JP2005195110A - Underground low-temperature tank facility and ground freezing preventing method for the same - Google Patents

Underground low-temperature tank facility and ground freezing preventing method for the same Download PDF

Info

Publication number
JP2005195110A
JP2005195110A JP2004002911A JP2004002911A JP2005195110A JP 2005195110 A JP2005195110 A JP 2005195110A JP 2004002911 A JP2004002911 A JP 2004002911A JP 2004002911 A JP2004002911 A JP 2004002911A JP 2005195110 A JP2005195110 A JP 2005195110A
Authority
JP
Japan
Prior art keywords
water
storage tank
ground
underground
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004002911A
Other languages
Japanese (ja)
Other versions
JP4374528B2 (en
Inventor
Kazuyuki Yoneyama
一幸 米山
Kuniichirou Miyashita
国一郎 宮下
Toshiyuki Hatta
敏行 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2004002911A priority Critical patent/JP4374528B2/en
Publication of JP2005195110A publication Critical patent/JP2005195110A/en
Application granted granted Critical
Publication of JP4374528B2 publication Critical patent/JP4374528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent approach of freezing area to be formed around a reservoir nearly close to a surface of the ground. <P>SOLUTION: This underground low-temperature tank facility has a structure that a cavity excavated underground is used as the reservoir 1 to store a low-temperature fluid and that air-tightness and liquid-tightness of the reservoir are secured by the freezing area formed around the reservoir. A water-sealing boring 4 is provided underground over the reservoir, and water is circulated inside the water-sealing boring to maintain temperature of the peripheral ground at the freezing temperature or more to hinder enlargement of the freezing area at that position. In the case of storing liquefied gas as a low-temperature fluid in the reservoir, warm wasted heat generated when liquefying the evaporated gas from the liquefied gas again in a ground surface part to heat the water circulating inside the water sealing boring. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地下地盤中に掘削した空洞に低温流体を貯蔵する構造の地下式低温タンク施設、およびその施設の周辺地盤の凍結を防止するための地盤凍結防止方法に関する。   The present invention relates to an underground cryogenic tank facility having a structure in which a cryogenic fluid is stored in a cavity excavated in an underground ground, and a ground freeze prevention method for preventing freezing of the surrounding ground of the facility.

この種の地下式低温タンク施設は、地下の安定した岩盤中に大規模な空洞を掘削し、その空洞を貯槽(タンク)としてLPGやLNG、DME(ジメチルエーテル)等の低温液化ガス、あるいはその他の低温液体や低温気体を貯蔵するための施設である。このような地下式低温タンク施設では、貯蔵物が極低温であることから貯槽周囲に存する地下水は自ずと凍結してしまって貯槽周囲に安定な凍結領域が形成され、したがって岩盤中に亀裂や間隙があっても貯槽の気密性や液密性が自ずと安定に確保されることから、貯槽の施工に際しては空洞の内面に吹き付けコンクリート程度の支保を設けることで充分であって格別のライニング材や覆工を設ける必要がなく、そのため構造が簡略であって建設コストを抑えることができるという利点があり、今後、広く普及する気運にある。   This type of underground cryogenic tank facility excavates a large-scale cavity in a stable underground rock, and uses the cavity as a storage tank (tank) for low-temperature liquefied gas such as LPG, LNG, DME (dimethyl ether), or other It is a facility for storing cryogenic liquids and cryogenic gases. In such an underground cryogenic tank facility, the stored water is extremely cold, so the groundwater existing around the storage tank naturally freezes to form a stable freezing area around the storage tank.Therefore, there are cracks and gaps in the bedrock. Even in such cases, since the airtightness and liquid tightness of the storage tank are naturally secured, it is sufficient to install a support like a sprayed concrete on the inner surface of the cavity for the construction of the storage tank. Therefore, there is an advantage that the structure is simple and the construction cost can be suppressed.

ところで、この種の地下式低温タンク施設では、凍結領域が貯槽周囲に形成されるのみならず、施設の運用後には凍結領域が貯槽周囲の広範囲にわたって次第に拡大していくので、貯槽の深度が比較的浅いような場合には将来的に凍結領域が地表部付近にまで達することが想定され、そのような場合には地表部の構造物や自然生態系に対して悪影響が及ぶことも懸念される。   By the way, in this kind of underground cryogenic tank facility, not only the freezing area is formed around the storage tank, but also after the operation of the facility, the freezing area gradually expands over a wide area around the storage tank, so the depth of the storage tank is compared. In such a case, it is assumed that the frozen region will reach the surface near the surface in the future, and in such a case, there is a concern that the structure on the surface and the natural ecosystem may be adversely affected. .

そのため、この種の施設の計画に当たっては将来においても凍結領域が地表部付近に達することのないように貯槽の深度を充分に大きくする必要があるとされているが、大規模な貯槽を大深度に設けるためには大がかりな掘削工事を要するのでその施工には多大のコストを要するものとなり、また運用後に貯蔵物の受け払いを行うための設備費、運転費、保守費等も嵩むものとなるので、経済性や採算性の点では貯槽の深度をあまり大きくしたくないという要請がある。   Therefore, when planning this type of facility, it is said that the depth of the storage tank must be sufficiently large so that the frozen region will not reach near the surface in the future. Since it requires a large-scale excavation work to install it in the construction site, it requires a great deal of cost for the construction, and also increases the equipment cost, operation cost, maintenance cost, etc. for receiving and receiving the storage after operation. Therefore, there is a demand not to increase the depth of the storage tank so much in terms of economy and profitability.

なお、従来よりLNGやLPG等の低温液化燃料の貯蔵タンクを地表部付近に埋設して設けることが広く行われており、そのような埋設タンクの周囲地盤に対する凍結防止策として、特許文献1には温水等の熱媒を通すパイプを埋設タンクの底部や側部に設けてヒートフェンスを形成するという手法が開示されている。また、特許文献2には、同様の埋設式タンクに適用するものとして、温水等の熱媒体を屋根面に散水することで屋根面を一定温度に保つことにより屋根面上の覆土の凍結を防止するという手法が開示されている。
特開平6−278791号公報 特開平7−48952号公報
Conventionally, low temperature liquefied fuel storage tanks such as LNG and LPG have been widely embedded in the vicinity of the surface, and Patent Document 1 discloses a measure for preventing freezing of the surrounding ground of such a buried tank. Discloses a method of forming a heat fence by providing pipes through which a heat medium such as hot water is passed at the bottom or side of an embedded tank. In addition, Patent Document 2 discloses that the same buried type tank is applied, and the cover surface on the roof surface is prevented from freezing by keeping the roof surface at a constant temperature by spraying a heat medium such as hot water on the roof surface. The technique of doing is disclosed.
JP-A-6-278791 Japanese Patent Laid-Open No. 7-48952

上記の特許文献1や特許文献2に示されるような凍結防止手法を、本発明が対象としているような大規模な施設においてもそのまま適用できれば貯槽の深度をさほど大きくする必要はないのであるが、地表部のごく浅い位置に埋設される小規模の埋設タンクを対象としている凍結防止手法を、地下地盤中に設ける大規模な空洞を貯槽として利用するという地下式低温タンク施設にそのまま適用することは現実的ではなく、この種の地下式低温タンク施設の普及を図るためにはより有効な凍結防止手法の開発が急務とされていた。   Although it is not necessary to increase the depth of the storage tank as long as the antifreezing method as shown in Patent Document 1 and Patent Document 2 described above can be applied as it is even in a large-scale facility that is the subject of the present invention, Applying the anti-freezing method for small-scale buried tanks buried in a shallow position on the surface of the earth to a underground cryogenic tank facility that uses a large cavity in the underground ground as a storage tank It was not realistic, and it was urgent to develop a more effective anti-freezing method in order to spread this kind of underground cryogenic tank facility.

上記事情に鑑み、本発明の地下式低温タンク施設は、地下地盤中に掘削した空洞を貯槽として低温流体を貯蔵し、貯槽周囲に形成される凍結領域によって貯槽の気密性と液密性を確保する構造のものであって、地盤を飽和状態に保って貯槽周囲に凍結領域を形成するとともに、その内部において水を循環させることにより周囲地盤を凍結温度以上に維持するための水封ボーリングを、貯槽の上方の地盤中に設けたものである。   In view of the above circumstances, the underground cryogenic tank facility of the present invention stores a cryogenic fluid using a cavity excavated in the underground ground as a storage tank, and ensures the airtightness and liquid tightness of the storage tank by a freezing area formed around the storage tank. A water-sealed boring for maintaining the surrounding ground at a freezing temperature or more by circulating water inside the storage tank while keeping the ground saturated and forming a freezing region around the storage tank, It is provided in the ground above the storage tank.

本発明の地盤凍結防止方法は、上記構造の地下式低温タンク施設に適用してその周囲地盤の凍結を防止するものであって、上記の水封ボーリング内において水を循環させてその周囲地盤を凍結温度以上に維持することにより、貯槽周囲に形成される凍結領域の拡大を水封ボーリングの位置で阻止するようにしたものである。なお、貯槽に貯蔵している低温流体が液化ガスである場合には、その液化ガスからの気化ガスを取り出して地表部において再液化して貯槽に戻す際に発生する温廃熱を利用して、水封ボーリング内を循環させる水を加温することが考えられる。   The ground freeze prevention method of the present invention is applied to the underground cryogenic tank facility having the above structure to prevent freezing of the surrounding ground, and water is circulated in the above water-sealed boring to circulate the surrounding ground. By maintaining the freezing temperature or higher, expansion of the freezing region formed around the storage tank is prevented at the position of the water-sealed boring. When the low-temperature fluid stored in the storage tank is a liquefied gas, the waste heat generated when the vaporized gas from the liquefied gas is taken out and re-liquefied at the surface and returned to the storage tank is used. It is conceivable to heat the water circulating in the water-sealed boring.

本発明によれば、水封ボーリング内において常温程度の温度の水を循環させることにより、それら水封ボーリングの周囲地盤が凍結温度以上に維持され、したがって貯槽周囲に形成される凍結領域の拡大が自ずとその位置で阻止されて凍結領域が地表部付近にまで達して様々な悪影響が及ぶことを防止することができる。また、貯槽としての空洞を設ける深度に充分な地下水が存在していない場合であっても、それよりも上方の地盤に設けた上記の水封ボーリングから貯槽周囲に自ずと注水がなされて浸透していき、それにより地盤が常に飽和状態に保たれて貯槽周囲に確実に凍結領域が形成され、貯槽としての空洞に要求される気密性と液密性を支障なく確保することができる。   According to the present invention, by circulating water at a temperature of about room temperature in the water-sealed boring, the ground around the water-sealed boring is maintained at a freezing temperature or higher, and therefore the freezing area formed around the storage tank is expanded. It is possible to prevent the freezing area from reaching the vicinity of the ground surface by itself being blocked at that position and various adverse effects. In addition, even when there is not enough groundwater at the depth to provide a cavity as a storage tank, water is naturally injected around the storage tank from the above-mentioned water-sealed boring provided in the ground above it and penetrated. As a result, the ground is always kept in a saturated state, a freezing region is surely formed around the storage tank, and the airtightness and liquid tightness required for the cavity as the storage tank can be ensured without any trouble.

また、水封ボーリング内を循環させる水に対する加温のための熱源として、貯蔵物としての液化ガスからの気化ガスを再液化する際に発生する温廃熱を利用することが可能であり、それにより運転コストの削減を図ることができる。   In addition, as a heat source for heating the water circulating in the water-sealed boring, it is possible to use the waste heat generated when re-liquefying the vaporized gas from the liquefied gas as a stored product. As a result, the operating cost can be reduced.

本発明の一実施形態を図1〜図4を参照して説明する。図1は本発明の実施形態である地下式低温タンク施設の概念図であって、安定な岩盤である地下地盤中に複数の空洞(図示例では3本のトンネル状の空洞)を掘削し、それらの空洞を貯槽1としてその内部に低温流体、たとえばLPGやLNG、DME等の低温液化ガスを貯蔵することを基本とするものである。なお、符号2は地上から貯槽1へのアクセス用の立坑、3は各貯槽1どうしを連絡するための横坑である。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a conceptual diagram of an underground cryogenic tank facility according to an embodiment of the present invention, in which a plurality of cavities (three tunnel-shaped cavities in the illustrated example) are excavated in an underground ground that is a stable rock, These cavities are used as storage tanks 1 for storing low-temperature fluids such as low-temperature liquefied gases such as LPG, LNG, and DME. Reference numeral 2 is a vertical shaft for accessing the storage tank 1 from the ground, and 3 is a horizontal shaft for connecting the storage tanks 1 to each other.

既に述べたように、このような貯槽1に貯蔵される低温液化ガスは極低温であることから、運用開始後には貯槽1の周囲の地盤中に存在している地下水が自ずと凍結して貯槽1の周囲に安定な凍結領域が形成され、それにより貯槽1として必要な気密性および液密性を自ずと確保することができるのであるが、本実施形態ではそのような凍結領域を貯槽1周囲に確実に形成するとともに、その凍結領域が徒に拡大して地表部付近にまで達してしまうことを防止するべく、貯槽1全体を覆うようにしてその上部の地盤に複数の水封ボーリング4を形成し、それら水封ボーリング4内において水を循環させるようにしている。   As already described, since the low-temperature liquefied gas stored in such a storage tank 1 is extremely low temperature, the groundwater existing in the ground around the storage tank 1 is naturally frozen after the start of operation, and the storage tank 1 A stable freezing region is formed around the storage tank 1, so that the airtightness and liquid tightness necessary for the storage tank 1 can be secured by itself. In this embodiment, such a freezing area is reliably provided around the storage tank 1. In order to prevent the freezing area from expanding to the vicinity of the surface part, a plurality of water-sealed borings 4 are formed on the upper ground so as to cover the entire storage tank 1. The water is circulated in the water-sealed boring 4.

すなわち、本実施形態では、図1に示しているように中央に位置している貯槽1の上方に横坑5を掘削し、図2に示すようにその横坑5の内部からその両側にそれぞれ水封ボーリング4を所定の間隔でやや先下がりの状態で形成している。そして、横坑5および各水封ボーリング4内に循環経路を形成するための管路6、7を敷設するとともに、地表部と横坑5とを連絡している立坑8内にも同様の管路9(図1参照)を設けて、その管路9に接続した循環ポンプ10により立坑8に水を供給することにより、図2に矢印で示すように、立坑8から横坑5を経て各水封ボーリング4内を水封状態とし、かつ各水封ボーリング4の先端部から管路7,6,9を通して地表部に戻すように強制循環させるようにしている。   That is, in this embodiment, as shown in FIG. 1, the horizontal shaft 5 is excavated above the storage tank 1 located at the center, and as shown in FIG. The water-sealed boring 4 is formed in a slightly lowered state at a predetermined interval. In addition, pipes 6 and 7 for forming a circulation path are laid in the horizontal shaft 5 and each water-sealed boring 4, and the same pipe is also installed in the vertical shaft 8 that connects the surface portion and the horizontal shaft 5. By providing a passage 9 (see FIG. 1) and supplying water to the shaft 8 by a circulation pump 10 connected to the conduit 9, each shaft 8 passes through the side shaft 5 as shown by arrows in FIG. The inside of the water-sealed boring 4 is in a water-sealed state, and is forcedly circulated so that the water-sealed boring 4 is returned to the ground surface through the pipes 7, 6, 9 from the tip of each water-sealed boring 4.

このように、貯槽1の上方に設けた水封ボーリング4内において水を循環させることにより、その水の一部は亀裂や間隙を通して地盤中に自ずと注水されて浸透していき、したがって自然地下水位が貯槽1の形成位置よりも低い場合であっても、すなわちそのままでは貯槽1の周囲に凍結領域が有効に生じ得ない場合であっても、地盤が常に飽和状態に保たれて貯槽1の周囲に常に地下水が存在する状況を維持でき、それにより運用開始時点では貯槽1周囲に確実に凍結領域を形成することができ、その気密性と液密性を充分に確保することができる。   In this way, by circulating water in the water-sealed boring 4 provided above the storage tank 1, a part of the water is naturally injected into the ground through cracks and gaps, and thus the natural groundwater level. Is lower than the formation position of the storage tank 1, that is, even if a frozen region cannot be effectively generated around the storage tank 1 as it is, the ground is always kept in a saturated state and the surroundings of the storage tank 1 Therefore, it is possible to maintain a groundwater always present, so that a frozen region can be surely formed around the storage tank 1 at the start of operation, and the airtightness and liquid tightness can be sufficiently secured.

また、そのような凍結領域が形成された後においても、上記のようにして水封ボーリング4内において水を常時強制循環することにより、各水封ボーリング4の周囲の地盤温度は自ずと循環水の温度程度に維持されて凍結温度以下に低下することはなく、したがって貯槽1の周囲に形成される凍結領域の拡大はその位置で阻止され、水封ボーリング4を越えてその上方にまで凍結領域が拡大して地表部付近にまで達するようなことを確実に防止することができる。   In addition, even after such a frozen region is formed, the ground temperature around each water-sealed boring 4 is naturally circulated by forcedly circulating water in the water-sealed boring 4 as described above. The temperature is maintained at a temperature level and does not drop below the freezing temperature. Therefore, the expansion of the freezing area formed around the storage tank 1 is prevented at that position, and the freezing area extends beyond the water-sealed boring 4 and above it. Enlarging and reaching the vicinity of the surface can be reliably prevented.

なお、循環水の温度は水封ボーリング4の周囲地盤が凍結温度にならなければ良いのでさして高温である必要はないし、あまり高温であると貯槽1周囲に形成するべき凍結領域への悪影響も懸念されるので、その水温は常温(たとえば15〜20°C程度)程度で充分であり、可能であれば河川水や湖沼水等の自然水をそのまま循環させることも考えられる(ただし、年間を通じて所望水温の水が充分に確保でき、生態系への悪影響がないことが条件となる)。勿論、必要に応じて循環水を適宜の熱源11により加温して所定温度に温度制御しつつ循環させることでも良く、その場合には各種の廃熱を有効に利用することが好ましい。特に、この施設における貯蔵物がDMEやLPG等の液化ガスである場合には、貯槽1内上部にたまる気化ガス(BOG)を地表部に取り出して冷凍機により再液化させて貯槽に戻すような運転を行うことが通常であり、その再液化の際には冷凍機からの温廃熱が発生するので、その温廃熱を熱源11に利用して循環水を加温することが考えられる。そのようにすれば従来においては単に大気中に無駄に放散されていた温廃熱を有効利用でき、極めて合理的である。   The temperature of the circulating water does not have to be high as long as the ground around the water-sealed boring 4 does not reach the freezing temperature. If the temperature is too high, there is a concern that the freezing area to be formed around the storage tank 1 may be adversely affected. Therefore, it is sufficient that the water temperature is about room temperature (for example, about 15 to 20 ° C.), and if possible, natural water such as river water and lake water can be circulated as it is (but desired throughout the year). The condition is that sufficient water temperature can be secured and there is no adverse impact on the ecosystem). Of course, if necessary, the circulating water may be heated by an appropriate heat source 11 and circulated while controlling the temperature to a predetermined temperature. In this case, it is preferable to effectively use various types of waste heat. In particular, when the stored material in this facility is a liquefied gas such as DME or LPG, the vaporized gas (BOG) that accumulates in the upper part of the storage tank 1 is taken out to the surface and re-liquefied by a refrigerator and returned to the storage tank. It is normal to perform the operation, and warm waste heat from the refrigerator is generated during the re-liquefaction. Therefore, it is conceivable to heat the circulating water using the warm waste heat as the heat source 11. By doing so, it is possible to effectively utilize the heat and waste heat that has been simply dissipated to the atmosphere in the past, and is extremely rational.

図3は、深度50mの位置に設けた貯槽1の周囲に形成される凍結領域の50年後における状況を熱伝導解析により予測した結果を示すものである。(a)は水封ボーリングを設けない場合、(b)は深度30mの位置に水封ボーリングを設けて15℃の水を循環させた場合を示すもので、(a)では凍結領域が地表面下15m付近にまで拡大してしまうのに対し、(b)では凍結領域は地表面下35m程度(水封ボーリングの下方5m程度)に留まっており、水封ボーリングにより凍結領域の拡大が有効に阻止されていることが分かる。   FIG. 3 shows the result of predicting the situation after 50 years of the frozen region formed around the storage tank 1 provided at a depth of 50 m by heat conduction analysis. (A) shows a case where water-sealed boring is not provided, (b) shows a case where water-sealed boring is provided at a position of a depth of 30 m and water at 15 ° C. is circulated. In (b), the frozen area remains at about 35 m below the ground surface (about 5 m below the water ring boring), and the expansion of the frozen area is effective by water ring boring. You can see that it is blocked.

また、図4は上記の場合における地表面の温度分布を示すもので、水封ボーリングがない場合には常温に対し最大で2degの温度低下が広範囲にわたって生じるのに対し、水封ボーリングを設けた場合には最大でも0.3deg程度の温度低下に留まるばかりでなく温度低下が生じる範囲も小さくなることが分かる。   FIG. 4 shows the temperature distribution of the ground surface in the above case. When there is no water-sealed boring, a maximum 2 deg. In this case, it is understood that not only the temperature decrease is about 0.3 deg at the maximum, but also the range where the temperature decrease occurs is small.

以上のように、本実施形態の地下式低温タンク施設および凍結防止方法によれば、貯槽1の周囲に形成される凍結領域が地表部付近にまで達してしまうことを有効に防止できるので、従来のように貯槽1を大深度に設ける必要はなく比較的浅い位置に設けることが可能となり、それにより施設全体の施工コストを大幅に削減でき、また運用後における運転費を充分に軽減することが可能となる。また、この種の施設の施工に際しては、いずれにしても貯槽1周囲の地下水位を確保するために水封ボーリング4を設けることが通常であるので、そのような水封ボーリング4を設けること自体はコスト増とはならず、それに水を循環させるための機能のみを付加すれば足りるので、全体的なコスト増は些少で済む。   As described above, according to the underground cryogenic tank facility and the freeze prevention method of the present embodiment, it is possible to effectively prevent the frozen region formed around the storage tank 1 from reaching the vicinity of the ground surface. Thus, it is not necessary to provide the storage tank 1 at a large depth, and it is possible to provide the storage tank 1 at a relatively shallow position, thereby significantly reducing the construction cost of the entire facility and sufficiently reducing the operating cost after operation. It becomes possible. In addition, when constructing this type of facility, in any case, it is usual to provide a water-sealed boring 4 in order to secure the groundwater level around the storage tank 1, and thus providing such a water-sealed boring 4 itself. The cost does not increase, and it is only necessary to add a function for circulating water, so the overall cost increase is negligible.

なお、上記実施形態では立坑8、横坑5、水封ボーリング4内にそれぞれ管路9,6,7を敷設することで循環経路を形成するようにしたが、そのようにすることに限るものではなく、要は水封ボーリング4内を水が循環できるように構成すれば良いので、たとえば水封ボーリング4内を往路と還路とに区画することで循環経路を形成したり、あるいは水封ボーリング4自体を一連の循環経路を形成するように設けることでも良い。   In the above embodiment, the circulation paths are formed by laying the pipelines 9, 6, and 7 in the vertical shaft 8, the horizontal shaft 5, and the water-sealed boring 4, respectively. Instead, what is necessary is to configure the water-sealed boring 4 so that water can circulate. For example, the water-sealed boring 4 is divided into an outward path and a return path, or a circulation path is formed. The boring 4 itself may be provided so as to form a series of circulation paths.

また、上記実施形態のように、水封ボーリング4内における水の循環は循環ポンプ10による常時強制循環とすることが現実的ではあるが、そのための動力としては各種の自然エネルギーを利用することが考えられるし、状況によっては間欠的ないし断続的な循環を行うことでも良く、さらには水温差を利用して自然循環が生じるような循環経路を形成することも考えられる。勿論、貯槽1としての空洞の形態や規模は任意に変更可能であることは言うまでもなく、それに応じて水封ボーリング4を適正な位置に適正な形態で設ければ良い。   Further, as in the above embodiment, it is realistic that the circulation of water in the water-sealed boring 4 is always forced circulation by the circulation pump 10, but various natural energy can be used as power for that purpose. Depending on the situation, it may be possible to perform intermittent or intermittent circulation, and further, it may be possible to form a circulation path in which natural circulation occurs by utilizing the water temperature difference. Of course, it goes without saying that the shape and scale of the cavity as the storage tank 1 can be arbitrarily changed, and the water ring boring 4 may be provided in an appropriate form at an appropriate position accordingly.

本発明の実施形態である地下式低温タンク施設の概念図である。It is a conceptual diagram of the underground type cryogenic tank facility which is embodiment of this invention. 同、水封ボーリングを示す図である。It is a figure which shows a water seal boring same as the above. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly.

符号の説明Explanation of symbols

1 貯槽(空洞)
2 立坑
3 横坑
4 水封ボーリング
5 横坑
6,7 管路
8 立坑
9 管路
10 循環ポンプ
11 熱源
1 Storage tank (hollow)
2 Vertical shaft 3 Horizontal shaft 4 Water-sealed boring 5 Horizontal shaft 6, 7 Pipe 8 Vertical shaft 9 Pipe 10 Circulation pump 11 Heat source

Claims (3)

地下地盤中に掘削した空洞を貯槽として低温流体を貯蔵し、貯槽周囲に形成される凍結領域によって貯槽の気密性と液密性を確保する構造の地下式低温タンク施設であって、
地盤を飽和状態に保って貯槽周囲に凍結領域を形成するとともに、その内部において水を循環させることにより周囲地盤を凍結温度以上に維持するための水封ボーリングを、貯槽の上方の地盤中に設けたことを特徴とする地下式低温タンク施設。
It is an underground cryogenic tank facility with a structure in which a cryogenic fluid is stored using a cavity excavated in the underground ground as a storage tank, and the airtightness and liquid tightness of the storage tank are secured by a freezing area formed around the storage tank,
A water-sealed boring is provided in the ground above the storage tank to keep the ground saturated and to form a freezing area around the storage tank and to circulate water inside the storage tank to maintain the surrounding ground above the freezing temperature. An underground cryogenic tank facility.
請求項1記載の地下式低温タンク施設に適用する地盤凍結防止方法であって、
水封ボーリング内において水を循環させてその周囲地盤を凍結温度以上に維持することにより、貯槽周囲に形成される凍結領域の拡大を水封ボーリングの位置で阻止することを特徴とする地下式低温タンク施設における地盤凍結防止方法。
A ground freeze prevention method applied to the underground cryogenic tank facility according to claim 1,
Underground low temperature characterized by preventing the expansion of the freezing area formed around the storage tank at the position of the water-sealed boring by circulating water in the water-sealed boring and maintaining the surrounding ground above the freezing temperature Ground freeze prevention method in tank facility.
請求項2記載の地盤凍結防止方法であって、
貯槽に貯蔵している低温流体としての液化ガスからの気化ガスを取り出して地表部において再液化して貯槽に戻すとともに、その再液化の際に発生する温廃熱を利用して水封ボーリング内を循環させる水を加温することを特徴とする地下式低温タンク施設における地盤凍結防止方法。
The ground freeze prevention method according to claim 2,
Take out the vaporized gas from the liquefied gas as the low-temperature fluid stored in the storage tank, re-liquefy it at the surface, return it to the storage tank, and use the heat and waste heat generated during the re-liquefaction in the water-sealed boring A method for preventing ground freezing in an underground cryogenic tank facility, characterized by heating the water circulating in the ground.
JP2004002911A 2004-01-08 2004-01-08 Underground cryogenic tank facility and ground freeze prevention method applied to it Expired - Lifetime JP4374528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002911A JP4374528B2 (en) 2004-01-08 2004-01-08 Underground cryogenic tank facility and ground freeze prevention method applied to it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002911A JP4374528B2 (en) 2004-01-08 2004-01-08 Underground cryogenic tank facility and ground freeze prevention method applied to it

Publications (2)

Publication Number Publication Date
JP2005195110A true JP2005195110A (en) 2005-07-21
JP4374528B2 JP4374528B2 (en) 2009-12-02

Family

ID=34817966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002911A Expired - Lifetime JP4374528B2 (en) 2004-01-08 2004-01-08 Underground cryogenic tank facility and ground freeze prevention method applied to it

Country Status (1)

Country Link
JP (1) JP4374528B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120064A (en) * 2005-10-26 2007-05-17 Shimizu Corp Construction method of low-temperature underground tank institution
JP2008208889A (en) * 2007-02-26 2008-09-11 Shimizu Corp Low-temperature baserock reservoir
JP2013092199A (en) * 2011-10-26 2013-05-16 Kajima Corp Underground storage method of low-temperature liquefied gas and storage equipment
KR101410189B1 (en) 2012-07-20 2014-06-19 주식회사 포스코 Apparatus for dust collecting duct of water sealing type using the waste heat of coke oven
CN104763449A (en) * 2015-02-04 2015-07-08 清华大学 Design method for water curtain system of underground water seal cave depot

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291310B (en) * 2013-06-28 2015-08-19 中铁隧道集团一处有限公司 There is the processing method of unfavorable geology in the main cavern of water seal cave depot and vertical shaft junction
CN103291311B (en) * 2013-06-28 2015-07-08 中铁隧道集团一处有限公司 Treating method for transverse penetrating of main chambers of water-sealed cave storage on unfavorable geologic structure plane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120064A (en) * 2005-10-26 2007-05-17 Shimizu Corp Construction method of low-temperature underground tank institution
JP2008208889A (en) * 2007-02-26 2008-09-11 Shimizu Corp Low-temperature baserock reservoir
JP2013092199A (en) * 2011-10-26 2013-05-16 Kajima Corp Underground storage method of low-temperature liquefied gas and storage equipment
KR101410189B1 (en) 2012-07-20 2014-06-19 주식회사 포스코 Apparatus for dust collecting duct of water sealing type using the waste heat of coke oven
CN104763449A (en) * 2015-02-04 2015-07-08 清华大学 Design method for water curtain system of underground water seal cave depot

Also Published As

Publication number Publication date
JP4374528B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP2021534337A (en) Freezing method and freezing system for connecting passages
CN101553662A (en) A wind energy converter, a method and use hereof
JP2008230849A (en) Low-temperature rock reservoir and its construction method
JP7529280B2 (en) Geothermal power generation equipment
JP4374528B2 (en) Underground cryogenic tank facility and ground freeze prevention method applied to it
US20240110470A1 (en) Subsea fluid handling system and method for long term storage of fluids in a subterranean void
US3175370A (en) Roofs for reservoirs
JP5888727B2 (en) Low temperature liquefied gas underground freezing controlled storage facility
JP4986031B2 (en) Low temperature rock storage tank
RU2298722C1 (en) Underground storage for liquefied natural gas
JP4793646B2 (en) Construction method of tank facility in low temperature rock mass
JP5041238B2 (en) Low temperature rock storage tank
KR20090055790A (en) Underground burial type lng storage equipments and its construction method
KR101924288B1 (en) System that utilizes carbon dioxide of flue gas captured by cold heat of liquefied natural gas
Yarmak Permafrost foundations thermally stabilized using thermosyphons
US6976809B1 (en) Method of preventing frost heave stress concentrations in chilled buried pipelines
RU2552253C1 (en) Method of arrangement of foundation slab on piles for low-temperature product tank
US20130174585A1 (en) Method and device for storing a cryogenic fluid and which are suitable for soils including permafrost
JP5877997B2 (en) Method for underground storage of low-temperature liquefied gas and construction method of storage facility
JP5339203B2 (en) Low temperature fluid storage facility in bedrock
Brown Hull wastewater flow transfer tunnel: recovery of tunnel collapse by ground freezing
US20120310029A1 (en) System and method to mitigate migration of contaminates
CN108130900A (en) Form the vertical energy-saving frigo and method of annular frost wall
Veranneman et al. Ground consolidation with liquid nitrogen (LN2)
JP2007120064A (en) Construction method of low-temperature underground tank institution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3