JP2005194410A - Method for recovering crude light oil in gas - Google Patents

Method for recovering crude light oil in gas Download PDF

Info

Publication number
JP2005194410A
JP2005194410A JP2004002843A JP2004002843A JP2005194410A JP 2005194410 A JP2005194410 A JP 2005194410A JP 2004002843 A JP2004002843 A JP 2004002843A JP 2004002843 A JP2004002843 A JP 2004002843A JP 2005194410 A JP2005194410 A JP 2005194410A
Authority
JP
Japan
Prior art keywords
oil
absorption
composition
gas
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004002843A
Other languages
Japanese (ja)
Other versions
JP4200904B2 (en
Inventor
Kazutaka Akai
一隆 赤井
Masanori Akiyama
正則 秋山
Sakou Chiyou
鎖江 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004002843A priority Critical patent/JP4200904B2/en
Publication of JP2005194410A publication Critical patent/JP2005194410A/en
Application granted granted Critical
Publication of JP4200904B2 publication Critical patent/JP4200904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering a crude light oil in gas which can suppress consumption of water vapor, fuel and electric power, and/or a method for recovering a crude light oil which can increase the recovery factor of a crude oil component. <P>SOLUTION: The method for recovering a crude light oil component in a coke oven gas or a pyrolysis furnace gas comprises (1-1) determining by calculation the composition of the absorption oil at each part through which it circulates or (1-2) determining by analysis the composition of the absorption oil at each part where it circulates, (2) calculating from the composition the temperature at which the absorption oil starts to precipitate, and (3-1) setting the operation conditions at each part through which the absorption oil circulates at the temperature at which the absorption oil starts to precipitate or higher or (3-2) changing the composition of the absorption oil to be supplied to an absorption column so that the temperature at which the absorption oil starts to precipitate is lowered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はガス中の粗軽油分の回収方法に関し、詳細には、石炭をコークス炉で乾留してコークスを製造する際に副生するコークス炉ガス、または石炭を熱分解炉で熱分解し発生する熱分解炉ガス中の粗軽油分の回収方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for recovering crude light oil in gas, and more specifically, coke oven gas produced as a by-product when coal is carbonized in a coke oven, or generated by pyrolyzing coal in a pyrolysis furnace. The present invention relates to a method for recovering crude light oil in pyrolysis furnace gas.

コークス炉から発生するコークス炉ガス、石炭熱分解炉から発生する熱分解炉ガスの主成分は水素、メタン、一酸化炭素、二酸化炭素などであるが、他にタール分やアンモニア、硫化水素、粗軽油分、シアン化水素、その他多数の成分が含まれている。コークス炉から発生するコークス炉ガス、石炭熱分解炉から発生する熱分解炉ガスは先ず冷却され、その後タール分、アンモニア、硫化水素、粗軽油分を除去する工程を順次経て燃料その他の用途に供される。   The main components of coke oven gas generated from coke oven and pyrolysis oven gas generated from coal pyrolysis furnace are hydrogen, methane, carbon monoxide, carbon dioxide, etc., but also tar content, ammonia, hydrogen sulfide, crude Contains light oil, hydrogen cyanide and many other ingredients. The coke oven gas generated from the coke oven and the pyrolysis oven gas generated from the coal pyrolysis furnace are first cooled and then sequentially removed for tar, ammonia, hydrogen sulfide, and crude light oil for use in fuel and other applications. Is done.

コークス炉から発生するコークス炉ガス、石炭熱分解炉から発生する熱分解炉ガス中の粗軽油分の除去は各種の方法により行い得るが、その代表的方法の一つとして、コークス炉ガス(または熱分解炉ガス)を吸収塔と水蒸気蒸留塔とを備えており、吸収油が両塔間を循環するようになっている軽油回収装置に導き、吸収塔でコーク炉ガス(または熱分解炉ガス)と吸収油を接触させてコークス炉ガス(または熱分解炉ガス)中の粗軽油分を吸収油中に吸収させ、この吸収油を水蒸気蒸留塔で水蒸気蒸留して塔頂から粗軽油分及び水を含む蒸気を留出させ、塔底から吸収油を回収して吸収塔に循環する方法がある。水蒸気蒸留塔の塔頂から留出した粗軽油分及び水を含む蒸気を凝縮させて得た粗軽油分と水は比重差で分離され、通常は粗軽油として回収される。吸収油には、一般には、コークス炉(または石炭熱分解炉)から発生するタールを蒸留して得る比較的中間的な留分である油が用いられる。   The removal of the crude light oil in the coke oven gas generated from the coke oven and the pyrolysis oven gas generated from the coal pyrolysis furnace can be performed by various methods, but one of the typical methods is coke oven gas (or Pyrolysis furnace gas) is provided with an absorption tower and a steam distillation tower, and the absorption oil is circulated between the two towers, leading to a light oil recovery device, where the coke oven gas (or pyrolysis furnace gas) ) And the absorbing oil, the crude light oil in the coke oven gas (or pyrolysis furnace gas) is absorbed into the absorbing oil, and this absorbed oil is subjected to steam distillation in a steam distillation tower and the crude light oil content and There is a method in which steam containing water is distilled, the absorption oil is recovered from the bottom of the tower and circulated to the absorption tower. The crude light oil and water obtained by condensing the crude light oil distilled from the top of the steam distillation column and the steam containing water are separated by a specific gravity difference and are usually recovered as crude light oil. In general, an oil that is a relatively intermediate fraction obtained by distillation of tar generated from a coke oven (or a coal pyrolysis furnace) is used as the absorbing oil.

上記の軽油回収プロセスでは、水蒸気蒸留塔で大量の水蒸気を消費し、また吸収油を吸収塔と水蒸気蒸留塔の間を循環させる電力を消費するので、それら消費量を節減するように運転することが望まれている。水蒸気蒸留塔での水蒸気消費量並びに吸収油の循環電力を低減させる最も簡単な方法は循環量を減少させることである。そのためには、吸収塔に導かれる吸収油温度を低下させ単位吸収油量に吸収させる粗軽油分の量を上げることによって、吸収塔の塔頂から流出するコークス炉ガス(または熱分解炉ガス)中の粗軽油分が許容限度を超えない範囲で、水蒸気蒸留塔から吸収塔に循環される吸収油量を減少させればよい。しかしながら、吸収塔に導かれる吸収油温度を低下させていくと、吸収油の冷却器内及び吸収油温度の低い配管や装置内で吸収油成分の析出が起こり、冷却能力の低下や通液・通ガス抵抗の増加を招く。析出が著しい場合には冷却器や配管・装置の閉塞にもつながる。   In the above light oil recovery process, a large amount of water vapor is consumed in the steam distillation column, and power is consumed to circulate the absorption oil between the absorption tower and the steam distillation column. Is desired. The simplest method for reducing the steam consumption in the steam distillation column and the circulating power of the absorption oil is to reduce the circulation rate. For this purpose, coke oven gas (or pyrolysis furnace gas) flowing out from the top of the absorption tower is reduced by lowering the temperature of the absorption oil introduced to the absorption tower and increasing the amount of crude light oil absorbed into the unit absorption oil amount. What is necessary is just to reduce the amount of absorption oil circulated from the steam distillation tower to the absorption tower within a range where the crude light oil content does not exceed the allowable limit. However, if the temperature of the absorption oil led to the absorption tower is lowered, the absorption oil component is precipitated in the absorption oil cooler and in the piping and equipment having a low absorption oil temperature. Increases gas flow resistance. If the precipitation is significant, it can lead to blockage of the cooler, piping and equipment.

軽油回収装置内を循環する吸収油の低沸点成分は、軽油回収装置内を循環する内に水蒸気蒸留塔及び吸収塔から排出されるので、吸収油の高沸点成分の比率が高くなる。この高沸点成分の比率の増加を押さえるために、一般には軽油回収装置内に水蒸気蒸留塔を設け、水蒸気蒸留によって高沸点成分の比率を高くした吸収油を排出する方法が採られている。この循環する吸収油の性状は、物理的な指標である曇り点や比重などで管理されるが、吸収油成分の析出温度は曇り点や比重とは明確な関係がなく、定性的な管理にならざるを得ない。万一、軽油回収装置内で吸収油の成分の析出が発生した場合には、冷却能力の低下や通液・通ガス抵抗の増加を招き、コークス炉ガス(または熱分解炉ガス)中の粗軽油分の許容限度の維持やコークス炉ガス(または熱分解炉ガス)の所定量の処理が難しくなり、その装置を速やかに洗浄または掃除することが必要となってくる。このため通常は、
曇り点や比重を目安にして、吸収油温度は経験的に高く設定され、析出開始温度より高い分だけ過剰な量の吸収油が循環されていた。さらに、場合によっては、軽油回収装置内を循環する吸収油を過剰に抜き出し、曇り点の低いまたは比重の軽い吸収油を補給するなどの過度の入れ替えも行われていた。
特開平3−192192号公報 図1 芳香族及びタール工業ハンドブック(第3版)平成12年3月印刷・発行(発行人:縄尾信一)P68−69
Since the low boiling point component of the absorption oil circulating in the light oil recovery device is discharged from the steam distillation tower and the absorption tower while circulating in the light oil recovery device, the ratio of the high boiling point component of the absorption oil becomes high. In order to suppress the increase in the ratio of the high-boiling components, a method is generally employed in which a steam distillation tower is provided in the light oil recovery device, and the absorbing oil having a high ratio of the high-boiling components is discharged by steam distillation. The properties of this circulating absorbent oil are managed by the cloudiness point and specific gravity, which are physical indicators, but the precipitation temperature of the absorbent oil component has no clear relationship with the cloud point and specific gravity, and can be qualitatively managed. I have to be. In the unlikely event that precipitation of absorbed oil components occurs in the diesel oil recovery unit, it will lead to a decrease in cooling capacity and an increase in the flow and gas flow resistance, resulting in coarse coke oven gas (or pyrolysis furnace gas). It becomes difficult to maintain the allowable limit of light oil and to treat a predetermined amount of coke oven gas (or pyrolysis oven gas), and it is necessary to quickly clean or clean the apparatus. For this reason,
Using the cloud point and specific gravity as a guideline, the absorption oil temperature was set empirically high, and an excessive amount of absorption oil was circulated by an amount higher than the precipitation start temperature. Further, depending on the case, excessive replacement such as excessive extraction of absorption oil circulating in the light oil recovery device and supply of absorption oil having a low cloud point or light specific gravity has been performed.
Japanese Patent Laid-Open No. 3-192192 FIG. Aromatic and Tar Industrial Handbook (Third Edition) Printed and published in March 2000 (Issue: Shinichi Nawao) P68-69

水蒸気、燃料、電力の消費を抑制できるガス中の粗軽油分の回収方法及び/又は粗軽油成分の回収率をアップできる粗軽油分の回収方法が求められていた。   There has been a demand for a method for recovering crude light oil in gas and / or a method for recovering crude light oil that can increase the recovery rate of crude light oil components that can suppress consumption of water vapor, fuel, and electric power.

上記課題を解決すべく、鋭意検討した結果、本発明者等は、吸収油温度と粗軽油成分の回収率の関係に着目し、本発明を完成するに至った。即ち本発明の要旨は、コークス炉ガス又は熱分解炉ガスを吸収塔に供給し、ガスと吸収油を接触させてガス中の粗軽油成分を吸収油に吸収させ、次いで粗軽油成分を吸収させた吸収油を水蒸気蒸留塔に供給して水蒸気蒸留し、塔頂から粗軽油成分及び水を留出させ、塔底から吸収油を回収し、該吸収油を吸収塔へ循環させるガス中の粗軽油成分の回収方法において、(1−1)吸収油の循環する各部位における吸収油の組成を計算して求めるか(1−2)吸収油の循環する各部位における吸収油の組成を分析して求めるかし、(2)該組成から吸収油の析出開始温度を算出し、(3−1)吸収油の循環する各部位の運転条件を該部位における吸収油の析出開始温度以上に設定するか(3−2)吸収油の析出開始温度を下げるように吸収塔に供給する吸収油の組成を変えることを特徴とする粗軽油成分の回収方法に存する。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have focused on the relationship between the absorption oil temperature and the recovery rate of the crude light oil component, and have completed the present invention. That is, the gist of the present invention is to supply coke oven gas or pyrolysis furnace gas to the absorption tower, bring the gas and absorption oil into contact with each other, absorb the crude light oil component in the gas into the absorption oil, and then absorb the crude light oil component. The obtained absorption oil is supplied to a steam distillation tower and subjected to steam distillation. The crude light oil component and water are distilled from the top of the tower, the absorption oil is recovered from the bottom of the tower, and the crude oil in the gas circulating to the absorption tower is recovered. In the method for recovering light oil components, (1-1) calculating the composition of the absorbing oil in each part where the absorbing oil circulates or (1-2) analyzing the composition of the absorbing oil in each part where the absorbing oil circulates (2) Calculate the absorption starting temperature of the absorbing oil from the composition, and (3-1) set the operating condition of each part where the absorbing oil circulates to be equal to or higher than the starting temperature of the absorbing oil at the part. (3-2) Use the absorption tower to lower the oil precipitation start temperature. Changing the composition of the absorption oil resides in a method for recovering crude light oil component, wherein.

本発明により、水蒸気、燃料、電力の消費を抑制できるガス中の粗軽油分の回収方法及び/又は粗軽油成分の回収率をアップできる粗軽油分の回収方法を提供することができる。   ADVANTAGE OF THE INVENTION By this invention, the collection | recovery method of the crude light oil content in the gas which can suppress consumption of water vapor | steam, fuel, and electric power and / or the recovery method of the crude light oil component which can improve the recovery rate of a crude light oil component can be provided.

本発明の粗軽油成分の回収方法は、コークス炉ガス又は熱分解炉ガスを吸収塔に供給し、ガスと吸収油を接触させてガス中の粗軽油成分を吸収油に吸収させ、次いで粗軽油成分を吸収させた吸収油を水蒸気蒸留塔に供給して水蒸気蒸留し、塔頂から粗軽油成分及び水を留出させ、塔底から吸収油を回収し、該吸収油を吸収塔へ循環させるガス中の粗軽油成分の回収方法において、(1−1)吸収油の循環する各部位における吸収油の組成を計算して求めるか(1−2)吸収油の循環する各部位における吸収油の組成を分析して求めるかし、(2)該組成から吸収油の析出開始温度を算出し、(3−1)吸収油の循環する各部位の運転条件を該部位における吸収油の析出開始温度以上に設定するか(3−2)吸収油の析出開始温度を下げるように吸収塔に供給する吸収油の組成を変えることを特徴とする。   The method for recovering crude light oil component of the present invention is to supply coke oven gas or pyrolysis furnace gas to an absorption tower, bring the gas and absorption oil into contact with each other, and absorb the crude light oil component in the gas into the absorption oil, and then the crude light oil oil The absorption oil having absorbed components is supplied to a steam distillation tower and subjected to steam distillation. The crude light oil component and water are distilled from the top of the tower, the absorption oil is recovered from the bottom of the tower, and the absorption oil is circulated to the absorption tower. In the method for recovering crude light oil components in gas, (1-1) calculating the composition of the absorption oil in each part where the absorption oil circulates or (1-2) the absorption oil in each part where the absorption oil circulates (2) Calculate the absorption starting temperature of the absorbing oil from the composition, and (3-1) determine the operating condition of each site where the absorbing oil circulates, and the starting temperature of the absorbing oil at the site. (3-2) Decrease absorption oil precipitation start temperature Characterized in changing the composition of the absorbing fluid supplied to the absorption tower.

例えば、本発明におけるコークス炉ガスは、石炭を600℃以上の温度で加熱乾留してコークスを製造する際に発生するガスで、一般的な組成として、水素10〜70%、メタン25〜70%、エチレン等の炭化水素1〜15%、一酸化炭素4〜9%、二酸化炭素1〜6%、窒素1〜13%、酸素0〜0.5%、硫化水素等の硫黄化合物0.3〜1.5%、アンモニア等の窒素化合物0.3〜1.8%、ベンゾール類0.1〜1.8%、およびその他の石炭由来の微量成分を含んでいる。加熱乾留温度が800℃以上になると、水素の発生および炭化水素の分解が盛んになるため、例えば、石炭の加熱乾留温度を1000
℃としたときのコークス炉ガスの組成は、水素45〜70%、メタン25〜35%、エチレン等の炭化水素1〜5%等と、上記の一般的な組成の中で水素は高濃度となり、メタンやエチレン等の炭化水素は低濃度になる。通常、コークス炉ガスを燃料ガスとして使う場合は、上記の一般的な成分のうち硫化水素等の硫黄化合物、アンモニア等の窒素化合物、及びベンゾール類を低減させるための精製処理を行い、これを水素含有ガスとして使用する。なお、通常精製処理を行った後の各成分の濃度は、硫化水素等の硫黄化合物0.001〜0.2%、アンモニア等の窒素化合物0.01〜0.2%、ベンゾール類0.02〜0.3%に低減され、これら以外の成分の濃度は精製処理前後でほとんど変化しない。
For example, the coke oven gas in the present invention is a gas generated when coke is produced by heating and distilling coal at a temperature of 600 ° C. or higher. As a general composition, hydrogen is 10 to 70%, methane is 25 to 70%. , Hydrocarbons such as ethylene 1-15%, carbon monoxide 4-9%, carbon dioxide 1-6%, nitrogen 1-13%, oxygen 0-0.5%, sulfur compounds such as hydrogen sulfide 0.3- 1.5%, nitrogen compounds such as ammonia 0.3 to 1.8%, benzoles 0.1 to 1.8%, and other trace components derived from coal. When the heating carbonization temperature becomes 800 ° C. or higher, hydrogen generation and hydrocarbon decomposition become active.
The composition of the coke oven gas when the temperature is set to 45 ° C. is 45 to 70% hydrogen, 25 to 35% methane, 1 to 5% hydrocarbon such as ethylene, etc., and hydrogen has a high concentration in the above general composition. Hydrocarbons such as methane and ethylene have low concentrations. Normally, when coke oven gas is used as fuel gas, purification treatment is performed to reduce sulfur compounds such as hydrogen sulfide, nitrogen compounds such as ammonia, and benzoles among the above general components, Used as contained gas. In addition, the density | concentration of each component after performing a normal refinement | purification process is 0.001-0.2% of sulfur compounds, such as hydrogen sulfide, 0.01-0.2% of nitrogen compounds, such as ammonia, and 0.02 of benzoles. The concentration of components other than these is hardly changed before and after the purification treatment.

また、本発明における熱分解炉ガスは、石炭熱分解ガスを例に挙げると、平均粒径40ミクロン程度に微粉砕された石炭を600℃以上の温度で圧力3atm、反応時間数秒で急
速に分解して得られる熱分解ガスの組成は、水素1〜2%、一酸化炭素12〜20%、二酸化炭素7〜11%、メタン9〜20%、エチレン、エタン、プロパン、ブタン等のC2
−C3成分が2〜6%、ベンゾール類2〜5%、残り窒素、その他硫化水素等の硫黄化合
物やアンモニア等の窒素化合物及び石炭由来の微量成分を含んでいる。
In addition, as an example of coal pyrolysis gas in the present invention, coal pulverized to an average particle size of about 40 microns is rapidly decomposed at a temperature of 600 ° C. or higher, a pressure of 3 atm, and a reaction time of several seconds. The composition of the pyrolysis gas thus obtained is C2 such as hydrogen 1-2%, carbon monoxide 12-20%, carbon dioxide 7-11%, methane 9-20%, ethylene, ethane, propane, butane and the like.
-C3 component contains 2 to 6%, benzoles 2 to 5%, remaining nitrogen, other sulfur compounds such as hydrogen sulfide, nitrogen compounds such as ammonia, and trace components derived from coal.

一般に熱分解ガスの組成は高温ではメタンが増加し、C2−C3成分が減少する。
本発明の粗軽油成分の回収プロセスの一例を図1に示す。また、本発明の粗軽油成分の回収方法における制御方法のフロー図を図2に示す。
コークス炉ガス(COG)A1(BTX30〜35g/Nm3)を例に挙げて説明すると、コークス炉ガス(COG)A1はファイナルクーラー1で20〜40℃に冷却され、次いでベ
ンゼンスクラバー(吸収塔2)に送られ、上部より装入された吸収油に向流接触させて粗軽油分を物理的に吸収させ、精製ガスA2(BTX2〜3g/Nm3)としてコークス炉の
乾留用の熱源や外販に供される。粗軽油分を吸収した吸収油C(1〜3%前後のBTXを含有:含ベン油)は、熱交7、9を経て脱水塔3に送られ、脱水塔塔底より脱水された吸収油が加熱炉4を経て昇温後ストリッパー(水蒸気蒸留塔5)に入り、加熱水蒸気が吹き込まれて粗軽油分が除去される。吸収油は塔底(塔底温度約180℃)から抜き出され、熱交9及びオイルクーラー10にて30〜33℃に冷却された後、再生吸収油(脱ベン油D)として再び吸収塔2に循環使用される。ストリッパー(水蒸気蒸留塔5)の塔頂(圧
力1kg/cm2.G、温度100℃前後)から留出粗軽油と水蒸気が抜き出され、熱交7及びコ
ンデンサー8にて冷却された後、粗軽油は水と比重差で分離され回収される。ストリッパ−(水蒸気蒸留塔5)塔底から抜き出した吸収油は、一部脱ピッチ塔6に送られ、加熱水蒸気が吹き込まれてピッチが分離され系外に抜き出され、吸収油の重質化を防止する。このプロセスでオイルクーラー10で循環油の析出があれば、クーラー出口吸収油温度を析出温度より上げる操作(3−1)を実施し、析出による閉塞を防止する。温度を上げると軽油分の吸収効率が低下する場合があるので、運転条件を変更して吸収油組成を変えて析出温度自体を変える(3−2)ことで対応してもよい。吸収油組成は分析(1−2)あるいは計算(1−1)で求め析出開始温度を求めることができる。(2)
本発明では、吸収油の組成と吸収油が保持される温度からその温度での析出物の量と組成を推定する。吸収油は多くの成分で構成され、一般には10〜30成分で表されるが、この吸収油を一定の温度に保持し、この吸収油の組成及び固体(析出物)と液体が平衡に達した時の固体と液体の組成を求め、吸収油の組成と吸収油の温度から析出量と析出物の組成に関する推定式を導き出す。固体(析出物)と液体が平衡に達するまでの一定温度での保持時間は、吸収油を構成する成分数及びその組成によっても異なり、1時間以上、好ましくは200時間以上が良い。吸収油の温度を低下させていき、析出が始まる温度が析出開始温度である。一般に析出開始温度は吸収油を構成する各成分の単体での固化温度を吸収油の組成で加重平均した固化温度より低くなる。例えば、吸収油組成の各成分単体の固化温度を加重平均して求めた固化温度が82℃の場合でも、実際の析出開始温度は7℃となる。
In general, the composition of the pyrolysis gas is such that methane increases and C2-C3 components decrease at high temperatures.
An example of the recovery process of the crude light oil component of the present invention is shown in FIG. Moreover, the flowchart of the control method in the collection | recovery method of the crude light oil component of this invention is shown in FIG.
The coke oven gas (COG) A1 (BTX 30 to 35 g / Nm 3 ) will be described as an example. ) to be sent, physically absorb the crude gas oil fraction by countercurrent contact in absorption oil charged from the upper heat source and external sales for dry distillation of coke oven as the purified gas A2 (BTX2~3g / Nm 3) To be served. Absorbing oil C (containing about 1 to 3% of BTX: containing oil) that has absorbed the crude light oil is sent to dehydrating tower 3 through heat exchangers 7 and 9 and dehydrated from the bottom of the dehydrating tower. Enters the stripper (steam distillation tower 5) after heating through the heating furnace 4, and heated steam is blown to remove the crude light oil. Absorbed oil is extracted from the bottom of the tower (tower temperature of about 180 ° C.), cooled to 30 to 33 ° C. with heat exchanger 9 and oil cooler 10, and then reabsorbed as regenerated absorbed oil (debened oil D). 2 is recycled. Distilled crude light oil and water vapor are extracted from the top of the stripper (steam distillation column 5) (pressure 1 kg / cm 2 .G, temperature around 100 ° C.), cooled in the heat exchanger 7 and condenser 8, Light oil is separated and recovered from water with a specific gravity difference. Stripper (steam distillation tower 5) Absorbed oil extracted from the bottom of the tower is partially sent to the depitch tower 6, heated steam is blown into the pitch, the pitch is separated and extracted outside the system, and the absorbed oil becomes heavier. To prevent. In this process, if circulating oil is deposited in the oil cooler 10, an operation (3-1) of raising the cooler outlet absorption oil temperature from the deposition temperature is performed to prevent clogging due to deposition. When the temperature is raised, the absorption efficiency of the light oil may be lowered. Therefore, the operation condition may be changed to change the absorption oil composition to change the precipitation temperature itself (3-2). The absorption oil composition can be determined by analysis (1-2) or calculation (1-1) to determine the precipitation start temperature. (2)
In the present invention, the amount and composition of precipitates at the temperature are estimated from the composition of the absorbing oil and the temperature at which the absorbing oil is retained. Absorbing oil is composed of many components and is generally represented by 10 to 30 components. The absorbing oil is kept at a certain temperature, and the composition of the absorbing oil and the solid (precipitate) and liquid reach equilibrium. The composition of the solid and the liquid is obtained, and an estimation formula for the amount of precipitation and the composition of the precipitate is derived from the composition of the absorbing oil and the temperature of the absorbing oil. The holding time at a constant temperature until the solid (precipitate) and the liquid reach equilibrium varies depending on the number of components constituting the absorbent oil and the composition thereof, and is 1 hour or longer, preferably 200 hours or longer. The temperature at which the temperature of the absorbing oil is lowered and precipitation starts is the precipitation start temperature. In general, the precipitation start temperature is lower than the solidification temperature obtained by weighted averaging the solidification temperature of each component constituting the absorption oil by the composition of the absorption oil. For example, even when the solidification temperature obtained by weighted averaging the solidification temperatures of each component of the absorbent oil composition is 82 ° C., the actual precipitation start temperature is 7 ° C.

本発明における吸収油としては、ディーゼル油、コールタール蒸留分留油、B重油等が挙げられる。コークスプラントから入手できるのと入手のし易さの観点から、コールタール蒸留分留油が好ましい。コールタール蒸留分留油とは、コールタールを蒸留して得られる油であって、コールタールの蒸留の際の蒸留塔ボトム以外から得られる油である。具体的には、カルボル油、ナフタリン油、アントラセン油、クレオソート油、洗浄油等が挙げられ、融点の高さ、流動性の高さ及び析出点の低さの観点から、洗浄油が最も好ましい。   Examples of the absorbing oil in the present invention include diesel oil, coal tar distillation fraction oil, B heavy oil and the like. From the viewpoint of availability from a coke plant and ease of availability, coal tar distillation fraction oil is preferred. The coal tar distillation fraction oil is an oil obtained by distilling coal tar and obtained from other than the bottom of the distillation column at the time of distillation of coal tar. Specific examples include carbol oil, naphthalene oil, anthracene oil, creosote oil, washing oil and the like, and washing oil is most preferable from the viewpoint of high melting point, high fluidity and low precipitation point. .

本発明における粗軽油成分とは、ベンゼン、トルエン、キシレンを主成分とし、ナフタリン、チオナフトール、インデン、スチレン、トリメチルベンゼン等を含有する。
ガス中の粗軽油成分の回収率は、吸収塔のガス圧力と吸収油循環量が一定(通常は一定)の時、吸収油温度が低下すると回収率はアップする。逆に、吸収油温度が高くなると回収率は低下する(図−3)。吸収塔のガス圧力が高い場合は、低い場合に較べて吸収油への溶解効率が高くなり粗軽油成分の回収率はアップする。また循環量が増加すれば液/ガ
ス比が高くなり粗軽油成分の回収率はアップする。
The crude light oil component in the present invention is mainly composed of benzene, toluene, xylene and contains naphthalene, thionaphthol, indene, styrene, trimethylbenzene and the like.
The recovery rate of the crude light oil component in the gas increases when the absorption oil temperature decreases when the gas pressure in the absorption tower and the circulating amount of the absorption oil are constant (usually constant). Conversely, the recovery rate decreases as the absorption oil temperature increases (Fig. 3). When the gas pressure in the absorption tower is high, the dissolution efficiency in the absorption oil is higher than when the gas pressure is low, and the recovery rate of the crude light oil component is increased. If the circulation rate increases, the liquid / gas ratio increases and the recovery rate of crude light oil components increases.

本発明の回収プロセス内を循環している吸収油の組成は、(1−1)吸収油の循環する各部位における吸収油の組成を計算して求めるか(1−2)吸収油の循環する各部位における吸収油の組成を分析して求めるかすればよいが、吸収油の組成は、コークス炉ガス(または石炭熱分解ガス)の組成、軽油回収装置内に補給する吸収油の組成と補給量、軽油回収装置内から排出する吸収油の組成と量、軽油回収装置内で消費するエネルギーの質と量によって変化し、それに伴い吸収油成分の析出開始温度も変化する。実験的な測定により吸収油組成と析出開始温度の関係図を求めるには、吸収油の成分数が多く、吸収油組成は幾通りも存在することから、(1−1)吸収油の循環する各部位における吸収油の組成を計算して求めることが好ましい。   The composition of the absorbing oil circulating in the recovery process of the present invention can be obtained by (1-1) calculating the composition of the absorbing oil at each part where the absorbing oil circulates or (1-2) circulating the absorbing oil. The composition of the absorption oil may be determined by analyzing the composition of the absorption oil at each site. Depending on the composition and amount of absorbed oil discharged from the light oil recovery device and the quality and amount of energy consumed in the light oil recovery device, the precipitation start temperature of the absorbed oil component also changes. In order to obtain a relationship diagram between the absorption oil composition and the precipitation start temperature by experimental measurement, since there are many components of the absorption oil and there are various absorption oil compositions, (1-1) absorption oil circulation It is preferable to calculate and determine the composition of the absorbing oil at each site.

吸収油の循環する各部位における吸収油の組成を計算して求める方法としては、例えばプロセスシミュレータ(PROIIやASPEN等)を用いた軽油回収全体の静的シミュレーションモデルを作り、計算すればよい。例えば、このモデルを用いて軽油回収蒸留搭の塔頂温度を変えた時に各部位の吸収油組成がどう変化するか計算した。精度の良いモデルを作るには厳密なマスバランスの採取と適正な物性推算式の使用が重要である。   As a method for calculating and obtaining the composition of the absorbing oil in each part where the absorbing oil circulates, for example, a static simulation model of the entire diesel oil recovery using a process simulator (PROII, ASPEN, etc.) may be made and calculated. For example, this model was used to calculate how the absorption oil composition at each site changes when the tower top temperature of the light oil recovery distillation column is changed. In order to create a highly accurate model, it is important to collect strict mass balance and use appropriate physical property estimation formulas.

軽油回収装置内での吸収油成分の析出の防止は、吸収油の組成から析出開始温度を推定し、軽油回収装置内の各機器での温度を析出開始温度以上に保持すれば可能となる。さらに効率的に防止するには、軽油回収装置内での各設備の運転条件を変えることで、吸収油組成を変化させ析出開始温度を低下させることが好ましい。
吸収油の析出開始温度を低下させるよう吸収油組成を変化させる具体的方法としては、例えば下記の方法が挙げられる。
(1)水蒸気蒸留塔の塔頂温度を下げる。
(2)脱ピッチ塔装入量(抜き出し量)を増加する。
(3)脱ピッチ塔底温度を下げる。
(4)系内に補給する吸収油の組成を変える。
(5)系内に補給する吸収油の量を増加させ、その分系内の油を抜く。
Prevention of precipitation of the absorption oil component in the light oil recovery apparatus can be achieved by estimating the precipitation start temperature from the composition of the absorption oil and maintaining the temperature at each device in the light oil recovery apparatus at or above the precipitation start temperature. In order to prevent it more efficiently, it is preferable to change the absorption oil composition to lower the precipitation start temperature by changing the operating conditions of each facility in the light oil recovery apparatus.
As a specific method of changing the absorption oil composition so as to lower the precipitation start temperature of the absorption oil, for example, the following method may be mentioned.
(1) Lower the top temperature of the steam distillation column.
(2) Increase the depitch tower charge (extraction amount).
(3) Lower the depitch tower bottom temperature.
(4) Change the composition of the oil to be replenished in the system.
(5) Increase the amount of oil to be replenished in the system, and drain the oil in that system.

上記(1)の場合、水蒸気蒸留塔の塔頂温度を下げることにより粗軽油の方に抜けていた
ある留分量を抑制でき、系内に循環する吸収油のある留分濃度が増加するので析出温度を低下できる。塔頂温度を下げるには、例えば、水蒸気蒸留塔の粗軽油の還流比を上げればよい。
上記(2)の場合は、脱ピッチ塔への吸収油の装入量を増加すれば脱ピッチ塔から系外に
抜き出せる吸収ピッチ量が多くなり、系内に循環する吸収油のある留分濃度が増加するので析出温度を低下できる。
In the case of (1) above, by reducing the temperature at the top of the steam distillation column, it is possible to suppress the amount of a fraction that has been lost to the crude light oil, and the concentration of the fraction of absorbed oil circulating in the system increases, so precipitation occurs. The temperature can be lowered. In order to lower the tower top temperature, for example, the reflux ratio of the crude light oil in the steam distillation tower may be increased.
In the case of (2) above, if the amount of absorption oil charged into the pitch removal tower is increased, the amount of absorption pitch that can be extracted out of the system from the pitch removal tower increases, and there is a fraction with absorption oil circulating in the system. Since the concentration increases, the deposition temperature can be lowered.

上記(3)の場合は、脱ピッチ塔への吸収油の装入量が一定の場合に、脱ピッチ塔の塔底
温度を低下させることで塔頂温度も低くなり、水蒸気蒸留塔へ回収される高沸点成分(析出温度を高める成分)が少なくなり、系内に循環する吸収油のある留分濃度が増加するので析出温度を低下できる。
上記(4)の場合は、吸収油の析出開始温度を低下させるよう吸収油の組成を変えればよ
い。例えば、系内に補給する吸収油量を変化することなくコールタール蒸留塔の運転条件を変えて蒸留塔から抜き出す吸収油の組成中のある留分を高くすれば、系内に補給することにより系内に循環する吸収油のある留分が増加するので析出温度を低下できる。
In the case of (3) above, when the amount of absorbed oil to the pitch removal tower is constant, the tower top temperature is lowered by lowering the tower bottom temperature of the pitch removal tower, and recovered to the steam distillation tower. High boiling point components (components that increase the precipitation temperature) are reduced, and the concentration of a fraction of the absorbing oil circulating in the system is increased, so that the precipitation temperature can be lowered.
In the case of (4) above, the composition of the absorbent oil may be changed so as to lower the precipitation start temperature of the absorbent oil. For example, by changing the operating conditions of the coal tar distillation column without changing the amount of absorbed oil to be replenished in the system and increasing the fraction in the composition of the absorbed oil to be extracted from the distillation column, Since the fraction with the absorbed oil circulating in the system increases, the precipitation temperature can be lowered.

上記(5)の場合は、系内に補給する吸収油の組成を変化することなく、補給量を増加す
ることで系内に循環する吸収油のある留分が増加するので析出温度を低下できる。
軽油回収装置内ではコークス炉ガス(または石炭分解ガス)と吸収油(液)とを接触させてコークス炉ガス(または石炭分解ガス)中の粗軽油分を吸収油に吸収させ、この吸収油を水蒸気蒸留塔に供給して水蒸気蒸留し、塔頂から粗軽油分及び水を含む蒸気を留出させ、塔底から吸収油を回収して吸収塔に循環し、コークス炉ガス(または熱分解炉ガス)の中の粗軽油分を回収する。コークス炉ガス(または石炭熱分解ガス)の組成の変化、軽油回収装置内に補給する吸収油の組成と補給量の変化、軽油回収装置内から排出する吸収油の組成と量の変化、軽油回収装置内で消費するエネルギーの変化を考慮しながら、コークス炉ガス(または石炭熱分解ガス)と粗軽油をそれぞれ用途に応じた品位に精製する必要がある。一般に吸収油は10〜30の成分で構成されているが、これらの吸収油成分は上記の各変化に応じて軽油回収装置内で変化するため、軽油回収装置内での吸収油成分の析出を効率的に防止するには、軽油回収装置内の各設備での吸収油の組成を推定しさらに、その組成から析出開始温度を推定することが必要になる。
In the case of (5) above, the fraction of absorption oil circulating in the system increases by increasing the replenishment amount without changing the composition of the absorption oil replenished in the system, so that the precipitation temperature can be lowered. .
In the light oil recovery unit, coke oven gas (or coal cracking gas) and absorbing oil (liquid) are brought into contact with each other to absorb the crude light oil in the coke oven gas (or coal cracking gas) into the absorbing oil. Steam supplied to the steam distillation tower is steam distilled, and steam containing crude light oil and water is distilled from the top of the tower, and the absorbed oil is recovered from the bottom of the tower and circulated to the absorption tower, coke oven gas (or pyrolysis furnace) The crude light oil in the gas is recovered. Change in composition of coke oven gas (or coal pyrolysis gas), change in composition and amount of absorption oil replenished in light oil recovery device, change in composition and amount of absorption oil discharged from light oil recovery device, recovery of light oil It is necessary to refine the coke oven gas (or coal pyrolysis gas) and crude light oil to a quality suitable for each application, while taking into account changes in energy consumed in the equipment. In general, the absorption oil is composed of 10 to 30 components. However, since these absorption oil components change in the light oil recovery device in accordance with each change described above, the absorption oil components are precipitated in the light oil recovery device. In order to prevent it efficiently, it is necessary to estimate the composition of the absorbed oil in each facility in the light oil recovery apparatus and to estimate the precipitation start temperature from the composition.

本発明の実施態様の1例を説明する。図4は吸収油成分の組成(組成分析値)から析出開始温度の実験値と計算値の1例である。図中の計算値は、式1を用いた値である。これにより、吸収油組成を測定する(1−2)ことで析出開始温度、析出量が算出できる(2)ことがわかる。   An example of an embodiment of the present invention will be described. FIG. 4 is an example of the experimental value and calculated value of the deposition start temperature from the composition of the absorbing oil component (composition analysis value). The calculated values in the figure are values using Equation 1. Thereby, it turns out that precipitation start temperature and precipitation amount can be calculated by measuring an absorption oil composition (1-2) (2).

Figure 2005194410
Figure 2005194410

ここで、hfus△:i成分の融解温度における融解のエンタルピー
KiSL :i成分のK因子
R :気体定数
T :温度(析出し始める温度が析出開始温度)
Tm :i成分の融解温度
XiS :固相中のi成分の組成
XiL :液相中のi成分の組成
γiS :固相中のi成分の活量係数
γiL :液相中のi成分の活量係数
なお、(1−2)吸収油の循環する各部位における吸収油の組成を分析して求める場合は、例えば、充填カラム:(充填剤:ポリエチレングリコール(PEG20M))、検出器:水素炎イオン化検出器(FID)を備えたガスクロを用い予め各成分の検量線を作成し
ておき、次に試料として吸収油を溶剤(テトラヒドロフラン(THF))で重量比で5倍希釈し、シリンジで一定容量(重量秤量)をガスクロに注入し得られた各成分のピーク面積から、検量線より各成分の濃度を算出すればよい(絶対検量線法)。
Here, h fus Δ: melting enthalpy at the melting temperature of the i component Ki SL : K factor of the i component R: gas constant T: temperature (the temperature at which precipitation begins is the temperature at which precipitation starts)
Tm: melting temperature of i component Xi S : composition of i component in solid phase Xi L : composition of i component in liquid phase γi S : activity coefficient of i component in solid phase γi L : i in liquid phase In addition, (1-2) When analyzing and calculating | requiring the composition of the absorption oil in each site | part through which absorption oil circulates, for example, packed column: (filler: polyethyleneglycol (PEG20M)), detector : Prepare a calibration curve for each component in advance using a gas chromatograph equipped with a flame ionization detector (FID), then dilute the absorption oil as a sample 5 times by weight with a solvent (tetrahydrofuran (THF)), What is necessary is just to calculate the density | concentration of each component from a calibration curve from the peak area of each component obtained by inject | pouring fixed volume (gravimetric weighing) into a gas chromatograph with a syringe (absolute calibration curve method).

以下実施例により本発明をより詳細に説明する。
図1に示す装置を用い、以下の実施例を行った。
[計算値の求め方]
吸収油の循環する各部位における吸収油の組成を計算して求める方法としては、プロセスシミュレータ(PROII)を用いた軽油回収全体の静的シミュレーションモデルを作り、このモデルを用いて軽油回収蒸留塔の塔頂温度や脱ピッチ塔の抜き出し量を変えた時に各部位の吸収油組成がどう変化するか推定した。
Hereinafter, the present invention will be described in more detail with reference to examples.
The following examples were carried out using the apparatus shown in FIG.
[Calculating calculated values]
As a method of calculating and obtaining the composition of the absorbing oil at each part where the absorbing oil circulates, a static simulation model of the entire diesel oil recovery using a process simulator (PROII) is made, and this model is used to It was estimated how the absorption oil composition of each part changes when the tower top temperature and the amount of extraction from the pitch removal tower are changed.

[分析値の求め方]
充填カラム:(充填剤:ポリエチレングリコール(PEG20M))、検出器:水素炎イオン化検出器(FID)を備えたガスクロを用い予め各成分の検量線を作成しておき、次に試料として吸収油を溶剤(テトラヒドロフラン(THF))で重量比で5倍希釈し、シリンジで一定容量(重量秤量)をガスクロに注入し得られた各成分のピーク面積から、検量線より各成分の濃度を算出した(絶対検量線法)。
[How to obtain analytical values]
Packing column: (Packing agent: Polyethylene glycol (PEG20M)), Detector: Gas chromatograph equipped with a flame ionization detector (FID) is used to prepare a calibration curve for each component in advance. The concentration of each component was calculated from a calibration curve from the peak area of each component obtained by diluting 5 times by weight with a solvent (tetrahydrofuran (THF)) and injecting a constant volume (gravimetric weight) into the gas chromatograph with a syringe ( Absolute calibration curve method).

実施例1
先ず、図1の装置を用いて表1に示した対策前の運転条件で吸収塔前後のCOG組成分析や各部位の吸収油組成をガスクロを用いて分析し、運転条件と合わせてマスバランスを採取した。このマスバランスをもとにプロセスシミュレータ(PROII)を用いた軽油
回収全体のプロセスシミュレーションモデルを作った。
Example 1
First, using the apparatus shown in FIG. 1, the COG composition analysis before and after the absorption tower in the operating conditions before countermeasures shown in Table 1 and the oil composition of each part are analyzed using a gas chromatograph, and the mass balance is adjusted together with the operating conditions. Collected. Based on this mass balance, a process simulation model of the entire diesel oil recovery using a process simulator (PROII) was created.

このモデルによって、各装置の運転条件を変更させた場合の各部位の吸収油の組成が計算によって推定でき、今回構築した析出開始温度推定式で析出温度を推定できるようになった。今回の実施例として図1の装置を用いたテスト結果とモデルにより推定(1−1)した結果の比較を表1、表2に示した。
表1に示した対策前の運転条件から対策後の運転条件に変更した。 具体的には水蒸気蒸留塔の塔頂温度を塔頂温度を見ながら還流比を変えて103℃から95℃に低下、脱ピッチ搭への吸収油の装入量を1330kg/hrから1990kg/hrに増加、TWOを脱ピッチ塔塔底からのピッチ抜き出し量見合いに補給した。その他、各部位のプロセスの流量、圧力、温度は同一とした。
With this model, the composition of the absorbed oil in each part when the operating conditions of each device were changed can be estimated by calculation, and the precipitation temperature can be estimated by the precipitation start temperature estimation formula constructed this time. Table 1 and Table 2 show a comparison between the test results using the apparatus shown in FIG.
The operating conditions before countermeasures shown in Table 1 were changed to those after countermeasures. Specifically, while changing the reflux ratio while observing the top temperature of the steam distillation column, the reflux ratio is lowered from 103 ° C. to 95 ° C., and the amount of oil absorbed in the depitch tower is reduced from 1330 kg / hr to 1990 kg / hr. The TWO was replenished in proportion to the amount of pitch extracted from the bottom of the de-pitch tower. In addition, the flow rate, pressure, and temperature of the process in each part were the same.

この変更した運転条件の値をモデルに入力し、各部位の平衡での吸収油組成を計算によって推定した。(1−1)
また、オイルク−ラ−出(図1の10)の組成は運転条件変更後、系が安定した時点で循環油をサンプリングしてガスクロで分析を実施して求めた(1−2)。 吸収油の組成のモデルによる計算値(1−1)とガスクロによる分析値(1−2)の比較を表2に示した。得られた吸収油組成から析出開始温度推定式(式1)により析出開始温度を推定した(2) 吸収油のオイルクーラ−での析出を防止するため、オイルク−ラ−出の温度を上げる方法(3−1)もあるが温度を上げると吸収塔での粗軽油分の吸収効率が低下するので今回は運転条件を変えて吸収油の組成を変えて析出開始温度を低下させた。(3−2) その結果、析出開始温度は運転条件を変えることにより計算値で対策前の22℃から13℃に低下した。
The value of the changed operating condition was input to the model, and the absorbed oil composition at the equilibrium of each part was estimated by calculation. (1-1)
Further, the composition of the oil cooler (10 in FIG. 1) was obtained by sampling the circulating oil when the system was stabilized after changing the operating conditions and analyzing it by gas chromatography (1-2). Table 2 shows a comparison between the calculated value (1-1) based on the model of the absorption oil composition and the analytical value (1-2) based on gas chromatography. The precipitation start temperature was estimated from the obtained absorption oil composition by the precipitation start temperature estimation formula (Equation 1). (2) A method of increasing the temperature of the oil cooler in order to prevent the absorption of oil from the oil cooler. Although there is (3-1), since the absorption efficiency of the crude light oil in the absorption tower decreases when the temperature is raised, this time the operating conditions were changed to change the composition of the absorbing oil to lower the precipitation start temperature. (3-2) As a result, the deposition start temperature was reduced from 22 ° C. before the countermeasure to 13 ° C. as a calculated value by changing the operating conditions.

また、吸収油の組成分析値と計算値は対策前、対策後ともに精度よく一致することが確認できた。
比較例1
図1に示す装置を用い、析出対策前の1997年〜1998年の2年間のオイルクーラーでの析出閉塞実績は表3に示すように11月〜6月の8ヵ月平均値で月45回とほぼ毎
日の頻度で起こっていた。この時の平均析出開始温度は22℃であった。(用いた吸収油は実施例1で用いた吸収油と同じ。:表2の対策前の組成。)
実施例2
比較例の装置において、実施例1の対策を行った運転条件で1年間継続した結果、オイルクーラでの析出はなくなった。
Moreover, it was confirmed that the composition analysis value and the calculated value of the absorbed oil were in good agreement before and after the countermeasure.
Comparative Example 1
Using the apparatus shown in FIG. 1, the deposition blockage in the oil cooler for two years from 1997 to 1998 before countermeasures against precipitation was 45 times a month, as shown in Table 3, with an average of 8 months from November to June. It happened almost every day. The average precipitation start temperature at this time was 22 ° C. (The absorption oil used is the same as the absorption oil used in Example 1. The composition before countermeasures in Table 2)
Example 2
In the apparatus of the comparative example, as a result of continuing for one year under the operating condition in which the countermeasure of Example 1 was performed, precipitation in the oil cooler disappeared.

析出防止対策前はオイルクーラ−で閉塞対応として冷却海水を一時停止して吸収油の温度を上げて析出物を溶解していたため吸収油タンクの温度が上昇していた。吸収油組成を変化させて析出開始温度を低下させることでオイルクーラーでの析出による閉塞がなくなり吸収油温度も一定に維持できるようになった。吸収油温度は対策前に比較して34.5℃から32℃と2.5℃低下できたので、吸収塔での粗軽油成分の回収率はアップするが、この実施例は粗軽油分の回収率を変えずに系に循環される吸収油の量を10%低減することができた。これによって、軽油回収塔の蒸気量、加熱炉の燃料に使用しているCOG量、ポンプの電力消費量が約10%程度抑制できた。   Before the prevention of precipitation, the temperature of the absorption oil tank was raised because the cooling seawater was temporarily stopped by an oil cooler and the temperature of the absorption oil was raised to dissolve the precipitate. By changing the absorption oil composition and lowering the precipitation start temperature, there was no blockage due to precipitation in the oil cooler, and the absorption oil temperature could be kept constant. The absorption oil temperature could be reduced from 34.5 ° C to 32 ° C and 2.5 ° C compared to before the countermeasures, so that the recovery rate of crude light oil components in the absorption tower was improved, but this example was The amount of absorbed oil circulated in the system without changing the recovery rate could be reduced by 10%. As a result, the amount of steam in the light oil recovery tower, the amount of COG used as fuel for the heating furnace, and the power consumption of the pump could be suppressed by about 10%.

Figure 2005194410
Figure 2005194410

Figure 2005194410
Figure 2005194410

Figure 2005194410
Figure 2005194410

本発明の粗軽油成分の回収プロセスの一例を示す図である。It is a figure which shows an example of the recovery process of the crude light oil component of this invention. 本発明の粗軽油成分の回収方法における制御方法のフロー図である。It is a flowchart of the control method in the collection | recovery method of the crude light oil component of this invention. 吸収油温度とガス中の粗軽油成分の回収率の関係を示す図である。It is a figure which shows the relationship between the absorption oil temperature and the recovery rate of the crude light oil component in gas. 吸収油の析出開始温度の測定値と組成分析値から計算の推定値の1 例を示す図である。It is a figure which shows an example of the estimated value of calculation from the measured value and the compositional analysis value of the precipitation start temperature of absorption oil.

符号の説明Explanation of symbols

1 ファイナルク−ラ−
2 ベンゼンスクラバ−(吸収塔)
3 脱水塔
4 加熱炉
5 水蒸気蒸留塔
6 脱ピッチ搭
7 V/O熱交
8 コンデンサ−
9 O/O熱交
10 オイルク−ラ−
A1 COG
A2 精製COG
B 吸収油(補給油)
C 吸収油(含ベン油)
D 吸収油(脱ベン油)
E 粗軽油
F 分離水
G 海水
H 蒸気
K 吸収ピッチ
1 Final cooler
2 Benzene scrubber (absorption tower)
3 Dehydration tower
4 Heating furnace
5 Steam distillation tower
6 Depitch tower
7 V / O heat exchange
8 Capacitor
9 O / O heat exchange
10 Oil cooler
A1 COG
A2 Purified COG
B Absorption oil (Replenishment oil)
C Absorbing oil (Ben-containing oil)
D Absorption oil
E Crude light oil F Separated water G Seawater H Steam K Absorption pitch

Claims (4)

コークス炉ガス又は熱分解炉ガスを吸収塔に供給し、ガスと吸収油を接触させてガス中の粗軽油成分を吸収油に吸収させ、次いで粗軽油成分を吸収させた吸収油を水蒸気蒸留塔に供給して水蒸気蒸留し、塔頂から粗軽油成分及び水を留出させ、塔底から吸収油を回収し、該吸収油を吸収塔へ循環させるガス中の粗軽油成分の回収方法において、(1−1)吸収油の循環する各部位における吸収油の組成を計算して求めるか(1−2)吸収油の循環する各部位における吸収油の組成を分析して求めるかし、(2)該組成から吸収油の析出開始温度を算出し、(3−1)吸収油の循環する各部位の運転条件を該部位における吸収油の析出開始温度以上に設定するか(3−2)吸収油の析出開始温度を下げるように吸収塔に供給する吸収油の組成を変えることを特徴とする粗軽油成分の回収方法。 Coke oven gas or pyrolysis furnace gas is supplied to the absorption tower, the gas and absorption oil are brought into contact with each other, the crude light oil component in the gas is absorbed into the absorption oil, and then the absorption oil that has absorbed the crude light oil component is steam distilled. In the method for recovering crude light oil components in the gas, the crude light oil components and water are distilled from the top of the tower, the absorbed oil is recovered from the bottom of the tower, and the absorbed oil is circulated to the absorption tower. (1-1) Whether to calculate and determine the composition of the absorbing oil in each part where the absorbing oil circulates (1-2) Analyzing the composition of the absorbing oil in each part where the absorbing oil circulates (2) ) Calculate the deposition start temperature of the absorbing oil from the composition, and (3-1) whether the operating condition of each part where the absorbing oil circulates is set to be equal to or higher than the deposition start temperature of the absorbing oil in the part (3-2) absorption The composition of the absorption oil to be supplied to the absorption tower so as to lower the oil precipitation start temperature. Method for recovering crude light oil components, characterized in that to obtain. (3−2)の後、(1−1)か(1−2)を行い、次いで(2)、(3−1)か(3−2)を行い、この操作を繰り返す請求項1に記載の回収方法。 The method according to claim 1, wherein after (3-2), (1-1) or (1-2) is performed, and then (2), (3-1) or (3-2) is performed, and this operation is repeated. Recovery method. 吸収油がコールタール蒸留分留油である請求項1又は2に記載の回収方法。 The recovery method according to claim 1 or 2, wherein the absorption oil is a coal tar distillation fraction oil. (a)組成の異なる吸収油の添加、(b)水蒸気蒸留の塔頂温度の下げ、及び/又は(c)重質成分のパージにより吸収油の析出開始温度を下げるように吸収塔に供給する吸収油の組成を変える請求項1〜3のいずれかに記載の回収方法。 (A) Addition of absorption oil having different composition, (b) Decrease in tower top temperature of steam distillation, and / or (c) Supply to absorption tower to lower precipitation start temperature of absorption oil by purging heavy components The recovery method according to claim 1, wherein the composition of the absorbing oil is changed.
JP2004002843A 2004-01-08 2004-01-08 Method for recovering crude light oil in gas Expired - Fee Related JP4200904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002843A JP4200904B2 (en) 2004-01-08 2004-01-08 Method for recovering crude light oil in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002843A JP4200904B2 (en) 2004-01-08 2004-01-08 Method for recovering crude light oil in gas

Publications (2)

Publication Number Publication Date
JP2005194410A true JP2005194410A (en) 2005-07-21
JP4200904B2 JP4200904B2 (en) 2008-12-24

Family

ID=34817911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002843A Expired - Fee Related JP4200904B2 (en) 2004-01-08 2004-01-08 Method for recovering crude light oil in gas

Country Status (1)

Country Link
JP (1) JP4200904B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531903A (en) * 2007-06-29 2010-09-30 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Removal of aromatic hydrocarbons from coke oven gas by absorption
CN103265973A (en) * 2013-05-31 2013-08-28 梁文胜 Method and equipment for producing automotive diesel fuel from medium temperature coal tar light oil as raw material
KR101466495B1 (en) * 2012-06-27 2014-12-02 오씨아이 주식회사 Method for preparing coal pitch having improved property
KR101558928B1 (en) 2013-08-22 2015-10-12 재단법인 포항산업과학연구원 The Coke Dry Quenching using circulating gas controlled the amount of oxidative materials by absorbent and the method thereof
JP2018162425A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Method for recovering crude light oil component in gas
JP2018165342A (en) * 2017-03-28 2018-10-25 三菱ケミカル株式会社 Recovery method for recovering at least one of sulfur compound and nitrogen compound in gas
JP2020533425A (en) * 2017-07-27 2020-11-19 アネロテック・インコーポレイテッドAnellotech,Inc. Efficient recovery method of valuable components from biomass-catalyzed pyrolysis effluent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016017152A (en) 2014-07-01 2017-05-23 Anellotech Inc Improved processes for recovering valuable components from a catalytic fast pyrolysis process.
JP2019111571A (en) * 2017-12-26 2019-07-11 Jfeスチール株式会社 Cold rolling method of ferrite stainless steel strip

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531903A (en) * 2007-06-29 2010-09-30 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Removal of aromatic hydrocarbons from coke oven gas by absorption
KR101542265B1 (en) 2007-06-29 2015-08-06 티센크루프 인더스트리얼 솔루션스 아게 Method of removing aromatic hydrocarbons by absorption from coke-oven gas
KR101466495B1 (en) * 2012-06-27 2014-12-02 오씨아이 주식회사 Method for preparing coal pitch having improved property
CN103265973A (en) * 2013-05-31 2013-08-28 梁文胜 Method and equipment for producing automotive diesel fuel from medium temperature coal tar light oil as raw material
KR101558928B1 (en) 2013-08-22 2015-10-12 재단법인 포항산업과학연구원 The Coke Dry Quenching using circulating gas controlled the amount of oxidative materials by absorbent and the method thereof
JP2018162425A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Method for recovering crude light oil component in gas
JP2018165342A (en) * 2017-03-28 2018-10-25 三菱ケミカル株式会社 Recovery method for recovering at least one of sulfur compound and nitrogen compound in gas
JP2020533425A (en) * 2017-07-27 2020-11-19 アネロテック・インコーポレイテッドAnellotech,Inc. Efficient recovery method of valuable components from biomass-catalyzed pyrolysis effluent
JP7062047B2 (en) 2017-07-27 2022-05-02 アネロテック・インコーポレイテッド Efficient recovery method of valuable components from biomass-catalyzed pyrolysis effluent

Also Published As

Publication number Publication date
JP4200904B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
Wang et al. A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid
Ma et al. Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading
JP4200904B2 (en) Method for recovering crude light oil in gas
CN104160268B (en) Sour gas removal device
Ji et al. Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on Brønsted acid-Lewis base interaction
Baburao et al. Advanced amine process technology operations and results from demonstration facility at EDF Le Havre
Ma et al. CO2 capture using ionic liquid-based hybrid solvents from experiment to process evaluation
JP5762741B2 (en) Removal of aromatic hydrocarbons from coke oven gas by absorption
Li et al. Efficient separation of phenols from coal tar with aqueous solution of amines by liquid-liquid extraction
JP2009057415A (en) Refining method for gas
Fu et al. Effect of water content on the characteristics of CO2 capture processes in absorbents of 2-ethylhexan-1-amine+ diglyme
JP6347359B2 (en) Gas absorption / regeneration device and operation method thereof
Jørsboe et al. Demonstration of water-lean 30 wt% MEA+ 15 wt% MEG with rich solvent recycle for biogas upgrading
BR102019011275A2 (en) SOLVENT SYSTEM FOR CLEANING FIXED BED BALL CATALYST IN SITU
JP6977284B2 (en) How to recover crude gas oil components in gas
Pereira et al. Integrated design of CO2 capture processes from natural gas
JP6880915B2 (en) Method for recovering at least one of sulfur compound and nitrogen compound in gas
CN104080890A (en) Process for contacting one or more contaminated hydrocarbons
JP6672875B2 (en) Recovery method of crude gas oil components in gas
JP4592529B2 (en) Process for producing refined naphthalene absorption oil
Narvaez-Garcia et al. Design of Batch Distillation Columns Using Short‐Cut Method at Constant Reflux
KR100890811B1 (en) Apparatus for cleaning heat exchanger of btx recovery equipment
JP6540457B2 (en) Method of recovering crude gas oil component in gas
JP2005021833A (en) Distillation apparatus and its control method
Li et al. Extractive distillation of tetrahydrofuran–ethanol azeotropic mixture with ionic liquid as extractant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

R151 Written notification of patent or utility model registration

Ref document number: 4200904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees