JP2005197408A - Polishing pad for cmp and polishing method using the same - Google Patents

Polishing pad for cmp and polishing method using the same Download PDF

Info

Publication number
JP2005197408A
JP2005197408A JP2004001194A JP2004001194A JP2005197408A JP 2005197408 A JP2005197408 A JP 2005197408A JP 2004001194 A JP2004001194 A JP 2004001194A JP 2004001194 A JP2004001194 A JP 2004001194A JP 2005197408 A JP2005197408 A JP 2005197408A
Authority
JP
Japan
Prior art keywords
polishing
region
polishing pad
polished
cmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004001194A
Other languages
Japanese (ja)
Inventor
Kazuyuki Ogawa
一幸 小川
Atsushi Kazuno
淳 数野
Masahiko Nakamori
雅彦 中森
Tetsuo Shimomura
哲生 下村
Takatoshi Yamada
孝敏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2004001194A priority Critical patent/JP2005197408A/en
Publication of JP2005197408A publication Critical patent/JP2005197408A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing pad for CMP with which in-plane uniformity after polishing of a workpiece is sufficiently realized. <P>SOLUTION: The polishing pad for CMP 1 is formed of hard foaming polyurethane, and has an inner region 2 whose polishing face is circular, and an outer region 3 in a doughnut shape which surrounds the inner region. Bubble density of the inner region 2 is larger than that of the outer region 3. Asker D hardness of the outer region 3 and that of the inner region 2 are 45 to 70, and a hardness difference of them is three or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体ウェハなどの被研磨体の凹凸をケミカルメカニカルポリッシング(化学的機械研磨またはCMP)法により平坦化する時に用いるCMP用研磨パッドの製造方法に関する。   The present invention relates to a method for manufacturing a polishing pad for CMP used when planarizing unevenness of an object to be polished such as a semiconductor wafer by a chemical mechanical polishing (chemical mechanical polishing or CMP) method.

半導体デバイスを製造する際には、ウェハ表面に導電性膜を形成し、フォトリソグラフィ、エッチング等をすることにより配線層を形成する工程や、配線層の上に層間絶縁膜を形成する工程等が行われ、これらの工程によってウェハ表面に金属等の導電体や絶縁体からなる凹凸が生じる。近年、半導体集積回路の高密度化を目的として配線の微細化や多層配線化が進んでいるが、これに伴い、ウェハ表面の凹凸を平坦化する技術が重要となってきた。デバイス構造の高低差を平坦化する方法として、最近では、シリコンウェハの鏡面加工を応用したCMP法が採用されている。   When manufacturing a semiconductor device, a process of forming a conductive layer on the wafer surface, forming a wiring layer by photolithography, etching, etc., a process of forming an interlayer insulating film on the wiring layer, etc. As a result of these steps, irregularities made of a conductor such as metal or an insulator are generated on the wafer surface. In recent years, miniaturization of wiring and multilayer wiring have been promoted for the purpose of increasing the density of semiconductor integrated circuits. Along with this, technology for flattening the unevenness of the wafer surface has become important. As a method for flattening the height difference of the device structure, a CMP method that applies mirror processing of a silicon wafer has been recently adopted.

CMPで一般的に使用する研磨装置は、例えば、研磨パッドを支持する研磨定盤と、被研磨体(ウェハなど)を支持する支持台とウェハの均一加圧を行うためのバッキング材と、研磨剤の供給機構を備えている。研磨パッドは、例えば、両面テープで貼り付けることにより、研磨定盤に装着される。研磨定盤と支持台とは、それぞれに支持された研磨パッドと被研磨体が対向するように配置され、それぞれに回転軸を備えている。また、支持台には、被研磨体を研磨パッドに押し付けるための加圧機構が設けてある。   A polishing apparatus generally used in CMP includes, for example, a polishing surface plate that supports a polishing pad, a support base that supports an object to be polished (such as a wafer), a backing material for uniformly pressing the wafer, and polishing. An agent supply mechanism is provided. For example, the polishing pad is attached to the polishing surface plate by pasting with a double-sided tape. The polishing surface plate and the support base are arranged so that the polishing pad supported by the polishing table and the object to be polished face each other, and each has a rotation shaft. Further, the support base is provided with a pressurizing mechanism for pressing the object to be polished against the polishing pad.

一般に、CMP法においては、研磨パッドをドレッサーによりドレッシング(研削)した後に、研磨プレート回転軸およびキャリア回転軸を回転させ、研磨スラリー供給ノズルから研磨パッドの中心部に研磨スラリーを供給しながら、研磨圧力調整機構により被研磨体を研磨パッド上に押圧させて研磨が行われる。このようなCMP法では、被研磨体の周辺部付近の研磨面に対する相対速度は、中央部と比べて早くなる。そのため被研磨体中央部の研磨レートは周辺部よりも遅くなり、均一に研磨が行われないこと等が問題となっている。   In general, in the CMP method, after dressing (grinding) a polishing pad with a dresser, the polishing plate rotation shaft and the carrier rotation shaft are rotated, and polishing slurry is supplied from the polishing slurry supply nozzle to the center of the polishing pad while polishing. Polishing is performed by pressing the object to be polished onto the polishing pad by the pressure adjusting mechanism. In such a CMP method, the relative speed with respect to the polishing surface in the vicinity of the peripheral portion of the object to be polished is higher than that in the central portion. For this reason, the polishing rate at the center of the object to be polished is slower than that at the periphery, and there is a problem that polishing is not performed uniformly.

特許文献1には、研磨面に同心円状の溝を複数有するCMP用研磨パッドにおいて、被研磨体の中央部が研磨される領域の溝の密度を、被研磨体の周辺部付近が研磨される領域よりも高めたものが記載されている。また、特許文献2には、被研磨体の中央部が研磨される研磨面の領域に、開口部を複数有するCMP用研磨パッドが記載されている。これらの研磨パッドでは、研磨面の被研磨体中央部があたる領域について、研磨スラリの保持量を多くして研磨能力を高め、被研磨体中央部の研磨レートを周辺部よりも高めることを目的としている。   In Patent Document 1, in a CMP polishing pad having a plurality of concentric grooves on the polishing surface, the density of grooves in the region where the center of the object is polished is polished, and the vicinity of the periphery of the object is polished. What is higher than the region is described. Patent Document 2 describes a CMP polishing pad having a plurality of openings in a region of a polishing surface where a central portion of an object to be polished is polished. The purpose of these polishing pads is to increase the polishing capacity by increasing the amount of polishing slurry held in the area of the polishing surface that corresponds to the central part of the object to be polished, and to increase the polishing rate of the central part of the object to be polished more than the peripheral part. It is said.

しかしながら、同一材料で一体的に形成されている研磨パッドに、溝や開口部を不均一に形成すると、その領域間で表面の物性が変化してしまう。例えば、特許文献1の研磨パッドにおいて、高い密度で溝が形成された研磨面の領域は、低い密度の領域よりも剛性が低下する。また、特許文献2の研磨パッドにおいて、開口部が設けられた領域についても同様である。そのため、従来の技術では被研磨体中央部の研磨レートを十分高めることができず、また研磨面内で剛性が異なる領域が存在することになり、被研磨体の研磨後の面内均一を十分に図ることができない。
特開2000−94303号公報 特許第3425216号明細書
However, if grooves and openings are formed unevenly on a polishing pad that is integrally formed of the same material, the physical properties of the surface change between the regions. For example, in the polishing pad of Patent Document 1, the rigidity of a polishing surface area where grooves are formed at a high density is lower than that of a low density area. The same applies to the region where the opening is provided in the polishing pad of Patent Document 2. For this reason, the conventional technique cannot sufficiently increase the polishing rate at the center of the object to be polished, and there will be a region having a different rigidity in the polishing surface. I ca n’t do it.
JP 2000-94303 A Japanese Patent No. 3425216

本発明は上記従来の問題を解決するものであり、その目的とするところは被研磨体の研磨後の面内均一が十分に図られるCMP用研磨パッドを提供することにある。   The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a polishing pad for CMP in which the in-plane uniformity after polishing of the object to be polished is sufficiently achieved.

本発明は硬質発泡ポリウレタンでなるCMP用研磨パッドにおいて、研磨面が円形の内側領域と内側領域を取り囲むドーナツ形の外側領域とを有し、気泡密度は内側領域の方が外側領域よりも大きく、アスカーD硬度は外側領域及び内側領域共に45〜70であり、両者の硬度差が3以下である、CMP用研磨パッドを提供するものである。   The present invention is a CMP polishing pad made of rigid polyurethane foam, the polishing surface has a circular inner region and a donut-shaped outer region surrounding the inner region, the bubble density is larger in the inner region than in the outer region, The Asker D hardness is 45 to 70 for both the outer region and the inner region, and provides a polishing pad for CMP having a hardness difference of 3 or less.

また、本発明は硬質発泡ポリウレタンでなるCMP用研磨パッドにおいて、研磨面が円形の内側領域と内側領域を取り囲むドーナツ形の中間領域と中間領域を取り囲むドーナツ形の外側領域とを有し、気泡密度は中間領域の方が内側領域及び外側領域よりも大きく、アスカーD硬度は外側領域、中間領域及び内側領域共に45〜70であり、3者の硬度差が3以下である、CMP用研磨パッドを提供するものである。   Further, the present invention provides a polishing pad for CMP made of rigid foamed polyurethane, the polishing surface having a circular inner region, a donut-shaped intermediate region surrounding the inner region, and a donut-shaped outer region surrounding the intermediate region, and a bubble density A polishing pad for CMP in which the intermediate region is larger than the inner region and the outer region, the Asker D hardness is 45 to 70 in both the outer region, the intermediate region, and the inner region, and the difference in hardness between the three is 3 or less. It is to provide.

本発明のCMP用研磨パッドによれば、研磨面の被研磨体の中央部があたる領域について研磨能力が高められており、研磨面内で剛性のばらつきが少なく、研磨後の面内均一が十分に図られる。   According to the polishing pad for CMP of the present invention, the polishing ability is enhanced in the region of the polishing surface corresponding to the central portion of the object to be polished, there is little variation in rigidity within the polishing surface, and in-plane uniformity after polishing is sufficient. Is envisioned.

CMP用研磨パッドは被研磨体を研磨する層状の部材である。研磨パッドは研磨を行う際に研磨スラリーの担体として機能し、被研磨体と接触してこれを摩擦する研磨面を有している。研磨面は、一般に、硬質の弾性体から形成されている。本発明のCMP用研磨パッドの研磨面は発泡ポリウレタンにて形成することが好ましい。発泡ポリウレタンは耐摩耗性に優れ、原料組成や気泡密度等を種々変えることにより、物性の調節が容易だからである。   The polishing pad for CMP is a layered member for polishing the object to be polished. The polishing pad functions as a carrier for polishing slurry when polishing, and has a polishing surface that contacts and rubs the object to be polished. The polished surface is generally formed from a hard elastic body. The polishing surface of the CMP polishing pad of the present invention is preferably formed of foamed polyurethane. This is because foamed polyurethane is excellent in abrasion resistance, and the physical properties can be easily adjusted by variously changing the raw material composition, cell density, and the like.

図1は本発明の一実施態様である2部構成研磨パッドの平面図である。研磨面1は内側領域2と外側領域3とを有する。内側領域2は円形であり、外側領域3は内側領域を取り囲むドーナツ形である。内側領域の大きさは、被研磨体であるウェハや研磨パッドのサイズに依存して適宜調節されてよい。一般には、内側領域の半径は外側領域の半径(外側半径)に対し約50〜90%、好ましくは約60〜85%とされる。   FIG. 1 is a plan view of a two-part polishing pad according to an embodiment of the present invention. The polishing surface 1 has an inner region 2 and an outer region 3. The inner area 2 is circular and the outer area 3 is a donut shape surrounding the inner area. The size of the inner region may be appropriately adjusted depending on the size of the wafer or polishing pad that is the object to be polished. Generally, the radius of the inner region is about 50 to 90%, preferably about 60 to 85% with respect to the radius of the outer region (outer radius).

研磨面1の気泡密度は内側領域2の方が外側領域3よりも大きい。内側領域は主として被研磨体の中央部が接する範囲と考えられ、気泡密度を高めて研磨スラリーの保持力を高めるためである。例えば、内側領域の気泡密度は200〜600個/mm、好ましくは300〜600個/mmである。外側領域の気泡密度は0〜400個/mm、好ましくは100〜400個/mmである。 The bubble density of the polishing surface 1 is larger in the inner region 2 than in the outer region 3. This is because the inner region is mainly considered to be a range where the central portion of the object to be polished comes into contact, and the bubble density is increased to increase the holding power of the polishing slurry. For example, the bubble density in the inner region is 200 to 600 / mm 2 , preferably 300 to 600 / mm 2 . The cell density of the outer area 0 to 400 pieces / mm 2, preferably 100 to 400 pieces / mm 2.

内側領域及び外側領域は共にアスカーD硬度が45〜75、好ましくは50〜65である。アスカーD硬度が45未満であると半導体ウエハを研磨した際、平坦化特性が悪化し、75を越えると平坦化特性は良好であるが、半導体ウエハの研磨の均一性が悪化してしまう。また、両者の硬度差は3以下、好ましくは2以下である。両者の硬度差が3を越えると研磨面内で剛性のばらつきが生じて、研磨後の面内均一が不十分となる。   Both the inner and outer regions have Asker D hardness of 45 to 75, preferably 50 to 65. When the semiconductor wafer is polished when the Asker D hardness is less than 45, the planarization characteristics deteriorate, and when it exceeds 75, the planarization characteristics are good, but the polishing uniformity of the semiconductor wafer deteriorates. The difference in hardness between them is 3 or less, preferably 2 or less. When the hardness difference between the two exceeds 3, the rigidity varies within the polished surface, and the in-plane uniformity after polishing becomes insufficient.

内側領域と外側領域とはテーバー磨耗減量の差が50%以下、好ましくは30%以下である。両者のテーバー磨耗減量の差が50%を越えると半導体ウエハの研磨処理枚数が増えるに従って領域間での厚み差(段差)が大きくなり、研磨特性に悪影響を及ぼす。   The difference in Taber wear loss between the inner region and the outer region is 50% or less, preferably 30% or less. If the difference in the Taber wear loss between the two exceeds 50%, the thickness difference (step) between regions increases as the number of semiconductor wafers to be polished increases, which adversely affects the polishing characteristics.

図2は本発明の一実施態様である3部構成研磨パッドの平面図である。研磨面11は内側領域12と中間領域13と外側領域14とを有する。内側領域12は円形であり、中間領域13は内側領域を取り囲むドーナツ形であり、外側領域14は中間領域13を取り囲むドーナツ形である。中間領域及び内側領域の大きさは、被研磨体であるウェハや研磨パッドのサイズに依存して適宜調節されてよい。一般には、中間領域の半径(外側半径)は外側領域の半径(外側半径)に対し約50〜90%、好ましくは約60〜85%とされる。また、内側領域の半径は外側領域の半径(外側半径)に対し約20〜50%、好ましくは約20〜40%とされる。更に、中間領域の幅(外側半径と内側半径との差)はウェハ直径の20〜80%、好ましくは25〜70%とされる。   FIG. 2 is a plan view of a three-part polishing pad according to one embodiment of the present invention. The polishing surface 11 has an inner region 12, an intermediate region 13, and an outer region 14. The inner region 12 has a circular shape, the intermediate region 13 has a donut shape surrounding the inner region, and the outer region 14 has a donut shape surrounding the intermediate region 13. The sizes of the intermediate region and the inner region may be appropriately adjusted depending on the size of the wafer or polishing pad that is the object to be polished. Generally, the radius (outer radius) of the intermediate region is about 50 to 90%, preferably about 60 to 85%, relative to the radius (outer radius) of the outer region. The radius of the inner region is about 20 to 50%, preferably about 20 to 40%, relative to the radius of the outer region (outer radius). Further, the width of the intermediate region (difference between the outer radius and the inner radius) is 20 to 80%, preferably 25 to 70% of the wafer diameter.

研磨面11の気泡密度は中間領域13が内側領域12及び外側領域14よりも大きい。中間領域は主として被研磨体の中央部が接する範囲と考えられ、気泡密度を高めて研磨スラリーの保持力を高めるためである。例えば、中間領域の気泡密度は200〜600個/mm、好ましくは300〜600個/mmである。内側領域及び外側領域の気泡密度は0〜400個/mm、好ましくは100〜400個/mmである。 The bubble density of the polishing surface 11 is larger in the intermediate region 13 than in the inner region 12 and the outer region 14. The intermediate region is mainly considered to be a range in contact with the central portion of the object to be polished, and this is for increasing the bubble density and increasing the holding power of the polishing slurry. For example, the bubble density in the intermediate region is 200 to 600 / mm 2 , preferably 300 to 600 / mm 2 . The cell density of the inner and outer regions 0 to 400 pieces / mm 2, preferably 100 to 400 pieces / mm 2.

内側領域、中間領域及び外側領域は共にアスカーD硬度が45〜75、好ましくは50〜65である。アスカーD硬度が45未満であると半導体ウエハを研磨した際、平坦化特性が悪化し、75を越えると平坦化特性は良好であるが、半導体ウエハの研磨の均一性が悪化してしまう。また、3者の硬度差は3以下、好ましくは2以下である。両者の硬度差が3を越えると研磨面内で剛性のばらつきが生じて、研磨後の面内均一が不十分となる。   The inner region, the intermediate region, and the outer region all have an Asker D hardness of 45 to 75, preferably 50 to 65. When the semiconductor wafer is polished when the Asker D hardness is less than 45, the planarization characteristics deteriorate, and when it exceeds 75, the planarization characteristics are good, but the polishing uniformity of the semiconductor wafer deteriorates. Further, the hardness difference between the three members is 3 or less, preferably 2 or less. When the hardness difference between the two exceeds 3, the rigidity varies within the polished surface, and the in-plane uniformity after polishing becomes insufficient.

中間領域と内側領域及び外側領域とはテーバー磨耗減量の差が50%以下、好ましくは30%以下である。両者のテーバー磨耗減量の差が50%を越えると半導体ウエハの研磨処理枚数が増えるに従って領域間での厚み差(段差)が大きくなり、研磨特性に悪影響を及ぼす。好ましい実施態様では、内側領域及び外側領域は気泡密度、アスカーD硬度及びテーバー磨耗減量が同一の硬質発泡ポリウレタンで形成される。   The difference in the Taber wear loss between the middle region, the inner region and the outer region is 50% or less, preferably 30% or less. If the difference in the Taber wear loss between the two exceeds 50%, the thickness difference (step) between regions increases as the number of semiconductor wafers to be polished increases, which adversely affects the polishing characteristics. In a preferred embodiment, the inner and outer regions are formed of a rigid foamed polyurethane having the same cell density, Asker D hardness and Taber wear loss.

一般に、同一組成の発泡ポリウレタン樹脂において気泡密度を変化させると硬度等の物性は大きく変化する。そのため、一体成形された研磨パッド中で部分的に気泡密度を変化させながら、研磨面全面の硬度を均一化することは非常に困難である。そこで、本発明の研磨パッドは、例えば、内側領域、中間領域、外側領域に相当する形状及び物性を有する部材を別々に作製し、これらを図1及び図2に示される構成になるように組み合わせて製造することができる。   In general, when the cell density is changed in a polyurethane foam resin having the same composition, physical properties such as hardness change greatly. Therefore, it is very difficult to make the hardness of the entire polishing surface uniform while changing the bubble density partially in the integrally formed polishing pad. Therefore, in the polishing pad of the present invention, for example, members having shapes and physical properties corresponding to the inner region, the intermediate region, and the outer region are separately manufactured, and these are combined so as to have the configuration shown in FIGS. Can be manufactured.

これら内側領域、中間領域、外側領域に相当する部材は、硬質発泡ポリウレタンのブロックを所定の厚みにスライスして研磨材シートを得、円形やドーナツ形に打ち抜くことによって得られる。研磨材シートの厚さは一般に0.8〜3mm、好ましくは2.5mmである。   The members corresponding to the inner region, the intermediate region, and the outer region are obtained by slicing a block of hard foamed polyurethane to a predetermined thickness to obtain an abrasive sheet and punching it into a circular or donut shape. The thickness of the abrasive sheet is generally 0.8 to 3 mm, preferably 2.5 mm.

ポリウレタン樹脂は、有機ポリイソシアネート、ポリオール、鎖延長剤からなるものである。使用する有機ポリイソシアネートとしては、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、2,2’− ジフェニルメタンジイソシアネート、2,4’− ジフェニルメタンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,5−ナフタレンジイソシアネート、p−フェニレンジイソシアネート、m−フェニレンジイソシアネート、p−キシリレンジイソシアネート、m−キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、1,4−シクロヘキサンジイソシアネート、4,4’−ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート等が挙げられる。これらは1種で用いても、2種以上を混合しても差し支えない。   The polyurethane resin is composed of an organic polyisocyanate, a polyol, and a chain extender. Examples of the organic polyisocyanate used include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5- Naphthalene diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, etc. Is mentioned. These may be used alone or in combination of two or more.

使用するポリオールとしては、ポリテトラメチレンエ−テルグリコ−ルに代表されるポリエ−テルポリオール、ポリブチレンアジペ−トに代表されるポリエステルポリオ−ル、ポリカプロラクトンポリオ−ル、ポリカプロラクトンのようなポリエステルグリコ−ルとアルキレンカ−ボネ−トとの反応物などで例示されるポリエステルポリカ−ボネ−トポリオ−ル、エチレンカ−ボネ−トを多価アルコ−ルと反応させ、次いでえられた反応混合物を有機ジカルボン酸と反応させたポリエステルポリカ−ボネ−トポリオ−ル、ポリヒドキシル化合物とアリ−ルカ−ボネ−トとのエステル交換反応により得られるポリカ−ボネ−トポリオ−ルなどが挙げられる。これらは1種で用いても、2種以上を混合しても差し支えない。   Examples of the polyol used include polyester polyols represented by polytetramethylene ether glycol, polyester polyols represented by polybutylene adipate, polycaprolactone polyols, and polyesters such as polycaprolactone. A polyester polycarbonate polyol or an ethylene carbonate exemplified by a reaction product of glycol and alkylene carbonate is reacted with a polyhydric alcohol, and then the obtained reaction mixture is reacted. Examples thereof include polyester polycarbonate polyol reacted with an organic dicarboxylic acid, and polycarbonate polycarbonate obtained by transesterification of a polyhydroxyl compound with aryl carbonate. These may be used alone or in combination of two or more.

なお、これらポリオールの数平均分子量は、特に限定するものではないが、得られるポリウレタンの弾性特性等の観点から、500から2000までであることが望ましい。   The number average molecular weight of these polyols is not particularly limited, but is preferably 500 to 2000 from the viewpoint of the elastic properties of the resulting polyurethane.

このポリオールの数平均分子量が500未満であると、これを用いて得られるポリウレタンは十分な弾性特性を有さず、脆いポリマーとなり、このポリウレタンから製造される研磨パッドは硬くなりすぎ、研磨対象である加工物の研磨面でのスクラッチの原因となり、好ましくない。また、摩耗しやすくなるため、パッド寿命の観点からも好ましくない。   If the number average molecular weight of this polyol is less than 500, the polyurethane obtained by using this polyol does not have sufficient elastic properties and becomes a brittle polymer, and the polishing pad produced from this polyurethane becomes too hard and is subject to polishing. It causes scratches on the polished surface of a workpiece, which is not preferable. Moreover, since it becomes easy to wear, it is not preferable from the viewpoint of the pad life.

数平均分子量が2000を超えると、これを用いて得られるポリウレタンから製造される研磨パッドは、軟らかくなり、十分に満足のいく平坦化加工ができないため好ましくない。   When the number average molecular weight exceeds 2000, a polishing pad produced from polyurethane obtained by using this is not preferred because it becomes soft and cannot be satisfactorily flattened.

また、ポリオールとしては、上述した高分子量のポリオールの他に、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、3−メチル−1,5−ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン等の低分子量ポリオールを併用しても構わない。   In addition to the high molecular weight polyols described above, the polyols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol. 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, 1,4-bis (2-hydroxyethoxy) benzene and other low molecular weight polyols may be used in combination. .

ポリオールとしては、耐加水分解性、弾性特性、耐摩耗性等の観点より、ポリテトラメチレングリコールを含んでいてもよい。なお、このポリテトラメチレングリコールは、数平均分子量が500から1600までで、分子量分布(重量平均分子量/数平均分子量)が1.9未満であればよい。   The polyol may contain polytetramethylene glycol from the viewpoint of hydrolysis resistance, elastic properties, abrasion resistance, and the like. The polytetramethylene glycol may have a number average molecular weight of 500 to 1600 and a molecular weight distribution (weight average molecular weight / number average molecular weight) of less than 1.9.

この数平均分子量は、JIS K 1557に準じて測定した水酸基価から求めた値である。また、分子量分布は、次の測定条件により測定した値である。   This number average molecular weight is a value determined from a hydroxyl value measured according to JIS K1557. The molecular weight distribution is a value measured under the following measurement conditions.

また、分子量分布は、次の測定条件により測定した値である。

Figure 2005197408
The molecular weight distribution is a value measured under the following measurement conditions.
Figure 2005197408

このテトラメチレングリコールの数平均分子量が500未満であると、これを用いて得られるポリウレタンは十分な弾性特性を有さず、脆いポリマーとなり、このポリウレタンから製造される研磨パッドは硬くなりすぎ、研磨対象である加工物の研磨面のスクラッチの原因となり、好ましくない。また、摩耗しやすくなるため、パッド寿命の観点からも好ましくない。   When the number average molecular weight of this tetramethylene glycol is less than 500, the polyurethane obtained by using this does not have sufficient elastic properties and becomes a brittle polymer, and the polishing pad produced from this polyurethane becomes too hard, and the polishing It causes scratches on the polished surface of the target workpiece, which is not preferable. Moreover, since it becomes easy to wear, it is not preferable from the viewpoint of the pad life.

数平均分子量が1600を超えると、これを用いて得られるポリウレタンから製造される研磨パッドは、軟らかくなり、十分に満足のいく平坦化加工ができないため好ましくない。   When the number average molecular weight exceeds 1600, a polishing pad produced from polyurethane obtained by using the number average molecular weight becomes soft and cannot be satisfactorily flattened, which is not preferable.

また、ポリテトラメチレングリコールの分子量分布が1.9以上となると、これから得られるポリウレタンの硬度(弾性率)の温度依存性が大きくなり、このポリウレタンから製造される研磨パッドは、温度による硬度(弾性率)の差が大きくなる。上述したように、研磨パッドと加工物との間に摩擦熱が発生することで、研磨時に研磨パッドの温度は変化している。従って、研磨特性に差が生じることになり、好ましくない。   Further, when the molecular weight distribution of polytetramethylene glycol is 1.9 or more, the temperature dependency of the hardness (elastic modulus) of the polyurethane obtained therefrom becomes large, and the polishing pad produced from this polyurethane has a hardness (elasticity) due to temperature. The difference in rate) becomes large. As described above, the frictional heat is generated between the polishing pad and the workpiece, so that the temperature of the polishing pad changes during polishing. Therefore, a difference occurs in the polishing characteristics, which is not preferable.

鎖延長剤としては、4,4’−メチレンビス(o−クロロアニリン)、2,6−ジクロロ−p−フェニレンジアミン、4,4’−メチレンビス(2,3−ジクロロアニリン)等に例示されるポリアミン類、あるいは、上述した低分子量ポリオールを挙げることができる。これらは1種で用いても、2種以上を混合しても差し支えない。   Examples of chain extenders include polyamines exemplified by 4,4′-methylenebis (o-chloroaniline), 2,6-dichloro-p-phenylenediamine, 4,4′-methylenebis (2,3-dichloroaniline) and the like. Or the low molecular weight polyols mentioned above. These may be used alone or in combination of two or more.

該ポリウレタン樹脂における有機ポリイソシアネート、ポリオール、鎖延長剤の比は、各々の分子量やこれらから製造される研磨パッドの所望物性などにより種々変え得る。所望する研磨特性を有する研磨パッドを得るためには、ポリオールと鎖延長剤の合計官能基(水酸基+アミノ基)数に対する有機ポリイソシアネートのイソシアネート基数は0.95〜1.15の範囲が望ましく、好ましくは、0.99〜1.10であることがより望ましい。   The ratio of the organic polyisocyanate, polyol, and chain extender in the polyurethane resin can be variously changed depending on the molecular weight of each and the desired physical properties of the polishing pad produced therefrom. In order to obtain a polishing pad having desired polishing characteristics, the number of isocyanate groups of the organic polyisocyanate with respect to the total number of functional groups (hydroxyl group + amino group) of the polyol and the chain extender is desirably in the range of 0.95 to 1.15. Preferably, 0.99 to 1.10.

また、ポリオール中の、高分子量成分と低分子量成分の比は、これらから製造される研磨パッドに要求される特性により決められる。   Further, the ratio of the high molecular weight component to the low molecular weight component in the polyol is determined by the characteristics required for the polishing pad produced therefrom.

該ポリウレタン樹脂は、溶融法、溶液法など公知のウレタン化技術を応用して製造することができるが、コスト、作業環境などを考慮した場合、溶融法で製造することが好ましい。   The polyurethane resin can be produced by applying a known urethanization technique such as a melting method or a solution method, but is preferably produced by a melting method in consideration of cost, working environment and the like.

該ポリウレタン樹脂の重合手順としては、プレポリマー法、ワンショット法のどちらでも可能であるが、事前に有機ポリイソシアネートとポリオールからイソシアネート末端プレポリマーを合成しておき、これに鎖延長剤を反応させるプレポリマー法が一般的である。なお、有機ポリイソシアネートとポリオールから製造されるイソシアネート末端プレポリマーが市販されているが、本発明に適合するものであれば、それらを用いて、プレポリマー法により本発明で使用するポリウレタンを重合することも可能である。   As a polymerization procedure for the polyurethane resin, either a prepolymer method or a one-shot method is possible, but an isocyanate-terminated prepolymer is synthesized in advance from an organic polyisocyanate and a polyol, and a chain extender is reacted therewith. The prepolymer method is common. In addition, although the isocyanate terminal prepolymer manufactured from organic polyisocyanate and a polyol is marketed, if it suits this invention, the polyurethane used by this invention is polymerized by the prepolymer method using them. It is also possible.

また、該ポリウレタン樹脂に対して、必要に応じて、酸化防止剤等の安定剤、界面活性剤、滑剤、顔料、充填剤、帯電防止剤、その他の添加剤を加えても差し支えない。   In addition, stabilizers such as antioxidants, surfactants, lubricants, pigments, fillers, antistatic agents, and other additives may be added to the polyurethane resin as necessary.

発泡ポリウレタンの製造方法としては、中空ビーズを添加させる方法、機械的発泡法、化学的発泡法等により発泡体とする方法などが挙げられるが、これらには限定されない。各方法を併用してもよいが、ポリアルキルシロキサンとポリエーテルの共重合体であって活性水素基を有しないシリコーン系界面活性剤を使用した機械的発泡法がより好ましい。かかるシリコーン系界面活性剤としては、SH−192(東レダウコーニングシリコン製)等が好適な化合物として例示される。   Examples of the method for producing foamed polyurethane include, but are not limited to, a method of adding hollow beads, a method of forming a foam by a mechanical foaming method, a chemical foaming method, and the like. Each method may be used in combination, but a mechanical foaming method using a silicone surfactant which is a copolymer of polyalkylsiloxane and polyether and does not have an active hydrogen group is more preferable. As such a silicone-based surfactant, SH-192 (manufactured by Toray Dow Corning Silicon) is exemplified as a suitable compound.

研磨層を構成する独立気泡タイプの発泡ポリウレタンを製造する方法の例について以下に説明する。かかる発泡ポリウレタンの製造方法は、典型的には以下の(1)〜(4)の工程を有する。
(1)イソシアネート末端プレポリマーの気泡分散液を作製する発泡工程
イソシアネート末端プレポリマーにシリコーン系界面活性剤を添加し、非反応性気体と撹拌し、非反応性気体を微細気泡として分散させて気泡分散液とする。プレポリマーが常温で固体の場合には適宜の温度に予熱し、溶融して使用する。
(2)硬化剤(鎖延長剤)混合工程
上記の気泡分散液に鎖延長剤を添加し、混合撹拌する。
(3)キャスト工程
鎖延長剤を混合したイソシアネート末端プレポリマーを注型する。
(4)硬化工程
注型されたポリマーを加熱硬化させる。
An example of a method for producing a closed-cell type polyurethane foam constituting the polishing layer will be described below. Such a method for producing foamed polyurethane typically includes the following steps (1) to (4).
(1) Foaming process for producing an isocyanate-terminated prepolymer cell dispersion A silicone-based surfactant is added to an isocyanate-terminated prepolymer, stirred with a non-reactive gas, and dispersed to form a fine bubble. A dispersion is obtained. When the prepolymer is solid at room temperature, it is preheated to an appropriate temperature and melted before use.
(2) Curing Agent (Chain Extender) Mixing Step A chain extender is added to the cell dispersion and mixed and stirred.
(3) Casting process An isocyanate-terminated prepolymer mixed with a chain extender is cast.
(4) Curing step The cast polymer is cured by heating.

微細気泡を形成するために使用される非反応性気体としては、可燃性でないものが好ましく、具体的には窒素、酸素、炭酸ガス、ヘリウムやアルゴン等の希ガスやこれらの混合気体が例示され、乾燥して水分を除去した空気の使用がコスト的にも最も好ましい。   As the non-reactive gas used to form the fine bubbles, non-flammable gases are preferable, and specific examples include nitrogen, oxygen, carbon dioxide, rare gases such as helium and argon, and mixed gases thereof. The use of air that has been dried to remove moisture is most preferable in terms of cost.

非反応性気体を微細気泡状にしてシリコーン系界面活性剤を含むイソシアネート末端プレポリマーに分散させる撹拌装置としては、公知の撹拌装置は特に限定なく使用可能であり、具体的にはホモジナイザー、ディゾルバー、2軸遊星型ミキサー(プラネタリーミキサー)等が例示される。撹拌装置の撹拌翼の形状も特に限定されないが、ホイッパー型の撹拌翼の使用が微細気泡を得られ、好ましい。   As a stirring device for making non-reactive gas into fine bubbles and dispersing it in an isocyanate-terminated prepolymer containing a silicone-based surfactant, known stirring devices can be used without particular limitation. Specifically, a homogenizer, a dissolver, A two-axis planetary mixer (planetary mixer) is exemplified. The shape of the stirring blade of the stirring device is not particularly limited, but the use of a whipper type stirring blade is preferable because fine bubbles can be obtained.

なお、発泡工程において気泡分散液を作成する撹拌と、混合工程における鎖延長剤を添加して混合する撹拌は、異なる撹拌装置を使用することも好ましい態様である。特に混合工程における撹拌は気泡を形成する撹拌でなくてもよく、大きな気泡を巻き込まない撹拌装置の使用が好ましい。このような撹拌装置としては、遊星型ミキサーが好適である。発泡工程と混合工程の撹拌装置を同一の撹拌装置を使用しても支障はなく、必要に応じて撹拌翼の回転速度を調整する等の撹拌条件の調整を行って使用することも好適である。   In addition, it is also a preferable aspect to use a different stirring apparatus for the stirring which produces a cell dispersion in a foaming process, and the stirring which adds and mixes the chain extender in a mixing process. In particular, the stirring in the mixing step may not be stirring that forms bubbles, and it is preferable to use a stirring device that does not involve large bubbles. As such an agitator, a planetary mixer is suitable. There is no problem even if the same stirring device is used as the stirring device for the foaming step and the mixing step, and it is also preferable to adjust the stirring conditions such as adjusting the rotation speed of the stirring blade as necessary. .

発泡ポリウレタンをブロックにする方法は、容器に各成分を計量して投入し、撹拌するバッチ方式であっても、また撹拌装置に各成分と非反応性気体を連続して供給して撹拌し、気泡分散液を送り出して成形品を製造する連続生産方式であってもよい。また、この際には、気泡分散液を型に流し込んで流動しなくなるまで反応した発泡体を、加熱、ポストキュアすることは、発泡体の物理的特性を向上させる効果があり、極めて好適である。金型に気泡分散液を流し込んで直ちに加熱オーブン中に入れてポストキュアを行う条件としてもよく、そのような条件下でもすぐに反応成分に熱が伝達されないので、気泡径が大きくなることはない。硬化反応は、常圧で行うことが、気泡形状が安定するために好ましい。   The method of making the polyurethane foam into a block is a batch method in which each component is weighed and charged into a container and stirred, or each component and a non-reactive gas are continuously supplied to the stirring device and stirred. It may be a continuous production method in which a cell dispersion is sent out to produce a molded product. In this case, heating and post-curing the foam that has been reacted until the foam dispersion is poured into the mold and no longer flows is effective in improving the physical properties of the foam and is extremely suitable. . The bubble dispersion may be poured into the mold and immediately placed in a heating oven for post-cure. Under such conditions, heat is not immediately transferred to the reaction components, so the bubble diameter does not increase. . The curing reaction is preferably performed at normal pressure because the bubble shape is stable.

該ポリウレタン樹脂において、第3級アミン系、有機スズ系等の公知のポリウレタン反応を促進する触媒を使用してもかまわない。触媒の種類、添加量は、混合工程後、所定形状の型に流し込む流動時間を考慮して選択する。   In the polyurethane resin, a catalyst that promotes a known polyurethane reaction such as tertiary amine or organotin may be used. The type and addition amount of the catalyst are selected in consideration of the flow time for pouring into a mold having a predetermined shape after the mixing step.

硬質発泡ポリウレタンのブロックの気泡密度、アスカーD硬度、及びテーバー磨耗減量の調節は、当業者に知られた方法で行なえばよい。例えば、気泡密度は中空状微粒子を添加する場合、添加量により制御できる。機械的に気泡を成形させる場合、撹拌する時の撹拌翼の回転数、形状、および時間の制御や気泡成形の助剤として加える界面活性剤の添加量を変えることにより制御できる。アスカーD硬度は研磨層を形成するポリウレタン樹脂の原料の種類(イソシアネート、ポリオール、鎖延長剤、その他添加剤)やその配合割合を変えたり、気泡密度を変化させることによって調節する。テーバー磨耗減量についても上記と同様、原料の種類や配合割合、気泡密度を変化させるなどの方法によって調節する。   Adjustment of the cell density, Asker D hardness, and Taber abrasion loss of the rigid foamed polyurethane block may be performed by methods known to those skilled in the art. For example, the bubble density can be controlled by the amount added when hollow fine particles are added. When the bubbles are mechanically formed, the bubbles can be controlled by controlling the rotation speed, shape, and time of the stirring blade when stirring, or by changing the amount of the surfactant added as an aid for forming the bubbles. Asker D hardness is adjusted by changing the raw material type of the polyurethane resin (isocyanate, polyol, chain extender, other additives) and the blending ratio thereof, or changing the bubble density. The Taber wear loss is also adjusted by a method such as changing the type and blending ratio of the raw materials and the bubble density.

このようにして得られた内側領域、中間領域、外側領域に相当する部材は、適宜配置され、下地層等に貼り付け等されて、本発明の研磨パッドが得られる。貼り付け方法としては、例えば、上記部材を粘着テープに貼り付ける方法等が挙げられる。これに追加してクッション層等の下地層を設けてもよい。   The members corresponding to the inner region, the intermediate region, and the outer region obtained in this manner are appropriately arranged and attached to the underlayer or the like to obtain the polishing pad of the present invention. As an affixing method, the method etc. which affix the said member on an adhesive tape are mentioned, for example. In addition to this, an underlayer such as a cushion layer may be provided.

本発明の研磨方法では、本発明の研磨パッドを使用してCMP法が行われる。つまり、研磨パッドの表面に対して研磨スラリーを供給しながら、被研磨体を所望の研磨圧で押し付けながら回転させて前記研磨パッドの移動方向に対して交差する方向に揺動させることによって、前記研磨パッドの表面と被研磨体の表面との間に供給された研磨スラリーの化学的および機械的な作用によって被研磨体の表面を研磨する。   In the polishing method of the present invention, the CMP method is performed using the polishing pad of the present invention. That is, while supplying the polishing slurry to the surface of the polishing pad, the object to be polished is rotated while being pressed with a desired polishing pressure, and is swung in a direction crossing the moving direction of the polishing pad, thereby The surface of the object to be polished is polished by the chemical and mechanical action of the polishing slurry supplied between the surface of the polishing pad and the surface of the object to be polished.

例えば、上述したCMP用研磨パッドを研磨装置のプラテンに固定し、
被研磨体を研磨パッドの研磨面に対面するように研磨装置の支持台に固定し、
被研磨体を研磨パッドの研磨面に接触させ、
研磨スラリーを供給しながら研磨を行なえばよい。
For example, the CMP polishing pad described above is fixed to the platen of the polishing apparatus,
Fix the object to be polished to the polishing table support so that it faces the polishing surface of the polishing pad,
The object to be polished is brought into contact with the polishing surface of the polishing pad,
Polishing may be performed while supplying the polishing slurry.

但し、被研磨体を研磨パッドの研磨面に接触させる際には、研磨パッドの気泡密度が高い領域が被研磨体の中央部に当るように被研磨体又は研磨パッドの位置を調節する必要がある。つまり、ウェハの中央部付近を研磨する領域の研磨層の気泡数を被研磨体の周辺部を研磨する領域に比べて多くする。これによりウェハ中央部付近を研磨するためのスラリーの保持力が上がり、研磨能力が高まって、被研磨体の研磨後の面内均一を図ることができる。   However, when the object to be polished is brought into contact with the polishing surface of the polishing pad, it is necessary to adjust the position of the object to be polished or the polishing pad so that the region where the bubble density of the polishing pad is high hits the center of the object to be polished. is there. That is, the number of bubbles in the polishing layer in the region where the vicinity of the center of the wafer is polished is increased compared to the region where the peripheral portion of the object is polished. As a result, the holding power of the slurry for polishing the vicinity of the center of the wafer is increased, the polishing ability is increased, and the in-plane uniformity after polishing of the object to be polished can be achieved.

図3は本発明の研磨方法において、被研磨体と2部構成研磨面との位置関係を示す模式図である。被研磨体4は研磨面1の上に所望の研磨圧で押し付けられている。被研磨体の中央部は気泡密度が高い内側領域2に当っており、被研磨体の周辺部は気泡密度が低い外側領域3に当っている。被研磨体4と研磨面1とは各々矢印に示す方向に回転させて研磨が行われる。そうすると、被研磨体4の中央部が内側領域3と接触する時間は周辺部と比較して長くなる。そのために、被研磨体中央部の研磨レートは被研磨体周辺部よりも高くなる。   FIG. 3 is a schematic view showing the positional relationship between the object to be polished and the two-part polished surface in the polishing method of the present invention. The object to be polished 4 is pressed onto the polishing surface 1 with a desired polishing pressure. The central portion of the object to be polished hits the inner region 2 having a high bubble density, and the peripheral portion of the object to be polished hits the outer region 3 having a low bubble density. Polishing is performed by rotating the object to be polished 4 and the polishing surface 1 in directions indicated by arrows. If it does so, time for the center part of the to-be-polished body 4 to contact the inner side area | region 3 will become long compared with a peripheral part. Therefore, the polishing rate at the center of the object to be polished is higher than that at the periphery of the object to be polished.

図4は本発明の研磨方法において、被研磨体と3部構成研磨面との位置関係を示す模式図である。被研磨体15は研磨面11の上に所望の研磨圧で押し付けられている。被研磨体の中央部は気泡密度が高い中間領域13に当っており、被研磨体の周辺部は気泡密度が低い内側領域12及び外側領域14に当っている。被研磨体15と研磨面11とは各々矢印に示す方向に回転させて研磨が行われる。そうすると、被研磨体15の中央部が中間領域13と接触する時間は周辺部と比較して長くなる。そのために、被研磨体中央部の研磨レートは被研磨体周辺部よりも高くなる。   FIG. 4 is a schematic diagram showing the positional relationship between the object to be polished and the three-part polishing surface in the polishing method of the present invention. The object to be polished 15 is pressed onto the polishing surface 11 with a desired polishing pressure. The central part of the object to be polished is in contact with the intermediate region 13 having a high bubble density, and the peripheral part of the object to be polished is in contact with the inner region 12 and the outer region 14 having a low bubble density. Polishing is performed by rotating the object 15 and the polishing surface 11 in directions indicated by arrows. If it does so, the time for the center part of the to-be-polished body 15 to contact the intermediate | middle area | region 13 becomes long compared with a peripheral part. Therefore, the polishing rate at the center of the object to be polished is higher than that at the periphery of the object to be polished.

半導体デバイスは、上述の研磨方法を用いて半導体ウェハの表面を研磨する工程を経て製造される。半導体ウェハとは、一般にシリコンウェハ上に配線金属及び酸化膜を積層したものである。これにより半導体ウェハの表面の突出した部分が除去されて平坦状に研磨される。その後、ダイシング、ボンディング、パッケージング等することにより半導体デバイスが製造される。半導体デバイスは、演算処理装置やメモリー等に用いられる。   A semiconductor device is manufactured through a step of polishing the surface of a semiconductor wafer using the above-described polishing method. A semiconductor wafer is generally a laminate of a wiring metal and an oxide film on a silicon wafer. As a result, the protruding portion of the surface of the semiconductor wafer is removed and polished flat. Thereafter, a semiconductor device is manufactured by dicing, bonding, packaging, or the like. The semiconductor device is used for an arithmetic processing device, a memory, and the like.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例などにおける評価項目は下記のようにして測定した。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the evaluation item in an Example etc. was measured as follows.

(気泡密度)
得られた研磨パッド用研磨シートをミクロトームで断面を切り出し、その断面の200倍の顕微鏡画像を画像処理装置イメージアナライザーV10(東洋紡績社製)にて気泡を分離し、単位面積あたりの気泡数を測定することにより、気泡密度を算出した。
(Bubble density)
A cross section of the obtained polishing sheet for polishing pad was cut out with a microtome, and 200 microscopic images of the cross section were separated with an image processing apparatus image analyzer V10 (manufactured by Toyobo Co., Ltd.), and the number of bubbles per unit area was determined. The bubble density was calculated by measuring.

(アスカーD硬度)
JIS K6253−1997に準拠して行った。2cm×2cm(厚み:任意)の大きさに切り出した研磨領域を硬度測定用試料とし、温度23℃±2℃、湿度50%±5%の環境で16時間静置した。測定時には、試料を重ね合わせ、厚み6mm以上とした。硬度計(高分子計器社製、アスカーD型硬度計)を用い、硬度を測定した。
(Asker D hardness)
This was performed in accordance with JIS K6253-1997. A polished region cut out to a size of 2 cm × 2 cm (thickness: arbitrary) was used as a sample for hardness measurement, and was allowed to stand for 16 hours in an environment of a temperature of 23 ° C. ± 2 ° C. and a humidity of 50% ± 5%. At the time of measurement, the samples were overlapped to a thickness of 6 mm or more. The hardness was measured using a hardness meter (manufactured by Kobunshi Keiki Co., Ltd., Asker D type hardness meter).

(テーバー磨耗減量)
得られた研磨シートを、テーバー磨耗試験機(テーバー社製モデル174)を用い、荷重1000g、磨耗輪H−22、1000回転の条件で磨耗試験を行い、試験前後の重量を測定することにより磨耗性を評価した。磨耗原料の差は以下の式により算出した。
(Taber wear loss)
The obtained abrasive sheet is subjected to an abrasion test using a Taber abrasion tester (Model 174 manufactured by Taber) under the conditions of a load of 1000 g, an abrasion wheel H-22 and 1000 revolutions, and the weight is measured by measuring the weight before and after the test. Sex was evaluated. The difference in the wear material was calculated by the following formula.

Figure 2005197408
Figure 2005197408

(面内均一性)
研磨装置としてSPP600S(岡本工作機械社製)を用い、作製した研磨パッドを用いて研磨特性の評価を行った。研磨レートは、8インチのシリコンウェハに熱酸化膜を1μm製膜したものを、約0.5μm研磨して、このときの時間から算出した。酸化膜の膜厚測定には、干渉式膜厚測定装置(大塚電子社製)を用いた。研磨条件としては、スラリーとしてシリカスラリー(SS12、キャボット社製)を研磨中に150ml/分にて添加した。研磨荷重としては350g/cm2、研磨定盤回転数35rpm、ウェハ回転数30rpmとした。さらに、揺動速度1mm/秒、揺動距離20mmとした。
(In-plane uniformity)
SPP600S (manufactured by Okamoto Machine Tool Co., Ltd.) was used as a polishing apparatus, and polishing characteristics were evaluated using the prepared polishing pad. The polishing rate was calculated from the time obtained by polishing about 0.5 μm of a 1-μm thermal oxide film formed on an 8-inch silicon wafer. An interference type film thickness measuring device (manufactured by Otsuka Electronics Co., Ltd.) was used for measuring the thickness of the oxide film. As polishing conditions, silica slurry (SS12, manufactured by Cabot) was added as a slurry at 150 ml / min during polishing. The polishing load was 350 g / cm 2 , the polishing platen rotation number was 35 rpm, and the wafer rotation number was 30 rpm. Further, the rocking speed was 1 mm / second and the rocking distance was 20 mm.

面内均一性は、ウェハの任意25点の膜厚測定値より下記式により算出した。なお、面内均一性の値が小さいほどウェハ表面の均一性が高いことを表す。   The in-plane uniformity was calculated by the following formula from film thickness measurement values at arbitrary 25 points on the wafer. The smaller the in-plane uniformity value, the higher the wafer surface uniformity.

Figure 2005197408
Figure 2005197408

調製例1Preparation Example 1

ブロックAの作製
テフロン(登録商標)コーティングした反応容器内に、フィルタリングしたプレポリマーL325(ユニロイヤル社製、NCO%=9.15)25kgとフィルタリングしたシリコン系界面活性剤SH192(東レ・ダウコーニングシリコーン社製)0.75kgとを混合し、反応温度を80℃に調整した。テフロン(登録商標)コーティングした撹拌翼を用いて、回転数900rpmで反応系内に気泡を取り込むように6分間撹拌を行った(1次撹拌)。そこへ予め120℃で溶融させ、フィルタリングした4,4’一メチレンビス(o−クロロアニリン)(イハラケミカル杜製 イハラキュアミンMT:以下MBOCAと略す)を6.5kg添加した。約1分間撹拌(2次撹拌)を続けた後、テフロン(登録商標)コーテイングしたパン型のオーブンモールド(寸法900×900mm)へ反応溶液を流し込んだ。この反応溶液に流動性がなくなった時点で、オーブン内に入れ、110℃で6時間ポストキュアを行いその後室温まで徐冷し微細気泡ポリウレタン発泡体ブロックを作製した。
Preparation of Block A In a reaction container coated with Teflon (registered trademark) , 25 kg of filtered prepolymer L325 (Uniroy, NCO% = 9.15) and filtered silicon surfactant SH192 (Toray Dow Corning Silicone) 0.75 kg), and the reaction temperature was adjusted to 80 ° C. Using a Teflon (registered trademark) -coated stirring blade, stirring was performed for 6 minutes so that air bubbles were taken into the reaction system at a rotation speed of 900 rpm (primary stirring). 6.5 kg of 4,4′-methylenebis (o-chloroaniline) previously melted at 120 ° C. and filtered (Iharacamine MT: hereinafter abbreviated as MBOCA) was added. Stirring was continued for about 1 minute (secondary stirring), and then the reaction solution was poured into a pan-type oven mold (size: 900 × 900 mm) coated with Teflon (registered trademark) . When the reaction solution lost its fluidity, it was placed in an oven, post-cured at 110 ° C. for 6 hours, and then gradually cooled to room temperature to prepare a fine-cell polyurethane foam block.

調製例2Preparation Example 2

ブロックBの作製
界面活性剤SH192の添加量を2.00kgとし、1次撹拌の時間を4分間とした以外はブロックAと同様の方法でブロックを作製した。
Production of Block B A block was produced in the same manner as in Block A except that the amount of surfactant SH192 added was 2.00 kg and the primary stirring time was 4 minutes.

調製例3Preparation Example 3

ブロックCの作製
界面活性剤SH192の添加量を0.75kgとし、1次撹拌の時間を4分間とした以外はブロックAと同様の方法でブロックを作製した。
Production of Block C A block was produced in the same manner as in Block A except that the amount of surfactant SH192 added was 0.75 kg and the primary stirring time was 4 minutes.

調製例4Preparation Example 4

ブロックDの作製
プレポリマーとしてコロネート6912(日本ポリウレタン社製、NCO%=7.7%)25kgを用い、界面活性剤SH192の添加量を0.75kg、MBOCAを5.5kgとし、1次撹拌時間を30秒とした以外はブロックAと同様の方法でブロックを作製した。
Preparation of block D Coronate 6912 (manufactured by Nippon Polyurethane Co., Ltd., NCO% = 7.7%) 25 kg was used as a prepolymer, the amount of surfactant SH192 added was 0.75 kg, MBOCA was 5.5 kg, and the primary stirring time A block was prepared in the same manner as block A except that was set to 30 seconds.

調製例5Preparation Example 5

ブロックEの作製
ブロックAの作製方法において1次撹拌時間を8分間とした以外はブロックAと同様の方法でブロックを作製した。
Production of Block E A block was produced in the same manner as in Block A except that the primary stirring time was 8 minutes in the production method of Block A.

調製例6Preparation Example 6

ブロックFの作製
プレポリマーとしてコロネート4099(日本ポリウレタン社製、NCO%=8.0%)25kgを用い、MBOCAを5.7kgとし、1次撹拌時間を3分間とした以外はブロックAと同様の方法でブロックを作製した。
Preparation of Block F Same as Block A, except that 25 kg of Coronate 4099 (manufactured by Nippon Polyurethane, NCO% = 8.0%) was used as the prepolymer, MBOCA was 5.7 kg, and the primary stirring time was 3 minutes. The block was produced by the method.

ブロックAをアミテック社製スライサーにて1.5mmの厚さにスライスし、直径420mmの円形に切り出し、内側領域の部材とした。この部材の比重は0.80、D硬度は50、気泡密度は350個/mmであった。次にブロックBを1.5mmの厚さにスライスし、内径420mm、外径600mmのドーナツ形に切り出し、外側領域の部材とした。この部材の比重は0.87、D硬度は51、気泡密度は240個/mmであった。外側領域部材の内側に内側領域部材を配置し、研磨層の裏側に研磨装置の定盤に貼り付けるための両面テープを貼り付け、研磨パッドを作製した。得られた研磨パッドを用いて研磨試験を行い、被研磨面について面内均一性を評価した。結果を表1に示す。 Block A was sliced to a thickness of 1.5 mm with a slicer manufactured by Amitek and cut into a circle having a diameter of 420 mm to form a member in the inner region. The specific gravity of this member was 0.80, the D hardness was 50, and the bubble density was 350 / mm 2 . Next, the block B was sliced to a thickness of 1.5 mm and cut into a donut shape having an inner diameter of 420 mm and an outer diameter of 600 mm to obtain a member in the outer region. The specific gravity of this member was 0.87, the D hardness was 51, and the bubble density was 240 cells / mm 2 . The inner region member was arranged inside the outer region member, and a double-sided tape for affixing to the surface plate of the polishing apparatus was affixed to the back side of the polishing layer to prepare a polishing pad. A polishing test was performed using the obtained polishing pad, and the in-plane uniformity of the polished surface was evaluated. The results are shown in Table 1.

ブロックCから得られたシート(比重0.87、D硬度54、気泡密度250個/mm)を内側領域部材とし、ブロックDから得られたシート(比重1.05、D硬度52、気泡密度50個/mm)を外側領域部材として実施例1と同様の方法にて研磨パッドを作製し、研磨試験を行った。試験の結果を表1に示す。 A sheet obtained from block C (specific gravity 0.87, D hardness 54, bubble density 250 / mm 2 ) was used as an inner region member, and a sheet obtained from block D (specific gravity 1.05, D hardness 52, bubble density) A polishing pad was prepared in the same manner as in Example 1 using 50 pieces / mm 2 ) as an outer region member, and a polishing test was performed. The test results are shown in Table 1.

ブロックEから得られたシート(比重0.73、D硬度46、気泡密度540個/mm)を内側領域部材とし、ブロックFから得られたシート(比重0.93、D硬度46、気泡密度200個/mm)を外側領域部材として実施例1と同様の方法にて研磨パッドを作製し、研磨試験を行った。試験の結果を表1に示す。 A sheet obtained from the block E (specific gravity 0.73, D hardness 46, bubble density 540 / mm 2 ) was used as an inner region member, and a sheet obtained from the block F (specific gravity 0.93, D hardness 46, bubble density) A polishing pad was prepared in the same manner as in Example 1 using 200 pieces / mm 2 ) as an outer region member, and a polishing test was performed. The test results are shown in Table 1.

比較例1Comparative Example 1

ブロックCを1.5mmの厚さにスライスし、直径600mmの円形に切り出し、研磨層(比重0.87、D硬度54、気泡密度250個/mm)とし、研磨パッドを作製した。得られた研磨パッドを用いて研磨試験を行い、被研磨面について面内均一性を評価した。結果を表1に示す。 The block C was sliced to a thickness of 1.5 mm, cut into a circle having a diameter of 600 mm, and used as a polishing layer (specific gravity 0.87, D hardness 54, bubble density 250 / mm 2 ) to prepare a polishing pad. A polishing test was performed using the obtained polishing pad, and the in-plane uniformity of the polished surface was evaluated. The results are shown in Table 1.

比較例2Comparative Example 2

ブロックBから得られたシート(比重0.87、D硬度51、気泡密度240個/mm)を内側領域部材とし、ブロックAから得られたシート(比重0.80、D硬度50、気泡密度350個/mm)を外側領域部材として実施例1と同様の方法にて研磨パッドを作製し、研磨試験を行った。試験の結果を表1に示す。 A sheet (specific gravity 0.80, D hardness 50, cell density) obtained from block A was obtained by using the sheet (specific gravity 0.87, D hardness 51, cell density 240 / mm 2 ) obtained from block B as an inner region member. A polishing pad was prepared in the same manner as in Example 1 using 350 pieces / mm 2 ) as an outer region member, and a polishing test was performed. The test results are shown in Table 1.

Figure 2005197408
Figure 2005197408

ブロックBをアミテック社製スライサーにて1.5mmの厚さにスライスし、直径220mmの円形に切り出し、内側領域の部材とした。この部材の比重は0.87、D硬度は51、気泡密度は240個/mmであった。ブロックAを1.5mmの厚さにスライスし、内径220mm、外径420mmのドーナツ形に切り出し、中間領域の部材とした。この部材の比重は0.80、D硬度は50、気泡密度は350個/mmであった。更に、ブロックBを1.5mmの厚さにスライスしたシートを、内径420mm、外径600mmのドーナツ形に切り出し、外側領域の部材とした。 Block B was sliced to a thickness of 1.5 mm with a slicer manufactured by Amitek, cut into a circle with a diameter of 220 mm, and used as a member in the inner region. The specific gravity of this member was 0.87, the D hardness was 51, and the bubble density was 240 cells / mm 2 . The block A was sliced to a thickness of 1.5 mm, cut into a donut shape having an inner diameter of 220 mm and an outer diameter of 420 mm, and used as an intermediate region member. The specific gravity of this member was 0.80, the D hardness was 50, and the bubble density was 350 / mm 2 . Further, a sheet obtained by slicing the block B to a thickness of 1.5 mm was cut into a donut shape having an inner diameter of 420 mm and an outer diameter of 600 mm, and used as a member in the outer region.

外側領域部材の内側に中間領域部材、その内側に内側領域部材を配置し、研磨層の裏側に研磨装置の定盤に貼り付けるための両面テープを貼り付けて、研磨パッドを作製した。得られた研磨パッドを用いて研磨試験を行い、被研磨面について面内均一性を評価した。結果を表2に示す。   An intermediate region member was disposed inside the outer region member, and an inner region member was disposed inside the outer region member, and a double-sided tape for affixing to the surface plate of the polishing apparatus was affixed to the back side of the polishing layer to prepare a polishing pad. A polishing test was performed using the obtained polishing pad, and the in-plane uniformity of the polished surface was evaluated. The results are shown in Table 2.

比較例3Comparative Example 3

ブロックFから得られたシート(比重0.93、D硬度46、気泡密度200個/mm)を中間領域部材とし、ブロックBから得られたシート(比重0.87、D硬度51、気泡密度240個/mm)を内側領域部材及び外側領域部材として実施例4と同様の方法にて研磨パッドを作製し、研磨試験を行った。試験の結果を表2に示す。 A sheet obtained from the block F (specific gravity 0.93, D hardness 46, cell density 200 / mm 2 ) was used as an intermediate region member, and a sheet obtained from the block B (specific gravity 0.87, D hardness 51, cell density) A polishing pad was prepared by the same method as in Example 4 using 240 pieces / mm 2 ) as an inner region member and an outer region member, and a polishing test was performed. The test results are shown in Table 2.

Figure 2005197408
Figure 2005197408

図1は本発明の一実施態様である2部構成研磨パッドの平面図である。FIG. 1 is a plan view of a two-part polishing pad according to an embodiment of the present invention. 図2は本発明の一実施態様である3部構成研磨パッドの平面図である。FIG. 2 is a plan view of a three-part polishing pad according to one embodiment of the present invention. 図3は本発明の研磨方法において、被研磨体と2部構成研磨面との位置関係を示す模式図である。FIG. 3 is a schematic view showing the positional relationship between the object to be polished and the two-part polished surface in the polishing method of the present invention. 図4は本発明の研磨方法において、被研磨体と3部構成研磨面との位置関係を示す模式図である。FIG. 4 is a schematic diagram showing the positional relationship between the object to be polished and the three-part polishing surface in the polishing method of the present invention.

符号の説明Explanation of symbols

1、11…研磨面、
2、12…内側領域、
13…中間領域、
3、14…外側領域、
4、15…被研磨体。
1, 11 ... polished surface,
2, 12 ... inner region,
13 ... middle region,
3, 14 ... outer region,
4, 15: object to be polished.

Claims (9)

硬質発泡ポリウレタンでなるCMP用研磨パッドにおいて、研磨面が円形の内側領域と内側領域を取り囲むドーナツ形の外側領域とを有し、気泡密度は内側領域の方が外側領域よりも大きく、アスカーD硬度は外側領域及び内側領域共に45〜75であり、両者の硬度差が3以下である、CMP用研磨パッド。   A polishing pad for CMP made of rigid polyurethane foam, the polishing surface has a circular inner region and a donut-shaped outer region surrounding the inner region, and the bubble density is larger in the inner region than in the outer region, and Asker D hardness Is a polishing pad for CMP, wherein both the outer region and the inner region are 45 to 75, and the hardness difference between them is 3 or less. 前記内側領域の気泡密度が200〜600個/mm2であり、前記外側領域の気泡密度が0〜400個/mm2である請求項1記載のCMP用研磨パッド。 The polishing pad for CMP according to claim 1, wherein the bubble density in the inner region is 200 to 600 / mm 2 , and the bubble density in the outer region is 0 to 400 / mm 2 . 前記内側領域と前記外側領域とのテーバー磨耗減量の差が50%以下である請求項1又は2記載のCMP用研磨パッド。   The polishing pad for CMP according to claim 1 or 2, wherein a difference in Taber wear loss between the inner region and the outer region is 50% or less. 硬質発泡ポリウレタンでなるCMP用研磨パッドにおいて、研磨面が円形の内側領域と内側領域を取り囲むドーナツ形の中間領域と中間領域を取り囲むドーナツ形の外側領域とを有し、気泡密度は中間領域の方が内側領域及び外側領域よりも大きく、アスカーD硬度は外側領域、中間領域及び内側領域共に45〜75であり、3者の硬度差が3以下である、CMP用研磨パッド。   A polishing pad for CMP made of rigid polyurethane foam has a circular inner area, a donut-shaped intermediate area surrounding the inner area, and a donut-shaped outer area surrounding the intermediate area, and the bubble density is higher in the intermediate area. Is larger than the inner region and the outer region, the Asker D hardness is 45 to 75 in the outer region, the intermediate region, and the inner region, and the hardness difference between the three is 3 or less. 前記中間領域の気泡密度が200〜600個/mm2であり、前記内側領域及び外側領域の気泡密度が0〜400個/mm2である請求項4記載のCMP用研磨パッド。 5. The polishing pad for CMP according to claim 4, wherein a bubble density in the intermediate region is 200 to 600 / mm 2 , and a bubble density in the inner region and the outer region is 0 to 400 / mm 2 . 前記中間領域と前記内側領域及び外側領域とのテーバー磨耗減量の差が50%以下である請求項4又は5記載のCMP用研磨パッド。   The polishing pad for CMP according to claim 4 or 5, wherein a difference in Taber wear loss between the intermediate region and the inner and outer regions is 50% or less. 請求項1〜6のいずれか記載のCMP用研磨パッドを研磨装置のプラテンに固定する工程;
被研磨体を研磨パッドの研磨面に対面するように研磨装置の支持台に固定する工程;
研磨パッドの研磨面において、気泡密度が高い領域が被研磨体の中央部に当るように、被研磨体を研磨パッドの研磨面に接触させる工程;
研磨スラリーを供給しながら研磨を行う工程;
を包含する研磨方法。
Fixing the polishing pad for CMP according to any one of claims 1 to 6 to a platen of a polishing apparatus;
Fixing the object to be polished to the support of the polishing apparatus so as to face the polishing surface of the polishing pad;
A step of bringing the object to be polished into contact with the polishing surface of the polishing pad so that a region having a high bubble density is in contact with the center of the object to be polished on the polishing surface of the polishing pad;
Polishing while supplying the polishing slurry;
A polishing method comprising:
被研磨体が半導体ウェハである請求項7記載の研磨方法。   The polishing method according to claim 7, wherein the object to be polished is a semiconductor wafer. 請求項8記載の方法により研磨して得られる半導体デバイス。
A semiconductor device obtained by polishing by the method according to claim 8.
JP2004001194A 2004-01-06 2004-01-06 Polishing pad for cmp and polishing method using the same Pending JP2005197408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001194A JP2005197408A (en) 2004-01-06 2004-01-06 Polishing pad for cmp and polishing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004001194A JP2005197408A (en) 2004-01-06 2004-01-06 Polishing pad for cmp and polishing method using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010195712A Division JP2010268012A (en) 2010-09-01 2010-09-01 Polishing pad for cmp and polishing method using the same

Publications (1)

Publication Number Publication Date
JP2005197408A true JP2005197408A (en) 2005-07-21

Family

ID=34816787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001194A Pending JP2005197408A (en) 2004-01-06 2004-01-06 Polishing pad for cmp and polishing method using the same

Country Status (1)

Country Link
JP (1) JP2005197408A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231464A (en) * 2005-02-24 2006-09-07 Nitta Haas Inc Polishing pad
JP2008001809A (en) * 2006-06-22 2008-01-10 Toyo Tire & Rubber Co Ltd Method for producing polishing pad, and polishing pad
JP2008068333A (en) * 2006-09-12 2008-03-27 Toyo Tire & Rubber Co Ltd Grinding pad and method of manufacturing the same
JP2008546167A (en) * 2005-02-18 2008-12-18 ネオパッド テクノロジーズ コーポレイション Customized polishing pad for CMP and method for making and using the same
JP2009125894A (en) * 2007-11-27 2009-06-11 Fujibo Holdings Inc Manufacturing method of polishing pad
JP2012157936A (en) * 2011-02-01 2012-08-23 Fujitsu Semiconductor Ltd Polishing pad and method of fabricating semiconductor device
JP2016159416A (en) * 2015-03-05 2016-09-05 株式会社ディスコ Polishing pad
CN114473842A (en) * 2020-11-11 2022-05-13 中国科学院微电子研究所 Grinding disc, chemical mechanical polishing device, system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333893A (en) * 1993-04-30 1994-12-02 Motorola Inc Polishing method for semi-conductor substrate
JP2003218074A (en) * 2001-11-13 2003-07-31 Toyobo Co Ltd Semiconductor wafer polishing pad and polishing method for the semiconductor wafer
JP2003535484A (en) * 2000-06-05 2003-11-25 スピードファム−アイピーイーシー コーポレイション Polishing pad window used in chemical mechanical polishing (CMP) tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333893A (en) * 1993-04-30 1994-12-02 Motorola Inc Polishing method for semi-conductor substrate
JP2003535484A (en) * 2000-06-05 2003-11-25 スピードファム−アイピーイーシー コーポレイション Polishing pad window used in chemical mechanical polishing (CMP) tool
JP2003218074A (en) * 2001-11-13 2003-07-31 Toyobo Co Ltd Semiconductor wafer polishing pad and polishing method for the semiconductor wafer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546167A (en) * 2005-02-18 2008-12-18 ネオパッド テクノロジーズ コーポレイション Customized polishing pad for CMP and method for making and using the same
JP2006231464A (en) * 2005-02-24 2006-09-07 Nitta Haas Inc Polishing pad
JP2008001809A (en) * 2006-06-22 2008-01-10 Toyo Tire & Rubber Co Ltd Method for producing polishing pad, and polishing pad
JP2008068333A (en) * 2006-09-12 2008-03-27 Toyo Tire & Rubber Co Ltd Grinding pad and method of manufacturing the same
JP2009125894A (en) * 2007-11-27 2009-06-11 Fujibo Holdings Inc Manufacturing method of polishing pad
JP2012157936A (en) * 2011-02-01 2012-08-23 Fujitsu Semiconductor Ltd Polishing pad and method of fabricating semiconductor device
JP2016159416A (en) * 2015-03-05 2016-09-05 株式会社ディスコ Polishing pad
CN114473842A (en) * 2020-11-11 2022-05-13 中国科学院微电子研究所 Grinding disc, chemical mechanical polishing device, system and method

Similar Documents

Publication Publication Date Title
JP4884725B2 (en) Polishing pad
JP4897238B2 (en) Polishing pad
JP4189963B2 (en) Polishing pad
JP2007077207A (en) Method for producing fine cell polyurethane foam and polishing pad made of fine cell polyurethane foam
JP4786347B2 (en) Polishing pad
WO2013089240A1 (en) Polishing pad
JP2008060360A (en) Polishing pad
JP5629749B2 (en) Polishing pad manufacturing method
JP4189962B2 (en) Polishing pad manufacturing method
JP2004075700A (en) Polyurethane foam for polishing sheet and method for producing the same, polishing sheet for polishing pad, and polishing pad
JP2004001169A (en) Abrasive pad for semiconductor wafer polishing
JP3494640B1 (en) Polishing pad
JP2005197408A (en) Polishing pad for cmp and polishing method using the same
JP3570681B2 (en) Polishing pad
JP6688530B2 (en) Polishing pad
JP6155018B2 (en) Polishing pad
JP4986274B2 (en) Polishing pad and manufacturing method thereof
JP2014111296A (en) Polishing pad and its manufacturing method
JP4942170B2 (en) Polishing pad
JP2005072035A (en) Polishing sheet, method for manufacturing same, and polishing pad
JP2010268012A (en) Polishing pad for cmp and polishing method using the same
JP4979200B2 (en) Polishing pad
JP4757562B2 (en) Polishing pad for polishing Cu film
JP2006128563A (en) Polishing pad for semiconductor wafer polishing and manufacturing method of semiconductor device
JP2006186239A (en) Method for manufacturing grinding pad and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901