JP2005197498A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2005197498A
JP2005197498A JP2004002844A JP2004002844A JP2005197498A JP 2005197498 A JP2005197498 A JP 2005197498A JP 2004002844 A JP2004002844 A JP 2004002844A JP 2004002844 A JP2004002844 A JP 2004002844A JP 2005197498 A JP2005197498 A JP 2005197498A
Authority
JP
Japan
Prior art keywords
region
line
memory cell
light
photomask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004002844A
Other languages
Japanese (ja)
Inventor
Shinichi Mitsumizo
真一 三溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004002844A priority Critical patent/JP2005197498A/en
Publication of JP2005197498A publication Critical patent/JP2005197498A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent operation failure from being generated in a transistor at a peripheral circuit at the boundary to the memory cell of a DRAM. <P>SOLUTION: Light is applied to a negative photoresist film formed on the entire surface of a silicon substrate using a photomask 3 shown in Figure. The photomask 3 has a light-shielding section 31 in which a plurality of rectangular projections 31a project at a prescribed interval at the side of a memory cell region 1 from a line 31L set to a boundary line L1 between a memory cell region 1 and a peripheral circuit region 2. The projections 31a are arranged at positions that oppose the area between adjacent element regions 10 in the columnar direction (along a line in parallel with the line L1). The line 31L at the light-shielding section 31 of the photomask 3 is arranged to the line L1 of the silicon substrate for applying light. When applying light, no condensation in the shape of a wavy line caused by the element regions 10 arranged in an oblique matrix shape is generated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、直線に沿って分離される第1の領域と第2の領域を有し、第1の領域には行列状に素子が配列され、前記行列は前記直線に沿った行と、前記直線に対して斜めに延びる列とからなる半導体装置の製造方法に関し、特に、前記第2の領域を半導体基板と異なる導電型の不純物拡散領域とするための、ネガ型フォトレジストを用いたフォトリソグラフィ工程に関するものである。   The present invention has a first region and a second region separated along a straight line, and the first region has elements arranged in a matrix, and the matrix includes rows along the straight line, In particular, the present invention relates to a method of manufacturing a semiconductor device including columns extending obliquely with respect to a straight line, and in particular, photolithography using a negative photoresist for making the second region an impurity diffusion region having a conductivity type different from that of a semiconductor substrate. It relates to the process.

DRAM(Dynamic Randam Access Memory)等の半導体記憶装置は、行列状に密に素子が配列されたメモリーセルとこれに隣接する周辺回路とを備えている。
図2はDRAMの一例を示す部分断面図であり、第1金属配線層形成工程後の状態を示している。このDRAMは、シリコン基板5のメモリーセルを形成する領域と周辺回路を形成する領域の境界に、領域分離酸化膜12が形成されている。この領域分離酸化膜12の幅方向中心を境界にして、P型シリコン基板5のメモリーセル形成領域側にP(P+)ウエル16が、周辺回路形成領域側にNウエル15が形成されている。
A semiconductor memory device such as a DRAM (Dynamic Random Access Memory) includes a memory cell in which elements are densely arranged in a matrix and a peripheral circuit adjacent thereto.
FIG. 2 is a partial cross-sectional view showing an example of a DRAM and shows a state after the first metal wiring layer forming step. In this DRAM, a region isolation oxide film 12 is formed at the boundary between a region on the silicon substrate 5 where a memory cell is formed and a region where a peripheral circuit is formed. A P (P +) well 16 is formed on the P-type silicon substrate 5 on the memory cell formation region side, and an N well 15 is formed on the peripheral circuit formation region side with the width direction center of the region isolation oxide film 12 as a boundary.

図2に示す範囲において、メモリーセル形成領域には、Pウエル16にn型不純物を拡散して形成されたソース/ドレイン領域61a,61bを備えたトランジスタ6と、ドレイン領域61bに接続されたビット線71と、ソース領域61aに接続されたキャパシタ72と、トランスファーゲート線73が形成されている。周辺回路形成領域には、Nウエル15にp型不純物を拡散して形成されたソース/ドレイン領域81を備えたトランジスタ8が形成されている。なお、符号91は第1金属配線を示し、符号92は層間絶縁膜を示す。   In the range shown in FIG. 2, in the memory cell formation region, the transistor 6 having source / drain regions 61a and 61b formed by diffusing n-type impurities in the P well 16 and the bit connected to the drain region 61b. A line 71, a capacitor 72 connected to the source region 61a, and a transfer gate line 73 are formed. In the peripheral circuit formation region, a transistor 8 including a source / drain region 81 formed by diffusing a p-type impurity in the N well 15 is formed. Reference numeral 91 denotes a first metal wiring, and reference numeral 92 denotes an interlayer insulating film.

近年では、集積度を高くするために、メモリーセルの素子領域10を図3に示すように配列することが行われている。ラインL1は、メモリーセル領域と周辺回路領域とを分離する直線(境界ライン)である。メモリーセル領域1には、ラインL1と平行なラインL2を行とし、ラインL1に対して斜めに延びるラインL3を列とした行列状に、多数の素子領域10が密に形成されている。この素子領域11は、フォトリソグラフィ技術を利用し、シリコン基板の素子領域10以外の部分を熱酸化して素子分離酸化膜11を形成することにより形成される。その際に、メモリーセル領域1と周辺回路領域2とを分離する領域分離酸化膜12も同時に形成する。ラインL4は、この領域分離酸化膜12の周辺回路領域2側の端部を示すラインである。   In recent years, in order to increase the degree of integration, the element regions 10 of the memory cells are arranged as shown in FIG. The line L1 is a straight line (boundary line) that separates the memory cell region and the peripheral circuit region. In the memory cell region 1, a large number of element regions 10 are densely formed in a matrix having lines L2 parallel to the lines L1 as rows and lines L3 extending obliquely with respect to the lines L1 as columns. The element region 11 is formed by using a photolithography technique to thermally oxidize a portion other than the element region 10 of the silicon substrate to form an element isolation oxide film 11. At that time, a region isolation oxide film 12 for separating the memory cell region 1 and the peripheral circuit region 2 is also formed at the same time. The line L4 is a line indicating the end of the region isolation oxide film 12 on the peripheral circuit region 2 side.

この分離酸化膜形成工程の後に、シリコン基板の全面にネガ型フォトレジスト膜を形成して、このレジスト膜に、図4に示すように、周辺回路領域を遮光するフォトマスク30を介して光を照射する。このフォトマスク30の遮光部301は、端部がメモリーセル領域と周辺回路領域との境界ラインL1に沿った直線状に形成されている。
これにより、図5に示すように、シリコン基板5のメモリーセル領域上にレジスト硬化膜4が残るレジストパターンを形成する。次に、このレジストパターン4を介して不純物拡散を行う。ここではN型不純物(P:リン)をイオン注入する。これにより、図6に示すように、シリコン基板5の周辺回路領域にNウエル15を形成する。
After this isolation oxide film forming step, a negative photoresist film is formed on the entire surface of the silicon substrate, and light is applied to the resist film through a photomask 30 that shields the peripheral circuit region as shown in FIG. Irradiate. The light-shielding portion 301 of the photomask 30 has an end formed in a straight line along the boundary line L1 between the memory cell region and the peripheral circuit region.
Thereby, as shown in FIG. 5, a resist pattern in which the resist cured film 4 remains on the memory cell region of the silicon substrate 5 is formed. Next, impurity diffusion is performed through the resist pattern 4. Here, N-type impurities (P: phosphorus) are ion-implanted. As a result, an N well 15 is formed in the peripheral circuit region of the silicon substrate 5 as shown in FIG.

なお、DRAMのメモリーセル領域と周辺回路領域との関係で生じる問題点に関する文献としては、下記の特許文献1および2が挙げられる。また、下記の特許文献3には、ネガ型フォトレジストのハレーション対策に関する技術が記載されている。しかしながら、いずれの文献にも、素子領域を図3の配列で形成したメモリーセル領域を有し、このメモリーセル領域にネガ型レジストの硬化膜を形成する場合に生じる問題点、およびその解決手段についての記載はない。
特開2000−19709号公報 特開平10−116969号公報 特開2002−50571号公報
The following Patent Documents 1 and 2 are cited as documents relating to the problems that occur due to the relationship between the memory cell region of DRAM and the peripheral circuit region. Patent Document 3 below describes a technique related to countermeasures for halation of a negative photoresist. However, in any of the documents, there is a memory cell region in which the element region is formed in the arrangement shown in FIG. 3, and a problem that occurs when a cured film of a negative resist is formed in this memory cell region, and a solution to the problem. There is no description.
JP 2000-19709 A JP-A-10-116969 JP 2002-50571 A

しかしながら、メモリーセル領域に図3の配列で素子領域が形成されているDRAMには、上述の方法で製造した場合に、周辺回路のメモリーセルとの境界にあるトランジスタに作動不良が生じることがある。
本発明は、この点に着目してなされたものであり、直線に沿って分離される第1の領域と第2の領域を有し、第1の領域には行列状に素子が配列され、前記行列は前記直線に沿った行と、前記直線に対して斜めに延びる列とからなる半導体装置の製造方法において、第2の領域の第1の領域との境界にある半導体素子に作動不良が生じないようにすることを課題とする。
However, in a DRAM in which the element region is formed in the memory cell region in the arrangement shown in FIG. 3, malfunction may occur in the transistor at the boundary with the memory cell of the peripheral circuit when manufactured by the method described above. .
The present invention has been made paying attention to this point, and has a first region and a second region separated along a straight line, and elements are arranged in a matrix in the first region, In the method of manufacturing a semiconductor device, in which the matrix includes a row along the straight line and a column extending obliquely with respect to the straight line, the semiconductor element at the boundary of the second region with the first region has a malfunction. The problem is to prevent it from occurring.

上記課題を解決するために、本発明は、直線に沿って分離される第1の領域と第2の領域を有し、第1の領域には行列状に素子が配列され、前記行列は前記直線に沿った行と、前記直線に対して斜めに延びる列とからなる半導体装置の製造方法であって、半導体基板の前記各領域に、各素子配列に対応させた素子分離酸化膜を形成するとともに、前記両領域の境界に領域分離酸化膜を形成する分離酸化膜形成工程と、この分離酸化膜形成工程の後に、前記半導体基板の全面にネガ型フォトレジスト膜を形成し、前記第2の領域を遮光するフォトマスクを介して光を照射することにより、前記第1の領域上にレジスト硬化膜が残るレジストパターンを形成するフォトリソグラフィ工程と、このフォトリソグラフィ工程の後に、前記レジストパターンを介した前記半導体基板に対する不純物拡散を行うことにより、前記半導体基板の前記第2の領域に前記半導体基板と異なる導電型の不純物を拡散させる工程と、を有し、前記フォトリソグラフィ工程で使用するフォトマスクの遮光部は、前記境界より第1の領域側に突出する凸部を、前記行方向で隣り合う各素子領域間と対向する位置に有することを特徴とする半導体装置の製造方法を提供する。   In order to solve the above problems, the present invention has a first region and a second region separated along a straight line, and elements are arranged in a matrix in the first region. A method of manufacturing a semiconductor device comprising a row along a straight line and a column extending obliquely with respect to the straight line, wherein an element isolation oxide film corresponding to each element arrangement is formed in each region of the semiconductor substrate. In addition, an isolation oxide film forming step for forming a region isolation oxide film at the boundary between the two regions, and after the isolation oxide film forming step, a negative photoresist film is formed on the entire surface of the semiconductor substrate, By irradiating light through a photomask that shields the region, a photolithography process for forming a resist pattern in which a resist cured film remains on the first region, and after the photolithography step, the resist pattern is formed. Diffusing impurities of a different conductivity type from the semiconductor substrate into the second region of the semiconductor substrate by performing impurity diffusion on the semiconductor substrate via an impurity, and used in the photolithography process The method of manufacturing a semiconductor device according to claim 1, wherein the light-shielding portion of the photomask has a protruding portion that protrudes toward the first region from the boundary at a position facing each element region adjacent in the row direction. provide.

本発明の方法で好適に製造される半導体装置として、第1の領域としてメモリーセル領域を有し、第2の領域として周辺回路領域を有するDRAMが挙げられる。
次に、本発明の方法の作用および効果を、前述の製造方法と対比しながら説明する。
第1の領域(DRAMの場合のメモリーセル領域)1に図3の配列で素子領域10が配列されていると、素子領域11のラインL1と対向する外形ラインL5が、境界ラインL1に対して傾斜している状態となる。また、素子領域10と素子分離酸化膜11および領域分離酸化膜12とでは反射率が異なり、素子領域10は高い反射率を有する。
As a semiconductor device suitably manufactured by the method of the present invention, a DRAM having a memory cell region as a first region and a peripheral circuit region as a second region can be cited.
Next, the operation and effect of the method of the present invention will be described in comparison with the aforementioned manufacturing method.
When the element region 10 is arranged in the arrangement shown in FIG. 3 in the first area (memory cell area in the case of DRAM) 1, the outline line L5 facing the line L1 of the element region 11 is in relation to the boundary line L1. It is in an inclined state. Further, the element region 10 and the element isolation oxide film 11 and the region isolation oxide film 12 have different reflectivities, and the element region 10 has a high reflectivity.

