JP2005195510A - Electrochemical detector - Google Patents

Electrochemical detector Download PDF

Info

Publication number
JP2005195510A
JP2005195510A JP2004003381A JP2004003381A JP2005195510A JP 2005195510 A JP2005195510 A JP 2005195510A JP 2004003381 A JP2004003381 A JP 2004003381A JP 2004003381 A JP2004003381 A JP 2004003381A JP 2005195510 A JP2005195510 A JP 2005195510A
Authority
JP
Japan
Prior art keywords
flow path
solution
flow
substrate
sample solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004003381A
Other languages
Japanese (ja)
Other versions
JP4296939B2 (en
Inventor
Hirohisa Abe
浩久 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004003381A priority Critical patent/JP4296939B2/en
Publication of JP2005195510A publication Critical patent/JP2005195510A/en
Application granted granted Critical
Publication of JP4296939B2 publication Critical patent/JP4296939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a minute amount of specimen solution, to dispense with cleaning of a liquid film, and to prevent the liquid film from disappearing. <P>SOLUTION: This electrochemical detector is constructed so that it is supplied with the specimen solution containing a measuring object constituent from a middle flow path 2, solutions for forming liquid layers bordering the specimen solution are introduced from two flow paths 4a and 4b formed so as to put the flow path 2 therebetween from the both sides, an electrolytic solution is supplied in the outer sides of the flow paths 4a and 4b, an ion selective electrode is made up of the liquid layer formed between the specimen solution and the solution from the flow path 4a, a reference electrode is made up of the liquid layer formed between the specimen solution and the solution from the flow path 4b, and the concentration of an objective constituent of the specimen solution can be found by detecting a potential difference between the two electrodes 10a and 10b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は試料溶液中の測定対象成分を電気化学的に検出する検出器に関し、例えば高速液体クロマトグラフィーやフローインジェクション分析などの分析装置の検出器として、さらにはμTAS(Micro Total Analysis Systems)と呼ばれる微小な流路で分析を行わせる分析装置における検出器として利用するのに適する電気化学検出器に関するものである。   The present invention relates to a detector for electrochemically detecting a component to be measured in a sample solution. For example, it is called μTAS (Micro Total Analysis Systems) as a detector of an analytical apparatus such as high performance liquid chromatography or flow injection analysis. The present invention relates to an electrochemical detector suitable for use as a detector in an analyzer that performs analysis in a minute flow path.

電気化学的検出器の1つの方式としてポテンショメトリックな検出器がある。電極として固体電極を用いる場合には液漏れなく流路内面に固体電極を構成するのが難しい。また液膜を構成する場合には一般に含浸膜を構成する必要があるが、流路内面にそのような含浸膜を作成するのは非常に難しい(特許文献1参照。)。
特開2002−174615号公報
One type of electrochemical detector is a potentiometric detector. When a solid electrode is used as the electrode, it is difficult to form the solid electrode on the inner surface of the flow path without liquid leakage. Further, when a liquid film is formed, it is generally necessary to form an impregnated film, but it is very difficult to form such an impregnated film on the inner surface of the flow path (see Patent Document 1).
JP 2002-174615 A

μTASでは試料溶液がごく微量であるので、ポテンショメトリックな検出器では微小空間内で液膜を含浸させる膜構造を作成するのに非常に煩雑な工程を必要とする。
また、液膜の場合には、試料間の相互汚染(クロスコンタミネーション)を防止するためには、試料溶液が変わるたびに、液膜を清浄な溶液に浸漬して洗浄するなどの操作が不可欠である。そこで、従来は清浄な水に浸漬させることで汚染物質を液膜中から溶出させることにより汚染を除去していたが、微小空間に作成された電極では、担持される液膜の量が少なく、洗浄水中への溶解や拡散により液膜が失われることがある。
Since μTAS has a very small amount of sample solution, a potentiometric detector requires a very complicated process for creating a membrane structure that impregnates a liquid film in a minute space.
In the case of a liquid film, in order to prevent cross-contamination between samples, an operation such as immersing the liquid film in a clean solution and washing it every time the sample solution changes is essential. It is. Therefore, in the past, contamination was removed by leaching contaminants out of the liquid film by immersing them in clean water. The liquid film may be lost due to dissolution or diffusion in the wash water.

