造するための方法であって、アルカリ土類金属から選ばれる少なくとも1種を含むPd系複合酸化物の排ガス浄化触媒を製造するにあたり、化合物群(OH基又はSH基を有する炭素数2〜20のカルボン酸、炭素数2又は3のジカルボン酸、及び炭素数1〜20のモノカルボン酸)から選ばれた少なくとも1種を構成元素の硝酸塩水溶液へ添加する工程を含むことを特徴としている。   Next, the method for producing an exhaust gas purification catalyst of the present invention is a method for producing the above exhaust gas purification catalyst suitably, and the exhaust gas purification of a Pd-based complex oxide containing at least one selected from alkaline earth metals In producing the catalyst, at least selected from a compound group (a carboxylic acid having 2 to 20 carbon atoms having an OH group or an SH group, a dicarboxylic acid having 2 or 3 carbon atoms, and a monocarboxylic acid having 1 to 20 carbon atoms). It includes a step of adding one kind to a nitrate aqueous solution of a constituent element.

このような排ガス浄化触媒の製造方法においては、上記硝酸塩水溶液を蒸発乾固させて、カルボン酸錯体重合物を作製する工程と、上記カルボン酸錯体重合物を焼成する焼成工程とを含むことが望ましく、また、上記焼成工程における焼成温度が、900℃以下であることがさらに望ましい。   Such a method for producing an exhaust gas purification catalyst preferably includes a step of evaporating and drying the aqueous nitrate solution to produce a carboxylic acid complex polymer, and a firing step of firing the carboxylic acid complex polymer. Moreover, it is more desirable that the firing temperature in the firing step is 900 ° C. or lower.

以上のような排ガス浄化触媒及びその製造方法は、本発明の概要であるが、本発明者等は、上述したこれらの発明の具体的な用途について鋭意検討し、本発明の排ガス浄化触媒は、内燃機関の中でも特に車用に使用することが好適であるとの知見を得、下記の発明を完成した。   Although the exhaust gas purification catalyst and the production method thereof as described above are the outline of the present invention, the present inventors have intensively studied the specific uses of these inventions described above, and the exhaust gas purification catalyst of the present invention is The inventors have obtained the knowledge that it is particularly suitable for use in automobiles among internal combustion engines, and have completed the following invention.

すなわち、本発明の車用排ガス浄化触媒装置は、アルカリ土類金属から選ばれた少なくとも1種を含むPd系複合酸化物を備え、上記Pd系複合酸化物が、車から排出される排ガスを浄化することを特徴としている。   That is, the vehicle exhaust gas purification catalyst device of the present invention includes a Pd-based composite oxide containing at least one selected from alkaline earth metals, and the Pd-based composite oxide purifies exhaust gas discharged from the vehicle. It is characterized by doing.

本発明によれば、Pd系複合酸化物からなる排ガス浄化触媒において、Pd系複合酸化物にアルカリ土類金属を含有させることで、従来と同じ金属量であってもPdを表面により多く存在させてPd分散性を大きく向上させ、Pd同士の粒子成長を抑制することができ、浄化特性を高めることができる。すなわち、図1に示すように、本発明のPd系複合酸化物では、担体上にPd2+が好適に分散している。なお、同図中Aは、アルカリ土類金属である。これに対し、図2は従来の排ガス浄化触媒としてのPdOであり、Pd2+が好適に分散している箇所もあるが、中にはPdが一部排ガスとの反応性の低い金属状態で存在している箇所もある。よって、本発明は、自動車等の内燃機関から排出される排ガス中の窒素酸化物(NOx)、炭化水素(HC)及び一酸化炭素(CO)を同時に効率よく浄化、低減させることのできる排ガス浄化触媒の製造技術を提供することができる点で有望である。なお、窒素酸化物(NO)としては、NOやNO等が挙げられる。 According to the present invention, in an exhaust gas purification catalyst comprising a Pd-based composite oxide, by containing an alkaline earth metal in the Pd-based composite oxide, a larger amount of Pd is present on the surface even with the same amount of metal as in the past. Thus, Pd dispersibility can be greatly improved, particle growth between Pd can be suppressed, and purification characteristics can be improved. That is, as shown in FIG. 1, in the Pd-based composite oxide of the present invention, Pd 2+ is suitably dispersed on the support. In the figure, A is an alkaline earth metal. On the other hand, FIG. 2 shows PdO as a conventional exhaust gas purification catalyst, and there are places where Pd 2+ is suitably dispersed, but some of Pd exists in a metal state with low reactivity with exhaust gas. There are also places that do. Therefore, the present invention is an exhaust gas purification capable of efficiently and simultaneously purifying and reducing nitrogen oxides (NOx), hydrocarbons (HC) and carbon monoxide (CO) in exhaust gas discharged from an internal combustion engine such as an automobile. It is promising in that it can provide catalyst manufacturing technology. Examples of nitrogen oxides (NO X ) include NO and NO 2 .

以下、本発明を実施例により、さらに詳細に説明する。
〈製造例1〉
硝酸ストロンチウム2.96g(0.014モル)、硝酸パラジウム1.86g(0.007モル)、及びリンゴ酸3.75g(0.028モル)をイオン交換水100mlに溶解して混合金属硝酸塩水溶液を作製した。次いで、上記混合金属硝酸塩水溶液を調製し、ホットプレートスターラーで攪拌しながら、250℃で蒸発乾固した。その後、これをアルミナ坩堝に移し、マッフル炉にて2.5℃/minで350℃まで昇温し、350℃で3時間熱処理した。これにより硝酸根を除去した仮焼成体を作製した。
Hereinafter, the present invention will be described in more detail with reference to examples.
<Production Example 1>
A mixed metal nitrate aqueous solution was prepared by dissolving 2.96 g (0.014 mol) of strontium nitrate, 1.86 g (0.007 mol) of palladium nitrate and 3.75 g (0.028 mol) of malic acid in 100 ml of ion-exchanged water. Produced. Next, the mixed metal nitrate aqueous solution was prepared and evaporated to dryness at 250 ° C. while stirring with a hot plate stirrer. Thereafter, this was transferred to an alumina crucible, heated to 350 ° C. at 2.5 ° C./min in a muffle furnace, and heat-treated at 350 ° C. for 3 hours. Thus, a temporarily fired body from which nitrate radicals were removed was produced.

上記仮焼成体を乳鉢で15分間粉砕した後、再びアルミナ坩堝に入れ、マッフル炉で5℃/minで750℃まで昇温し、750℃で10時間保持し、本焼成を行なった。次いで、Pd複合酸化物である触媒粉末、水、粉砕用ボール、SiOゾル及びアルミナを容器に入れ、ボールミルにて14時間粉砕混合し、スラリーを得た。その後、ハニカムへスラリーを所定重量担持後、750℃で3時間保持した。以上のようにして、SrPdOの排ガス浄化触媒を得た。 The calcined body was pulverized in a mortar for 15 minutes, then placed in an alumina crucible again, heated to 750 ° C. at 5 ° C./min in a muffle furnace, and held at 750 ° C. for 10 hours for main firing. Next, catalyst powder, water, pulverizing balls, SiO 2 sol and alumina, which are Pd composite oxides, were placed in a container and pulverized and mixed for 14 hours in a ball mill to obtain a slurry. Thereafter, the slurry was supported on the honeycomb by a predetermined weight and then held at 750 ° C. for 3 hours. As described above, an exhaust gas purification catalyst of Sr 2 PdO 3 was obtained.

〈製造例2〉
上記製造例1で使用した硝酸ストロンチウムの代わりに硝酸バリウムを使用し、BaPdOの排ガス浄化触媒を得た。その他の条件は製造例1と同様とした。
<Production Example 2>
Instead of strontium nitrate used in Production Example 1, barium nitrate was used to obtain an exhaust gas purification catalyst of Ba 2 PdO 3 . Other conditions were the same as in Production Example 1.

〈製造例3〉
硝酸パラジウムとリンゴ酸とをイオン交換水に溶解し、その後、製造例1と同様にしてPdOを作製した。次いで、このPdOとアルミナとから製造例1と同様に触媒を作製した。
<Production Example 3>
Palladium nitrate and malic acid were dissolved in ion-exchanged water, and then PdO was produced in the same manner as in Production Example 1. Next, a catalyst was produced from this PdO and alumina in the same manner as in Production Example 1.

〈製造例4〉
硝酸パラジウムと硝酸ストロンチウムとの混合水溶液を炭酸アンモニウムで中和後濃縮し、ペースト状の混合物を得た。次いで、300℃で熱分解後、1000℃で3時間焼成し、SrPdO粉末を得た。得られた粉末を粉砕後、製造例1と同様にアルミナと混合し、ハニカムヘ所定量を担持して、SrPdOの排ガス浄化触媒を得た。
<Production Example 4>
A mixed aqueous solution of palladium nitrate and strontium nitrate was neutralized with ammonium carbonate and concentrated to obtain a paste-like mixture. Then, after thermal decomposition at 300 ° C., and calcined for 3 hours at 1000 ° C., to obtain a Sr 2 PdO 3 powder. After the obtained powder was pulverized, it was mixed with alumina in the same manner as in Production Example 1, and a predetermined amount was supported on the honeycomb to obtain an exhaust gas purification catalyst of Sr 2 PdO 3 .

上記のように得られた各排ガス浄化触媒に対して、初期及び耐久処理後の活性評価を実施した。初期の活性評価は、空燃比が14.3及び14.9相当のモデル排ガスを0.5秒周期で繰り返し(周期1Hz)各触媒に流通させ、単位時間及び単位体積あたりの流量を50000h−1相当として反応温度30〜400℃の間で行った。耐久処理は、空燃比が14.6相当のモデル排ガスを使用し、ガス温度900℃で20時間行なった。このような条件の下で、耐久処理後の評価を行った。表1に昇温試験条件を示すとともに、各活性評価の結果を表2,3に示す。すなわち、表2には、初期触媒の昇温試験における、CO、HC、NOの50%浄化温度と400℃時の浄化率とを示す。また、表3には、耐久処理後の触媒の昇温試験における、CO、HC、NOの50%浄化温度と400℃時の浄化率とを示す。 Each exhaust gas purification catalyst obtained as described above was subjected to an activity evaluation in the initial stage and after the endurance treatment. In the initial activity evaluation, model exhaust gases having air-fuel ratios of 14.3 and 14.9 are repeatedly passed through each catalyst in a cycle of 0.5 seconds (cycle: 1 Hz), and the flow rate per unit time and unit volume is 50000 h −1. Correspondingly, the reaction was carried out at a reaction temperature of 30 to 400 ° C. The durability treatment was performed for 20 hours at a gas temperature of 900 ° C. using a model exhaust gas having an air-fuel ratio of 14.6. Under such conditions, the evaluation after the durability treatment was performed. Table 1 shows the temperature rise test conditions, and Tables 2 and 3 show the results of each activity evaluation. That is, Table 2 shows the 50% purification temperature of CO, HC, and NO and the purification rate at 400 ° C. in the temperature increase test of the initial catalyst. Table 3 shows the 50% purification temperature of CO, HC and NO and the purification rate at 400 ° C. in the temperature rise test of the catalyst after the durability treatment.

Figure 2005199122
Figure 2005199122

Figure 2005199122
Figure 2005199122

Figure 2005199122
Figure 2005199122

表2,3によれば、本発明の範囲内にある製造例1,2は、初期及び耐久処理後のいずれにおいても、50%浄化温度が比較的低く、また400℃浄化率も高い値を示すことが判る。これに対し、本発明の範囲外にある製造例3,4は、初期及び耐久処理後のいずれにおいても、50%浄化温度が比較的高く、また400℃浄化率も低い値を示すことが判る。   According to Tables 2 and 3, Production Examples 1 and 2 within the scope of the present invention have a relatively low 50% purification temperature and a high 400 ° C. purification rate both in the initial stage and after the endurance treatment. You can see that. On the other hand, it can be seen that Production Examples 3 and 4 outside the scope of the present invention have a relatively high 50% purification temperature and a low 400 ° C. purification rate both in the initial stage and after the endurance treatment. .

次に、図3〜5に、製造例1〜4の各排ガス浄化触媒についての、CO、HC、NOの各浄化率と温度との関係を示す。これらの各図中(a)は初期触媒についての昇温特性を示すものであり、(b)は耐久処理後の触媒についての昇温特性を示すものである。これらの図から明らかなように、本発明の範囲内にある製造例1,2は、概して200℃前後から本発明の範囲外にある製造例3,4に比して優れた浄化特性を示すことが判る。   Next, FIGS. 3 to 5 show the relationship between the CO, HC and NO purification rates and the temperatures for the exhaust gas purification catalysts of Production Examples 1 to 4. FIG. In each of these figures, (a) shows the temperature rise characteristic for the initial catalyst, and (b) shows the temperature rise characteristic for the catalyst after the durability treatment. As is apparent from these drawings, Production Examples 1 and 2 within the scope of the present invention generally exhibit excellent purification characteristics as compared with Production Examples 3 and 4 outside the scope of the present invention from around 200 ° C. I understand that.

このように、本発明の範囲内にある製造例1,2は、本発明の範囲外にある製造例3,4に対して優れた浄化特性を示すことが判明したが、この結果を裏付けるべく、さらに、Pd分散度に関する評価を行った。具体的には、試作した製造例1〜4の各排ガス浄化触媒をCO吸着法にてガス温度50℃で測定した。すなわち、COの吸着量を測定するにあたり、COパルス法を用い、前処理として、各排ガス浄化触媒を400℃のOに15分間及び400℃のHに15分間さらし、測定温度は50℃とした。なお、Pd量は0.75g/Lとした。その結果を図6に示す。 As described above, it has been found that Production Examples 1 and 2 within the scope of the present invention show excellent purification characteristics with respect to Production Examples 3 and 4 outside the scope of the present invention. In addition, the Pd dispersion degree was evaluated. Specifically, each of the exhaust gas purifying catalysts of Production Examples 1 to 4 that were prototyped was measured at a gas temperature of 50 ° C. by the CO adsorption method. That is, in measuring the amount of adsorption of CO, the CO pulse method is used, and as a pretreatment, each exhaust gas purification catalyst is exposed to O 2 at 400 ° C. for 15 minutes and H 2 at 400 ° C. for 15 minutes, and the measurement temperature is 50 ° C. It was. The Pd amount was 0.75 g / L. The result is shown in FIG.

図6から明らかなように、本発明の範囲内にある製造例1,2は、本発明の範囲外にある製造例3,4に比してPd分散度は高く、概して10%以上の値を示すことが判る。図中、製造例3の分散度が極めて低いのは、この排ガス浄化触媒がPdOとアルミナとの混合物からなるためであり、局部的には全くPdが存在しない箇所があるからである。また、図中製造例4の分散度が製造例1,2の分散度に比して低いのは、製造工程中に硝酸パラジウムと硝酸ランタンとの混合水溶液を炭酸アンモニウムで中和後濃縮し、ペースト状の混合物を得て、その後SrPdO粉末を得ているためであり、本発明の好適な製造工程であるリンゴ酸等を硝酸塩水溶液へ添加する工程を経ていないためである。 As is apparent from FIG. 6, Production Examples 1 and 2 within the scope of the present invention have higher Pd dispersion than Production Examples 3 and 4 outside the scope of the present invention, and are generally values of 10% or more. It can be seen that In the figure, the dispersity of Production Example 3 is very low because the exhaust gas purification catalyst is made of a mixture of PdO and alumina, and there is a portion where Pd does not exist at all locally. In addition, the dispersion of Production Example 4 in the figure is lower than the dispersion of Production Examples 1 and 2, because the mixed aqueous solution of palladium nitrate and lanthanum nitrate was neutralized with ammonium carbonate during the production process and concentrated. This is because a paste-like mixture was obtained and then Sr 2 PdO 3 powder was obtained, and the process of adding malic acid or the like, which is a preferred production process of the present invention, to the nitrate aqueous solution was not performed.

本発明の排ガス浄化触媒は、近年、排ガス中の窒素酸化物(NOx)、炭化水素(HC)及び一酸化炭素(CO)を同時に効率よく浄化、低減させることが要求される、自動車等の内燃機関に適用することができる。   The exhaust gas purifying catalyst of the present invention is an internal combustion engine such as an automobile that is required to efficiently purify and reduce nitrogen oxide (NOx), hydrocarbon (HC) and carbon monoxide (CO) in exhaust gas at the same time in recent years. Applicable to institutions.

本発明の排ガス浄化触媒を構成するPd系複合酸化物のPd分散状態を示す模式図である。It is a schematic diagram which shows the Pd dispersion state of Pd type complex oxide which comprises the exhaust gas purification catalyst of this invention. 従来の排ガス浄化触媒を構成するPd系酸化物のPd分散状態を示す模式図である。It is a schematic diagram which shows the Pd dispersion state of the Pd type oxide which comprises the conventional exhaust gas purification catalyst. 製造例1〜4の各排ガス浄化触媒についての、COの浄化率と温度との関係を示すグラフであり、(a)は初期触媒についての昇温特性を示すものであって、(b)は耐久処理後の触媒についての昇温特性を示すものである。It is a graph which shows the relationship between the CO purification rate and temperature about each exhaust gas purification catalyst of manufacture examples 1-4, (a) shows the temperature rising characteristic about an initial stage catalyst, (b) The temperature rise characteristic about the catalyst after an endurance process is shown. 製造例1〜4の各排ガス浄化触媒についての、HCの浄化率と温度との関係を示すグラフであり、(a)は初期触媒についての昇温特性を示すものであって、(b)は耐久処理後の触媒についての昇温特性を示すものである。It is a graph which shows the relationship between the purification rate of HC and temperature about each exhaust gas purification catalyst of manufacture examples 1-4, (a) shows the temperature rising characteristic about an initial stage catalyst, (b) is The temperature rise characteristic about the catalyst after an endurance process is shown. 製造例1〜4の各排ガス浄化触媒についての、NOの浄化率と温度との関係を示すグラフであり、(a)は初期触媒についての昇温特性を示すものであって、(b)は耐久処理後の触媒についての昇温特性を示すものである。It is a graph which shows the relationship between the NO purification rate and temperature about each exhaust gas purification catalyst of manufacture examples 1-4, (a) shows the temperature rising characteristic about an initial stage catalyst, (b) is The temperature rise characteristic about the catalyst after an endurance process is shown. 製造例1〜4の各排ガス浄化触媒についての、Pd分散度を示すグラフである。It is a graph which shows Pd dispersion degree about each exhaust gas purification catalyst of manufacture examples 1-4.

Claims (8)

アルカリ土類金属から選ばれた少なくとも1種を含むPd系複合酸化物であることを特徴とする排ガス浄化触媒。   An exhaust gas purifying catalyst, which is a Pd-based composite oxide containing at least one selected from alkaline earth metals. 前記Pd系複合酸化物が、APdO(A:アルカリ土類金属)であることを特徴とする請求項1に記載の排ガス浄化触媒。 2. The exhaust gas purification catalyst according to claim 1, wherein the Pd-based composite oxide is A 2 PdO 3 (A: alkaline earth metal). 前記Pd系複合酸化物が、化合物群(OH基又はSH基を有する炭素数2〜20のカルボン酸、炭素数2又は3のジカルボン酸、及び炭素数1〜20のモノカルボン酸)から選ばれた少なくとも1種を構成元素の硝酸塩水溶液に添加する工程を経て製造されたことを特徴とする請求項1又は2に記載の排ガス浄化触媒。   The Pd-based composite oxide is selected from a compound group (a carboxylic acid having 2 to 20 carbon atoms, an OH group or an SH group, a dicarboxylic acid having 2 or 3 carbon atoms, and a monocarboxylic acid having 1 to 20 carbon atoms). The exhaust gas purifying catalyst according to claim 1 or 2, wherein the exhaust gas purifying catalyst is manufactured through a step of adding at least one kind to a nitrate aqueous solution of a constituent element. 前記硝酸塩水溶液を蒸発乾固させて、カルボン酸錯体重合物を作製する工程と、前記カルボン酸錯体重合物を焼成する焼成工程とを経て製造されたことを特徴とする請求項3に記載の排ガス浄化触媒。   The exhaust gas according to claim 3, wherein the exhaust gas is produced through a step of evaporating and drying the aqueous nitrate solution to produce a carboxylic acid complex polymer, and a firing step of firing the carboxylic acid complex polymer. Purification catalyst. アルカリ土類金属から選ばれた少なくとも1種を含むPd系複合酸化物の排ガス浄化触媒を製造する方法であって、
化合物群(OH基又はSH基を有する炭素数2〜20のカルボン酸、炭素数2又は3のジカルボン酸、及び炭素数1〜20のモノカルボン酸)から選ばれた少なくとも1種を構成元素の硝酸塩水溶液へ添加する工程を含むことを特徴とする排ガス浄化触媒の製造方法。
A method for producing an exhaust gas purification catalyst of a Pd-based composite oxide containing at least one selected from alkaline earth metals,
At least one selected from the group of compounds (a carboxylic acid having 2 to 20 carbon atoms having an OH group or an SH group, a dicarboxylic acid having 2 or 3 carbon atoms, and a monocarboxylic acid having 1 to 20 carbon atoms) is used as a constituent element. A method for producing an exhaust gas purification catalyst comprising a step of adding to an aqueous nitrate solution.
前記硝酸塩水溶液を蒸発乾固させて、カルボン酸錯体重合物を作製する工程と、前記カルボン酸錯体重合物を焼成する焼成工程とを含むことを特徴とする請求項5に記載の排ガス浄化触媒の製造方法。   The exhaust gas purifying catalyst according to claim 5, comprising a step of evaporating and drying the nitrate aqueous solution to produce a carboxylic acid complex polymer, and a firing step of firing the carboxylic acid complex polymer. Production method. 前記焼成工程における焼成温度が、900℃以下であることを特徴とする請求項6に記載の排ガス浄化触媒の製造方法。   The method for producing an exhaust gas purification catalyst according to claim 6, wherein a firing temperature in the firing step is 900 ° C. or less. アルカリ土類金属から選ばれた少なくとも1種を含むPd系複合酸化物を備え、前記Pd系複合酸化物が、車から排出される排ガスを浄化することを特徴とする車用排ガス浄化触媒装置。   An exhaust gas purification catalyst device for vehicles, comprising a Pd-based composite oxide containing at least one selected from alkaline earth metals, wherein the Pd-based composite oxide purifies exhaust gas discharged from a vehicle.
JP2004005523A 2004-01-13 2004-01-13 Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying catalyst device for vehicle Pending JP2005199122A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004005523A JP2005199122A (en) 2004-01-13 2004-01-13 Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying catalyst device for vehicle
US11/032,233 US20050153836A1 (en) 2004-01-13 2005-01-11 Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for exhaust gas
DE200510001467 DE102005001467A1 (en) 2004-01-13 2005-01-12 Exhaust gas purifying catalyst, manufacturing method thereof and exhaust gas purifying catalyst device
DE102005063419A DE102005063419B4 (en) 2004-01-13 2005-01-12 Purification catalyst for exhaust gas and manufacturing process therefor
CNB2005100040550A CN100488626C (en) 2004-01-13 2005-01-12 Purification catalyst for exhaust gas, production method therefor, and vehicular purification catalyst device for exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005523A JP2005199122A (en) 2004-01-13 2004-01-13 Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying catalyst device for vehicle

Publications (1)

Publication Number Publication Date
JP2005199122A true JP2005199122A (en) 2005-07-28

Family

ID=34819817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005523A Pending JP2005199122A (en) 2004-01-13 2004-01-13 Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying catalyst device for vehicle

Country Status (1)

Country Link
JP (1) JP2005199122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159586A1 (en) 2018-02-15 2019-08-22 株式会社キャタラー Exhaust gas purification catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159586A1 (en) 2018-02-15 2019-08-22 株式会社キャタラー Exhaust gas purification catalyst
US11534737B2 (en) 2018-02-15 2022-12-27 Cataler Corporation Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP2003126694A (en) Catalyst for cleaning exhaust gas
JP5190196B2 (en) Composite oxide for exhaust gas purification catalyst, exhaust gas purification catalyst, and diesel exhaust gas purification filter
JPH08224469A (en) Highly heat-resistant catalyst carrier, its production, highly heat-resistant catalyst and its production
JP2005262201A (en) Exhaust gas-cleaning catalyst and method for manufacturing the same
JP2011045840A (en) Catalyst composition
JP6187770B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP2009061432A (en) Compound oxide, particulate oxidation catalyst, and diesel particulate filter
JP4352300B2 (en) Composite oxide, method for producing the same, and co-catalyst for exhaust gas purification
CN100488626C (en) Purification catalyst for exhaust gas, production method therefor, and vehicular purification catalyst device for exhaust gas
JP3843091B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification catalyst device for vehicles
JP3843090B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification catalyst device for vehicles
JP2011137401A (en) Exhaust emission control method
JP3843102B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification catalyst device
JP4697503B2 (en) Composite oxide powder, method for producing the same and catalyst
JP2006043683A (en) Catalyst carrier and its manufacturing method and catalyst for cleaning exhaust gas
JP2005199122A (en) Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying catalyst device for vehicle
JP7428681B2 (en) Exhaust gas purification catalyst
JP4157514B2 (en) Exhaust gas purification catalyst and vehicle exhaust gas purification apparatus equipped with the same
JP4204487B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification catalyst device for vehicle
JP2004321847A (en) Catalyst carrier, its production method, catalyst, and method for cleaning exhaust gas
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP2004167354A (en) Carrier for catalyst, no oxidation catalyst, and no oxidation method
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP2005103350A (en) Exhaust gas cleaning catalyst, manufacturing method therefor and exhaust gas cleaning catalyst device for vehicle
JP5692594B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060908