これらのことから、図7に示すように、遮光部301の端部がラインL1に沿って直線状に形成されている従来のフォトマスク30を使用すると、図7に符号Sで示すような波線状の集光が生じ易くなる。すなわち、フォトマスク30を介して上側から、レジスト膜のラインL1よりメモリーセル領域1側に照射した光が、レジスト膜内を横に移動してラインL1より周辺回路領域(第2の領域)側2まで至り、ラインL1とラインL4との間の、行方向(ラインL1と平行な方向)で隣り合う各素子領域10間と対向する位置に集まり易くなる。   From these facts, as shown in FIG. 7, when a conventional photomask 30 in which the end portion of the light shielding portion 301 is formed linearly along the line L1, a wavy line as indicated by symbol S in FIG. Condensation tends to occur. That is, light irradiated from the upper side through the photomask 30 to the memory cell region 1 side from the line L1 of the resist film moves laterally in the resist film and is on the peripheral circuit region (second region) side from the line L1. 2 and easily gathers at a position between the line L1 and the line L4 facing each element region 10 adjacent in the row direction (direction parallel to the line L1).

そして、ネガ型のレジストを使用していることから、この集光に伴ってレジスト硬化膜の端部が波線状になる。すなわち、図6に二点鎖線で示すように、レジスト硬化膜4の端部4aが部分的に(平面視で図7の集光ラインSに沿って)、領域分離酸化膜12の幅方向中心よりも周辺回路領域側まで存在することになる。
この状態で不純物拡散工程を行うと、周辺回路領域側のレジスト硬化膜4が存在している領域分離酸化膜12の下側部分15aに、不純物が拡散されなくなる。この周辺回路領域は半導体基板と異なる導電型の不純物拡散領域とされるが、不純物が拡散されない部分15aは半導体基板と同じ導電型のままとなる。そのため、この不純物拡散領域15に形成された半導体素子が、半導体基板やその後にメモリーセル領域に形成される不純物拡散層(半導体基板と同じ導電型で濃度の高い不純物拡散層)と電気的に分離されなくなる。
And since the negative resist is used, the edge part of a resist cured film becomes wavy shape with this condensing. That is, as shown by a two-dot chain line in FIG. 6, the end portion 4a of the resist cured film 4 is partially (along the condensing line S in FIG. Rather than the peripheral circuit area side.
When the impurity diffusion step is performed in this state, impurities are not diffused into the lower portion 15a of the region isolation oxide film 12 where the resist cured film 4 on the peripheral circuit region side exists. The peripheral circuit region is an impurity diffusion region having a conductivity type different from that of the semiconductor substrate, but the portion 15a where the impurity is not diffused remains the same conductivity type as the semiconductor substrate. Therefore, the semiconductor element formed in the impurity diffusion region 15 is electrically separated from the semiconductor substrate and the impurity diffusion layer (impurity diffusion layer having the same conductivity type and high concentration as the semiconductor substrate) formed in the memory cell region thereafter. It will not be done.

本発明の方法によれば、前記境界より第1の領域側に突出する凸部を、前記行方向で隣り合う各素子領域間と対向する位置に有する遮光部を備えたフォトマスクを、前記フォトリソグラフィ工程で使用することにより、図7に示す集光され易い部分より第1の領域側の面が前記凸部で遮光されるため、図7に示すような波線状の集光が生じないようにすることができる。   According to the method of the present invention, a photomask including a light-shielding portion having a convex portion protruding from the boundary toward the first region side at a position facing each element region adjacent in the row direction is provided on the photomask. By using it in the lithography process, the surface on the first region side is shielded by the convex portion from the portion that is easily condensed as shown in FIG. 7, so that wavy line condensing as shown in FIG. 7 does not occur. Can be.

よって、レジスト硬化膜の端部が波線状にならないようにできるため、第1の領域を全て覆い、且つ第2の領域の領域分離酸化膜の下側部分を含む全体に不純物を拡散させることができるようになる。その結果、第2の領域の領域分離酸化膜近傍の不純物拡散領域に形成された半導体素子が、半導体基板やその後に第1の領域に形成される不純物拡散層(基板と同じ導電型で濃度の高い不純物拡散層)と電気的に分離されるため、前記半導体素子に作動不良が生じることを防止できる。   Therefore, since the end portion of the resist cured film can be prevented from becoming wavy, the impurity can be diffused over the entire first region and including the lower portion of the region isolation oxide film in the second region. become able to. As a result, the semiconductor element formed in the impurity diffusion region in the vicinity of the region isolation oxide film in the second region has a semiconductor substrate and an impurity diffusion layer formed in the first region thereafter (the same conductivity type as the substrate and having a concentration). Therefore, the semiconductor element can be prevented from malfunctioning because it is electrically separated from the high impurity diffusion layer.

以下、本発明の実施形態について説明する。
図1は、本発明の一実施形態に相当する半導体装置の製造方法を構成するフォトリソグラフィ工程を説明する図である。
この実施形態は、背景技術の項で説明した図3に示す配列で素子領域が形成されているDRAMの製造方法であり、フォトリソグラフィ工程以外については、従来より公知の方法が採用できる。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a diagram illustrating a photolithography process that constitutes a semiconductor device manufacturing method corresponding to an embodiment of the present invention.
This embodiment is a method for manufacturing a DRAM in which element regions are formed in the arrangement shown in FIG. 3 described in the background art section, and conventionally known methods can be adopted except for the photolithography process.

先ず、P型のシリコン基板に、LOCOS(Local Oxidation of Silicon)法等により、素子分離酸化膜および領域分離酸化膜を形成する。メモリーセル領域1においては、素子領域10が図3に示す形状および配列となるように素子分離酸化膜11を形成し、メモリーセル領域1と周辺回路領域2との境界に領域分離酸化膜12を形成する。   First, an element isolation oxide film and a region isolation oxide film are formed on a P-type silicon substrate by a LOCOS (Local Oxidation of Silicon) method or the like. In the memory cell region 1, an element isolation oxide film 11 is formed so that the element region 10 has the shape and arrangement shown in FIG. 3, and a region isolation oxide film 12 is formed at the boundary between the memory cell region 1 and the peripheral circuit region 2. Form.

次に、シリコン基板の全面にネガ型フォトレジスト膜を形成し、その上に、図1に示すようにフォトマスク3を配置して光照射を行う。
このフォトマスク3は、メモリーセル領域1と周辺回路領域2との境界ラインL1に合わせたライン31Lからメモリーセル領域1側に、長方形の凸部31aが所定間隔で複数個突出した形状の遮光部31を有している。これらの凸部31aは、行方向で(ラインL1と平行なラインに沿って)隣り合う各素子領域10の間と対向する位置に配置されている。このフォトマスク3は、透明基板に前記遮光部31の形状でクロムパターンを形成することにより得られる。このフォトマスク3の遮光部31のライン31Lを、シリコン基板のラインL1に合わせて配置して、光照射を行う。
Next, a negative photoresist film is formed on the entire surface of the silicon substrate, and a photomask 3 is disposed thereon as shown in FIG.
This photomask 3 has a light shielding portion in which a plurality of rectangular protrusions 31a protrude from the line 31L aligned with the boundary line L1 between the memory cell region 1 and the peripheral circuit region 2 toward the memory cell region 1 at a predetermined interval. 31. These convex portions 31a are arranged at positions facing each other between the adjacent element regions 10 in the row direction (along a line parallel to the line L1). This photomask 3 is obtained by forming a chrome pattern in the shape of the light shielding portion 31 on a transparent substrate. The line 31L of the light-shielding portion 31 of the photomask 3 is arranged in accordance with the line L1 of the silicon substrate, and light irradiation is performed.

これにより、図7に示すような波線状の集光が生じないため、レジスト硬化膜の端部が波線状にならない。よって、図5に示すように、レジスト硬化膜4でメモリーセル領域を全て覆い、レジスト硬化膜4の端部を直線状として、領域分離酸化膜12の幅方向中心位置に合わせることができる。
次に、図5に示すように、このレジスト硬化膜(レジストパターン)4を介して、P型ののシリコン基板5にN型不純物であるリン(P)をイオン注入する(不純物拡散を行う)。これにより、周辺回路領域にNウエルを形成する。ここで、図6に示すように、レジスト硬化膜4の端部4aが、二点鎖線でなく実線で示すように形成されるため、周辺回路領域の領域分離酸化膜12の下側部分を含めた全体に不純物を拡散させて、設計通りのNウエル15を形成することができる。
Thereby, since wavy line condensing like FIG. 7 does not arise, the edge part of a resist cured film does not become wavy line shape. Therefore, as shown in FIG. 5, the entire memory cell region can be covered with the resist cured film 4, and the end portion of the resist cured film 4 can be made linear to match the center position in the width direction of the region isolation oxide film 12.
Next, as shown in FIG. 5, phosphorus (P), which is an N-type impurity, is ion-implanted into the P-type silicon substrate 5 through this resist cured film (resist pattern) 4 (impurity diffusion is performed). . As a result, an N well is formed in the peripheral circuit region. Here, as shown in FIG. 6, since the end 4a of the resist cured film 4 is formed as indicated by a solid line instead of a two-dot chain line, the lower portion of the region isolation oxide film 12 in the peripheral circuit region is included. Further, the N well 15 as designed can be formed by diffusing impurities throughout.

次に、レジスト硬化膜(レジストパターン)4を除去した後に、周辺回路領域側を覆うレジストパターンを形成する。次に、このレジストパターンを介して、シリコン基板5のメモリーセル領域1にP型不純物であるホウ素(B)をイオン注入することにより、図2に示すPウエル16を形成する。以下、従来より公知の方法に従って、各半導体素子の形成および金属配線層の形成等を行うことにより、DRAMを完成させる。   Next, after removing the resist cured film (resist pattern) 4, a resist pattern covering the peripheral circuit region side is formed. Next, boron (B), which is a P-type impurity, is ion-implanted into the memory cell region 1 of the silicon substrate 5 through this resist pattern, thereby forming the P well 16 shown in FIG. Thereafter, the DRAM is completed by forming each semiconductor element and forming a metal wiring layer in accordance with a conventionally known method.

この実施形態では、図2に示すように、周辺回路領域の領域分離酸化膜12近傍のNウエル15にトランジスタ8のソース/ドレイン領域を形成するが、前述のようにNウエル15が設計通りに形成されるため、このソース/ドレイン領域は、P型のシリコン基板5やP(P+)ウエル16と電気的に分離される。したがって、従来の課題であったトランジスタ8に作動不良が生じることを防止できる。   In this embodiment, as shown in FIG. 2, the source / drain regions of the transistor 8 are formed in the N well 15 near the region isolation oxide film 12 in the peripheral circuit region. As described above, the N well 15 is formed as designed. As a result, the source / drain regions are electrically isolated from the P-type silicon substrate 5 and the P (P +) well 16. Therefore, it is possible to prevent malfunction of the transistor 8 which has been a conventional problem.

なお、この実施形態では、遮光部31の凸部31aが長方形であるフォトマスク3を使用しているが、これに代えて、図8に示すフォトマスク3を使用してもよい。
このフォトマスク3は、メモリーセル領域1と周辺回路領域2との境界ラインL1に合わせたライン31Lからメモリーセル領域1側に、三角形の凸部32aが所定間隔で複数個突出した形状の遮光部32を有している。これらの凸部32aは、行方向で(ラインL1と平行なラインに沿って)隣り合う各素子領域10の間と対向する位置に配置されている。
In this embodiment, the photomask 3 in which the convex portions 31a of the light-shielding portion 31 are rectangular is used. Instead, the photomask 3 shown in FIG. 8 may be used.
This photomask 3 has a light shielding portion in which a plurality of triangular protrusions 32a protrude from the line 31L aligned with the boundary line L1 between the memory cell region 1 and the peripheral circuit region 2 toward the memory cell region 1 at a predetermined interval. 32. These convex portions 32a are arranged at positions facing each other between the adjacent element regions 10 in the row direction (along a line parallel to the line L1).

このフォトマスク3を用いた場合にも、シリコン基板の全面にネガ型フォトレジスト膜を形成し、その上に、図8に示すように、シリコン基板のラインL1に遮光部32のライン32Lを合わせてフォトマスク3を配置して、光照射を行う。これにより、図7に示すような集光が生じないため、レジスト硬化膜の端部が波線状にならない。よって、図5に示すように、レジスト硬化膜4でメモリーセル領域を全て覆い、レジスト硬化膜4の端部を直線状として、領域分離酸化膜12の幅方向中心位置に合わせることができる。   Even when this photomask 3 is used, a negative photoresist film is formed on the entire surface of the silicon substrate, and the line 32L of the light-shielding portion 32 is aligned with the line L1 of the silicon substrate, as shown in FIG. Then, a photomask 3 is placed and light irradiation is performed. Thereby, since the light condensing as shown in FIG. 7 does not occur, the end portion of the resist cured film does not become wavy. Therefore, as shown in FIG. 5, the entire memory cell region can be covered with the resist cured film 4, and the end portion of the resist cured film 4 can be made linear to match the center position in the width direction of the region isolation oxide film 12.

本発明の一実施形態のフォトリソグラフィ工程を説明する図。4A and 4B illustrate a photolithography process according to an embodiment of the present invention. DRAMの一例を示す部分断面図。FIG. 6 is a partial cross-sectional view showing an example of a DRAM. メモリーセルにおける素子領域の高集積度配列を示す平面図。The top view which shows the highly integrated arrangement | sequence of the element area | region in a memory cell. 従来のフォトマスクによる光照射工程を示す平面図。The top view which shows the light irradiation process by the conventional photomask. 不純物拡散工程を説明する断面図。Sectional drawing explaining an impurity diffusion process. 不純物拡散工程後の状態と本発明の課題を説明する断面図。Sectional drawing explaining the state after an impurity diffusion process, and the subject of this invention. フォトリソグラフィ工程での波線状の集光を説明する平面図。The top view explaining the wavy line condensing in a photolithography process. 図1とは異なるフォトマスクを用いた例を示す図。The figure which shows the example using the photomask different from FIG.

符号の説明Explanation of symbols

1…メモリーセル領域(第1の領域)、10…素子領域、11…素子分離酸化膜、12…領域分離酸化膜、15…Nウエル、16…P(P+)ウエル、2…周辺回路領域(第2の領域)、3…フォトマスク、31…遮光部、31a…遮光部の凸部、4…レジスト硬化膜(レジストパターン)、5…シリコン基板、6…トランジスタ、71…ビット線、72…キャパシタ、73…トランスファーゲート線、8…トランジスタ、91…第1金属配線、92…層間絶縁膜、L1…メモリーセル領域と周辺回路領域との境界ライン(第1の領域と第2の領域を分離する直線)、L2…素子領域の行列の行を示すライン、L3…素子領域の行列の列を示すライン、L4…領域分離酸化膜の周辺回路領域(第2の領域)側の端部を示すライン、L5…素子領域の外形ライン。   DESCRIPTION OF SYMBOLS 1 ... Memory cell area | region (1st area | region), 10 ... Element area | region, 11 ... Element isolation oxide film, 12 ... Area isolation oxide film, 15 ... N well, 16 ... P (P +) well, 2 ... Peripheral circuit area | region ( 2nd region), 3 ... Photomask, 31 ... Light-shielding part, 31a ... Projection of light-shielding part, 4 ... Resist cured film (resist pattern), 5 ... Silicon substrate, 6 ... Transistor, 71 ... Bit line, 72 ... Capacitor 73 ... Transfer gate line 8 ... Transistor 91 ... First metal wiring 92 ... Interlayer insulating film L1 ... Boundary line between memory cell region and peripheral circuit region (separating first region and second region) L2... Line indicating the row of the element region matrix, L3... Line indicating the column of the element region matrix, L4... The end of the region isolation oxide film on the peripheral circuit region (second region) side. Line, L5 ... Element Contour line of the band.

Claims (2)

直線に沿って分離される第1の領域と第2の領域を有し、第1の領域には行列状に素子が配列され、前記行列は前記直線に沿った行と、前記直線に対して斜めに延びる列とからなる半導体装置の製造方法であって、
半導体基板の前記各領域に、各素子配列に対応させた素子分離酸化膜を形成するとともに、前記両領域の境界に領域分離酸化膜を形成する分離酸化膜形成工程と、
この分離酸化膜形成工程の後に、前記半導体基板の全面にネガ型フォトレジスト膜を形成し、前記第2の領域を遮光するフォトマスクを介して光を照射することにより、前記第1の領域上にレジスト硬化膜が残るレジストパターンを形成するフォトリソグラフィ工程と、
このフォトリソグラフィ工程の後に、前記レジストパターンを介した前記半導体基板に対する不純物拡散を行うことにより、前記半導体基板の前記第2の領域に前記半導体基板と異なる導電型の不純物を拡散させる工程と、
を有し、
前記フォトリソグラフィ工程で使用するフォトマスクの遮光部は、前記境界より第1の領域側に突出する凸部を、前記行方向で隣り合う各素子領域間と対向する位置に有することを特徴とする半導体装置の製造方法。
A first region and a second region separated along a straight line, and elements are arranged in a matrix in the first region, the matrix being arranged along a line along the straight line and the straight line A method of manufacturing a semiconductor device comprising diagonally extending rows,
Forming an isolation oxide film corresponding to each element arrangement in each region of the semiconductor substrate, and forming an isolation oxide film at a boundary between the two regions; and
After this isolation oxide film formation step, a negative photoresist film is formed on the entire surface of the semiconductor substrate, and light is irradiated through a photomask that shields the second region, thereby allowing the first region to be exposed on the first region. A photolithography process for forming a resist pattern in which a resist cured film remains on
A step of diffusing impurities having a conductivity type different from that of the semiconductor substrate into the second region of the semiconductor substrate by performing impurity diffusion on the semiconductor substrate through the resist pattern after the photolithography step;
Have
The light-shielding portion of the photomask used in the photolithography process has a convex portion that protrudes toward the first region from the boundary at a position facing each element region adjacent in the row direction. A method for manufacturing a semiconductor device.
第1の領域としてメモリーセル領域を有し、第2の領域として周辺回路領域を有するDRAMを製造する請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein a DRAM having a memory cell region as a first region and a peripheral circuit region as a second region is manufactured.
JP2004002844A 2004-01-08 2004-01-08 Method for manufacturing semiconductor device Pending JP2005197498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002844A JP2005197498A (en) 2004-01-08 2004-01-08 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002844A JP2005197498A (en) 2004-01-08 2004-01-08 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2005197498A true JP2005197498A (en) 2005-07-21

Family

ID=34817912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002844A Pending JP2005197498A (en) 2004-01-08 2004-01-08 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2005197498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484354B2 (en) 2014-06-03 2016-11-01 Samsung Electronics Co., Ltd. Semiconductor device including different orientations of memory cell array and peripheral circuit transistors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484354B2 (en) 2014-06-03 2016-11-01 Samsung Electronics Co., Ltd. Semiconductor device including different orientations of memory cell array and peripheral circuit transistors
US10204918B2 (en) 2014-06-03 2019-02-12 Samsung Electronics Co., Ltd. Semiconductor device including different orientations of memory cell array and peripheral circuit transistors
US10692879B2 (en) 2014-06-03 2020-06-23 Samsung Electronics Co., Ltd. Semiconductor device including different orientations of memory cell array and peripheral circuit transistors

Similar Documents

Publication Publication Date Title
US8580685B2 (en) Integrated circuit having interleaved gridded features, mask set, and method for printing
CN104134667B (en) Integrated circuit and forming method thereof comprising SRAM
KR100593219B1 (en) Method for providing layout design and photo mask
US6743693B2 (en) Method of manufacturing semiconductor memory
US20100187611A1 (en) Contacts in Semiconductor Devices
US20080268381A1 (en) Pattern forming method performing multiple exposure so that total amount of exposure exceeds threshold
JP4776813B2 (en) Manufacturing method of semiconductor device
US8241988B2 (en) Photo key and method of fabricating semiconductor device using the photo key
US8383300B2 (en) Exposure mask with double patterning technology and method for fabricating semiconductor device using the same
JP2011071468A (en) Semiconductor device and method of manufacturing the same
US20070037406A1 (en) Methods of fabricating a semiconductor device using a photosensitive polyimide layer and semiconductor devices fabricated thereby
US8080349B2 (en) Exposure mask and method for manufacturing semiconductor device using the same
JP2000150828A (en) Electronic device, semiconductor device and method for forming electrode
KR960016225B1 (en) Semiconductor device and manufacturing method thereof
US8574820B2 (en) Method for fabricating semiconductor device
JP2005197498A (en) Method for manufacturing semiconductor device
JP4832814B2 (en) Photomask and semiconductor device manufactured using the same
JP2005197499A (en) Method for manufacturing semiconductor device
JPH04177758A (en) Manufacture of semiconductor device
US7063921B2 (en) Photomask, in particular alternating phase shift mask, with compensation structure
KR100673125B1 (en) Photo Mask
JP2011171339A (en) Method of manufacturing semiconductor device and photomask
JPH09326475A (en) Fabrication of nonvolatile memory and exposing mask
JP3450310B2 (en) Semiconductor storage device
US7964325B2 (en) Mask and method for forming a semiconductor device using the same