本発明は微量な試料溶液の検出を可能にするとともに、従来のポテンショメトリックな検出器における液膜の洗浄や消失などの問題を解決した電気化学検出器を提供することを目的とするものである。   An object of the present invention is to provide an electrochemical detector that enables detection of a trace amount of a sample solution and solves problems such as cleaning and disappearance of a liquid film in a conventional potentiometric detector. .

本発明の電気化学検出器は、基体内部に流路を有し、前記流路は3以上の支流流路が1つの本流流路に合流しているとともに、前記本流流路においては内側の支流流路から導入された試料溶液とその支流流路に隣接する両側の支流流路から導入された溶液との間で液層を構成するように形成されており、試料溶液が導入される支流流路に隣接する両側の支流流路から導入される溶液のうちの一方には試料溶液中の測定対象成分を選択的に取り込むイオン感応物質が添加されており、前記本流流路には前記試料溶液を挟む2つの液層間の電位を検出する一対の電極が配置されていることを特徴とするものである。
流路が微小になると流れの特性を表わすレイノルズ数が小さくなって層流となる。本発明において液層を構成する本流流路はそのような微小な流路である。
The electrochemical detector of the present invention has a flow path inside the substrate, and three or more tributary flow paths merge into one main flow path, and the main flow flow path has an inner tributary. A tributary flow into which a sample solution is introduced, which is formed so as to form a liquid layer between the sample solution introduced from the flow channel and the solution introduced from the tributary flow channel on both sides adjacent to the tributary flow channel. An ion-sensitive substance that selectively takes in the component to be measured in the sample solution is added to one of the solutions introduced from the branch flow channels on both sides adjacent to the channel, and the sample solution is added to the main channel. A pair of electrodes for detecting a potential between two liquid layers sandwiching the electrode are disposed.
When the flow path becomes minute, the Reynolds number representing the flow characteristics becomes small and the flow becomes laminar. In the present invention, the main flow path constituting the liquid layer is such a small flow path.

イオン感応物質は、試料水溶液中の目的イオンとの相互作用の仕方によって、一般的にイオン対(イオン交換体)型とニュートラルキャリヤ型に分類される。前者は脂溶性イオンとのイオン対を、後者は電荷をもたない大環状又は非環状の化合物と目的イオンとの立体構造的な相互作用を利用し、イオンの選択的検出を行なう。後者の典型的な例は、バリノマイシン、クラウンエーテルなどである。また、近年では、ビタミンB12誘導体などのチャージドキャリヤ型や、大環状ポリアミンなどのチャージドレセプター型の物質もイオン感応物質として用いられている。   Ion sensitive substances are generally classified into an ion pair (ion exchanger) type and a neutral carrier type depending on how they interact with target ions in a sample aqueous solution. The former uses an ion pair with a fat-soluble ion, and the latter uses a three-dimensional structural interaction between a macrocyclic or non-cyclic compound having no charge and a target ion to selectively detect ions. Typical examples of the latter are valinomycin, crown ethers and the like. In recent years, charged carrier type substances such as vitamin B12 derivatives and charged receptor type substances such as macrocyclic polyamines have also been used as ion sensitive substances.

本発明では液層間で生じる電位を測定するが、微小空間では溶液の混合は殆んど起こらないため、試料を汚染する虞は殆んどない。また、常に新鮮な液膜が供給されるため、汚染を除く必要もなく、安定した測定を行なうことができる。   In the present invention, the potential generated between the liquid layers is measured. However, since the mixing of the solution hardly occurs in the minute space, there is almost no possibility of contaminating the sample. Further, since a fresh liquid film is always supplied, it is not necessary to remove contamination, and stable measurement can be performed.

図1に一実施例を概略的に示す。この実施例では基板内部に5つの溶液導入用支流流路2,4a,4b,6a,6bが形成されており、それらの流路は合流して1つの本流流路8となっている。溶液は各支流流路2,4a,4b,6a,6bから導入されて本流流路8で1つの流れとなった後、本流流路8の右端から排出される。   FIG. 1 schematically shows an embodiment. In this embodiment, five branch channels for introducing a solution 2, 4a, 4b, 6a, 6b are formed inside the substrate, and these channels merge to form one main channel 8. The solution is introduced from each of the tributary flow paths 2, 4 a, 4 b, 6 a, 6 b to form one flow in the main flow path 8, and then discharged from the right end of the main flow path 8.

中央の流路2からは測定対象成分を含む試料溶液が供給され、その両側を挟むように形成された2つの流路4a,4bからは試料溶液との間に液層を形成するための溶液が導入される。それらの流路4a,4bの外側には電解液を供給するための流路6a,6bが形成されている。これらの流路2,4a,4b,6a,6bには、ペリスターポンプやシリンジポンプにより溶液が供給される。それらの溶液は、図で左側から右側方向に流れて本流流路8では単一の流れとなるが、5つの流路2,4a,4b,6a,6bから導入された溶液間に液層を形成しながら本流流路8内を流れていく。   A sample solution containing the component to be measured is supplied from the central channel 2, and a solution for forming a liquid layer between the two channels 4 a and 4 b formed so as to sandwich both sides of the sample solution. Is introduced. Channels 6a and 6b for supplying an electrolytic solution are formed outside the channels 4a and 4b. A solution is supplied to these flow paths 2, 4 a, 4 b, 6 a, 6 b by a peristaltic pump or a syringe pump. These solutions flow from the left side to the right side in the figure and become a single flow in the main flow path 8, but a liquid layer is formed between the solutions introduced from the five flow paths 2, 4a, 4b, 6a, 6b. It flows in the main flow path 8 while forming.

流路8には溶液の流れを挟んで一対の電極10a,10bが配置されている。12a,12bはそれぞれ電極10a,10bにつながり、外部の検出回路に接続されるリード線である。
供給される液の種類や数は特に限定されるものではないが、ここでは流路2から水溶液試料を供給して測定する場合を例とし、その試料溶液との間に液層を形成するために、流路4a,4bからは一例として有機溶媒であるニトロベンゼンを供給する。その2つの有機溶媒のうちの一方の流路4aから供給されるニトロベンゼンにはニュートラルキャリヤ型のイオン感応物質としてバリノマイシンを濃度が1%となるように添加しておく。
A pair of electrodes 10a and 10b are disposed in the flow path 8 with the flow of the solution interposed therebetween. Reference numerals 12a and 12b are lead wires connected to the electrodes 10a and 10b, respectively, and connected to an external detection circuit.
The type and number of liquids to be supplied are not particularly limited, but here, an example in which an aqueous solution sample is supplied from the flow path 2 for measurement and a liquid layer is formed with the sample solution is taken as an example. In addition, nitrobenzene, which is an organic solvent, is supplied from the flow paths 4a and 4b as an example. To the nitrobenzene supplied from one of the two organic solvents 4a, valinomycin is added as a neutral carrier type ion-sensitive substance so as to have a concentration of 1%.

電極10a,10bとしては、これも特に限定されるものではないが、基準電極の一種である銀−塩化銀電極を使用する。そのため、電極10a,10bと接する溶液として流路6a,6bからは電解液である0.1MのKCl溶液を供給する。
試料溶液と流路4aからの溶液との間に形成される液層によりイオン選択性電極が構成され、一方、試料溶液と流路4bからの溶液との間に形成される液層により参照電極が構成される。両電極10a,10b間の電位差を検出することにより、試料溶液の目的成分濃度を求めることができる。
The electrodes 10a and 10b are not particularly limited, but a silver-silver chloride electrode which is a kind of reference electrode is used. Therefore, a 0.1 M KCl solution that is an electrolytic solution is supplied from the flow paths 6a and 6b as a solution in contact with the electrodes 10a and 10b.
An ion selective electrode is constituted by a liquid layer formed between the sample solution and the solution from the flow path 4a, while a reference electrode is formed by a liquid layer formed between the sample solution and the solution from the flow path 4b. Is configured. By detecting the potential difference between the electrodes 10a and 10b, the target component concentration of the sample solution can be obtained.

この実施例によれば、ニュートラルキャリヤ型のイオン感応物質であるバリノマイシンはカリウムイオンをイオン−双極子相互作用によって選択的に取り込むので、この電気化学検出器はカリウムイオンに対し選択的な検出を行なうものとなる。
使用するイオン感応物質の種類は、測定対象成分に応じて適宜選択する。
According to this embodiment, the neutral carrier type ion-sensitive substance valinomycin selectively takes in potassium ions by ion-dipole interaction, so that this electrochemical detector performs selective detection for potassium ions. It will be a thing.
The type of ion sensitive substance to be used is appropriately selected according to the component to be measured.

図1は本流流路での溶液の層が5層構造となる例であるが、これに限らず4層構造又は3層構造とすることもできる。
4層構造の例は、流路4bを省略したものであり、例えば次のような層構成となる。
0.1M KCl/ニトロベンゼン+バリノマイシン/試料水溶液/0.1M KCl
Although FIG. 1 shows an example in which the solution layer in the main flow channel has a five-layer structure, the present invention is not limited to this, and a four-layer structure or a three-layer structure may be used.
In the example of the four-layer structure, the flow path 4b is omitted, and for example, the following layer configuration is used.
0.1M KCl / Nitrobenzene + valinomycin / Sample aqueous solution / 0.1M KCl

3層構造の一例は、流路4bと6bを省略し、試料溶液にKCLを添加して供給するようにしたものであり、次のような層構成となる。
0.1M KCl/ニトロベンゼン+バリノマイシン/試料水溶液+0.1M KCl

3層構造の他の例は、流路6aを省略し、流路4aからの溶液にKCLを添加し、流路4bも省略したものであり、次のような層構成となる。
0.1M KCl+バリノマイシン/試料水溶液/0.1M KCl
An example of a three-layer structure is one in which the channels 4b and 6b are omitted and KCL is added to the sample solution and supplied, and the following layer structure is obtained.
0.1 M KCl / nitrobenzene + valinomycin / sample aqueous solution + 0.1 M KCl

In another example of the three-layer structure, the flow path 6a is omitted, KCL is added to the solution from the flow path 4a, and the flow path 4b is also omitted. The layer structure is as follows.
0.1M KCl + valinomycin / sample aqueous solution / 0.1M KCl

電極としては銀−塩化銀電極に替えてかんこう電極を構成するようにしてもよい。
溶液の流れに沿った電極10a,10bの長さが長くなるほど電極10a,10bが液層と接している時間が長くなる。そこで、電極の応答時間が遅い場合でも、検出に十分な時間だけ電極が液層と接触できるように電極の長さを長くすることにより、リアムタイム性を損なうことなく検出を行なうことができるようになる。
The electrode may be replaced with a silver-silver chloride electrode to form a permeation electrode.
The longer the electrodes 10a and 10b are along the flow of the solution, the longer the time in which the electrodes 10a and 10b are in contact with the liquid layer. Therefore, even when the response time of the electrode is slow, detection can be performed without impairing the real-time property by increasing the length of the electrode so that the electrode can contact the liquid layer for a sufficient time for detection. become.

次に、図2により図1の実施例の流路を基体内部に構成する方法を説明する。(A)は上側基板22の平面図、(B)は下側基板20の流路が形成されている面を示す平面図であり、両基板20,22を(C)のように接合することにより、基板20,22からなる基体の内部に流路が形成される。   Next, referring to FIG. 2, a method of configuring the flow path of the embodiment of FIG. (A) is a plan view of the upper substrate 22, (B) is a plan view showing a surface of the lower substrate 20 on which the flow path is formed, and both the substrates 20 and 22 are joined as shown in (C). As a result, a flow path is formed inside the base body composed of the substrates 20 and 22.

基板20には図1の流路に該当する5つの支流流路2,4a,4b,6a,6bと1つの本流流路8が微細加工技術であるMEMS(マイクロ電気機械システム)技術により形成されている。流路8を挟んで電極10aと10bが嵌め込まれており、それぞれの電極10a,10bからのリード線12a,12bが基板20上に蒸着膜やスパッタ膜による金属パターンとして形成されている。   On the substrate 20, five tributary flow paths 2, 4a, 4b, 6a, 6b corresponding to the flow path of FIG. 1 and one main flow path 8 are formed by a MEMS (micro electro mechanical system) technique which is a microfabrication technique. ing. Electrodes 10a and 10b are fitted with the flow path 8 interposed therebetween, and lead wires 12a and 12b from the respective electrodes 10a and 10b are formed on the substrate 20 as a metal pattern by a vapor deposition film or a sputtered film.

基板22には流路2,4a,4b,6a,6bに試料溶液を初めとするそれぞれの溶液を供給するための穴24と流路8からの溶液を排出するための穴26が貫通穴として開けられ、それらの穴24,26は流路2,4a,4b,6a,6b,8の端部と対応する位置に配置されている。さらに、基板22には、リード線12a,12bの端部に対応する位置に切欠き28a,28bがそれぞれ形成されており、それらの切欠き28a,28bにおいてリード線12a,12bが外部の検出装置に接続される。   A hole 24 for supplying each solution including a sample solution to the flow paths 2, 4 a, 4 b, 6 a and 6 b and a hole 26 for discharging the solution from the flow path 8 are formed as through holes in the substrate 22. The holes 24 and 26 are disposed at positions corresponding to the ends of the flow paths 2, 4 a, 4 b, 6 a, 6 b, and 8. Further, the substrate 22 is formed with cutouts 28a and 28b at positions corresponding to the ends of the lead wires 12a and 12b, respectively, and the lead wires 12a and 12b are connected to external detection devices at the cutouts 28a and 28b. Connected to.

基板20,22としては、石英ガラスやパイレックス(登録商標)などのガラス基板、シリコン基板、PDMS(ポリジメチルシロキサン)などのプラスティック材料などを用いることができる。   As the substrates 20 and 22, a glass substrate such as quartz glass or Pyrex (registered trademark), a silicon substrate, a plastic material such as PDMS (polydimethylsiloxane), or the like can be used.

流路2,4a,4b,6a,6b,8を基体内部に配置するために、穴24,26が流路2,4a,4b,6a,6b,8の端部にくるように両基板20と22を位置ぎめして、基板20上に基板22を被せて接合する。   In order to arrange the flow paths 2, 4 a, 4 b, 6 a, 6 b, and 8 inside the base body, both substrates 20 so that the holes 24 and 26 are at the ends of the flow paths 2, 4 a, 4 b, 6 a, 6 b, and 8. And 22 are positioned, and the substrate 22 is put on the substrate 20 and bonded.

次に、基板20に流路2,4a,4b,6a,6b,8と電極10a,10bを形成する方法を説明する。
基板20としては平坦な石英ガラス基板を用いるものとする。石英ガラス基板上に感光性材料であるフォトレジスト層を形成し、写真製版によって流路と電極を埋め込む形状に開口をもつようにパターン化を施す。そのパターン化されたフォトレジストをマスクとして基板20をドライエッチングにより加工し、流路2,4a,4b,6a,6b,8と電極埋込み用の凹部を形成する。
Next, a method for forming the flow paths 2, 4a, 4b, 6a, 6b, 8 and the electrodes 10a, 10b on the substrate 20 will be described.
A flat quartz glass substrate is used as the substrate 20. A photoresist layer, which is a photosensitive material, is formed on a quartz glass substrate, and patterned so as to have openings in the shape of embedding the flow paths and electrodes by photolithography. Using the patterned photoresist as a mask, the substrate 20 is processed by dry etching to form the channels 2, 4a, 4b, 6a, 6b, 8 and recesses for embedding the electrodes.

電極埋込み用の凹部に電極10a,10bとなる金属板を嵌めこんだ後、リード線12a,12bを形成するために蒸着又はスパッタリングにより金属膜からなるリード線パターンを形成する。   After the metal plates to be the electrodes 10a and 10b are fitted in the recesses for embedding the electrodes, a lead wire pattern made of a metal film is formed by vapor deposition or sputtering to form the lead wires 12a and 12b.

他方の基板22には貫通穴24,26と切欠き28a,28bを形成する。基板22として例えばPDMSを用いた場合には、成型により貫通穴24,26と切欠き28a,28bを形成することができる。   The other substrate 22 is formed with through holes 24 and 26 and notches 28a and 28b. For example, when PDMS is used as the substrate 22, the through holes 24 and 26 and the notches 28a and 28b can be formed by molding.

基板20の材質を石英ガラス、基板22の材質をPDMSとした場合、PDMSは弾力性を有するので、基板22を基板20上に重ね、両基板20,22間の空気を押し出すように押し付けることにより、接着剤を使用せずに両基板20,22を密着させることができる。このように、接着剤を使用せずに両基板20,22を密着させた場合には、検出を行なった後、他の試料溶液の検出を行なう前に、両基板20,22間を容易に分離することができ、洗浄が容易になる。   When the material of the substrate 20 is quartz glass and the material of the substrate 22 is PDMS, the PDMS has elasticity. Therefore, the substrate 22 is stacked on the substrate 20 and pressed to push out air between the substrates 20 and 22. Both substrates 20 and 22 can be brought into close contact without using an adhesive. As described above, when both substrates 20 and 22 are brought into close contact without using an adhesive, after the detection, before the detection of another sample solution, the space between the substrates 20 and 22 can be easily obtained. Can be separated, and cleaning becomes easy.

基板としては他の材質のものを用いることもでき、両基板間を接着剤で接着してもよい。両基板がガラス基板である場合には、両基板間にフッ酸溶液を介在させて圧着することにより融着して接合することもできる。   Other substrates can be used as the substrate, and the two substrates may be bonded with an adhesive. In the case where both the substrates are glass substrates, they can be fused and joined by pressure bonding with a hydrofluoric acid solution interposed between the two substrates.

本発明の電気化学検出器は、高速液体クロマトグラフィーやフローインジェクション分析、μTASなどの分析装置における検出器として利用することができる。   The electrochemical detector of the present invention can be used as a detector in analyzers such as high performance liquid chromatography, flow injection analysis, and μTAS.

一実施例における流路の概略平面図である。It is a schematic plan view of the flow path in one Example. (A)は同実施例を構成する上側基板の平面図、(B)は下側基板の流路形成面を示す平面図、(C)は両基板の接合状態を示す断面図であり、(B)における鎖線位置での断面状態を示している。(A) is a plan view of the upper substrate constituting the same embodiment, (B) is a plan view showing a flow path forming surface of the lower substrate, (C) is a sectional view showing a bonding state of both substrates, The cross-sectional state at the chain line position in B) is shown.

符号の説明Explanation of symbols

2,4a,4b,6a,6b 支流流路
8 本流流路
10a,10b 電極
12a,12b リード線
20,22 基板
24,26 貫通穴
28a,28b 切欠き
2, 4a, 4b, 6a, 6b Branch flow path 8 Main flow path 10a, 10b Electrode 12a, 12b Lead wire 20, 22 Substrate 24, 26 Through hole 28a, 28b Notch

Claims (1)

基体内部に流路を有し、前記流路は3以上の支流流路が1つの本流流路に合流しているとともに、前記本流流路においては内側の支流流路から導入された試料溶液とその支流流路に隣接する両側の支流流路から導入された溶液との間で液層を構成するように形成されており、
試料溶液が導入される支流流路に隣接する両側の支流流路から導入される溶液のうちの一方には試料溶液中の測定対象成分を選択的に取り込むイオン感応物質が添加されており、
前記本流流路には前記試料溶液を挟む2つの液層間の電位を検出する一対の電極が配置されていることを特徴とする電気化学検出器。
A flow path is provided inside the substrate, and three or more tributary flow paths merge into one main flow path, and the main flow path includes a sample solution introduced from an internal tributary flow path and the flow path. It is formed so as to constitute a liquid layer with the solution introduced from the tributary flow channel on both sides adjacent to the tributary flow channel,
One of the solutions introduced from the branch flow channels on both sides adjacent to the branch flow channel into which the sample solution is introduced is added with an ion sensitive substance that selectively takes in the component to be measured in the sample solution,
A pair of electrodes for detecting a potential between two liquid layers sandwiching the sample solution are disposed in the main flow path.
JP2004003381A 2004-01-08 2004-01-08 Electrochemical detector Expired - Fee Related JP4296939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003381A JP4296939B2 (en) 2004-01-08 2004-01-08 Electrochemical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003381A JP4296939B2 (en) 2004-01-08 2004-01-08 Electrochemical detector

Publications (2)

Publication Number Publication Date
JP2005195510A true JP2005195510A (en) 2005-07-21
JP4296939B2 JP4296939B2 (en) 2009-07-15

Family

ID=34818310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003381A Expired - Fee Related JP4296939B2 (en) 2004-01-08 2004-01-08 Electrochemical detector

Country Status (1)

Country Link
JP (1) JP4296939B2 (en)

Also Published As

Publication number Publication date
JP4296939B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
Pumera et al. New materials for electrochemical sensing VII. Microfluidic chip platforms
US20070240986A1 (en) Microfluidic Device with Minimized Ohmic Resistance
JP4462099B2 (en) Total organic carbon measuring device
Keynton et al. Design and development of microfabricated capillary electrophoresis devices with electrochemical detection
US20230137889A1 (en) Electrochemical sensor with opening between solid elements
Andreasen et al. Integrating electrochemical detection with centrifugal microfluidics for real-time and fully automated sample testing
Phokharatkul et al. AAO–CNTs electrode on microfluidic flow injection system for rapid iodide sensing
WO2017039080A1 (en) Sample concentration apparatus and method for extracting concentrated sample by using same
Moreira et al. Fabrication of a multichannel PDMS/glass analytical microsystem with integrated electrodes for amperometric detection
JP4296939B2 (en) Electrochemical detector
US20230114495A1 (en) Microfluidic devices comprising electrochemical sensors
US20190310225A1 (en) Microfluidic organic electrochemical transistor sensors for real time nitric oxide detection
KR100741270B1 (en) Lab-on-a-chip for electrochemical analysis having dual fluid flow channel
Henderson et al. Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes
US11406299B2 (en) Biosensors with programmable sensing cavities
Yamamoto et al. Nylon Monofilament Mold Three-dimensional Microfluidic Chips for Size-exclusion Microchip Electrophoresis: Application to Specific Online Preconcentration of Proteins
KR100407817B1 (en) Cell number counting apparatus and manufacturing method thereof
Asadpour-Zeynali et al. A Simple and Cheap Method for Microchip Capillary Electrophoresis Construction
JP2001108655A (en) Electrochemical detector for capillary electrophoresis and its manufacture
JP2005172668A (en) Microchip for electrochemical measurement, and manufacturing method of the same
Karnik et al. Transport of Ions and Molecules in Nanofluidic Devices
Petkovic-Duran et al. Detection of inorganic ions on a capillary electrophoresis microchip using a conductivity technique
Sawyer Fabrication of nanofluidic devices using electrochemical etching of sacrificial copper
JP2004170232A (en) Electrophoretic device
Lee et al. Design and Fabrication of 3D-Structured Contactless Capacitive-Type Detector for Capillary Electrophoresis Microchip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R151 Written notification of patent or utility model registration

Ref document number: 4296939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees