JP2005193767A - Height controlling device for towing object - Google Patents

Height controlling device for towing object Download PDF

Info

Publication number
JP2005193767A
JP2005193767A JP2004001805A JP2004001805A JP2005193767A JP 2005193767 A JP2005193767 A JP 2005193767A JP 2004001805 A JP2004001805 A JP 2004001805A JP 2004001805 A JP2004001805 A JP 2004001805A JP 2005193767 A JP2005193767 A JP 2005193767A
Authority
JP
Japan
Prior art keywords
towed
depth
towing
calculator
altitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004001805A
Other languages
Japanese (ja)
Other versions
JP4010456B2 (en
Inventor
Shigeru Tsutsui
滋 筒井
Yoshiaki Sueoka
義昭 末岡
Masayuki Nagata
雅之 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIYO DENSHI KOGYO KK
Original Assignee
KAIYO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIYO DENSHI KOGYO KK filed Critical KAIYO DENSHI KOGYO KK
Priority to JP2004001805A priority Critical patent/JP4010456B2/en
Publication of JP2005193767A publication Critical patent/JP2005193767A/en
Application granted granted Critical
Publication of JP4010456B2 publication Critical patent/JP4010456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a height controlling device for towing a towing object for sonic prospecting by a ship. <P>SOLUTION: This height controlling device for a towing object is equipped with a target depth calculator 120, a towing rope hoisting amount calculator 130, and a hoist starting time calculator 140. The target depth calculator calculates the values of height upper and lower limit functions which are obtained by adding upper and lower allowable ranges to seabed topographic data, judges a possibility for the occurrence of an interference by comparing the height upper and lower limit values and the present depth of the towing object, and sets a target depth at the interference time and at the interference point and after when the interference occurs. The towing rope hoisting amount calculator calculates the log speed of the towing object and a towing rope hoisting amount for a depth alteration of the towing object from the target depth, the present depth and towing rope length, referring to towing object response characteristic database. The hoist starting time calculator obtains a towing object response time from the present towing rope length, the log speed of the towing object, and the towing rope hoisting amount referring to the data base regarding the towing object response time, and calculates the hoist starting time by advancing the interference time by the response time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、海底地形を映像化する音波探査用曳航体を、直下水深を音響測定して海底地形データを取得しつつ所定の対地速度で航行する曳航船により曳航する際に、当該曳航体の海底からの高度をある幅の中に保持する技術に関する。ただし、本発明で取り扱う曳航体は、深度制御用の翼角制御装置など特別な装置を有するものではない。なお「深度」とは曳航体の海面からの距離をいい、深度+高度=水深である。   The present invention, when towing a towed object for sound wave exploration that visualizes the seafloor topography with a towed ship that navigates at a predetermined ground speed while acquiring seafloor topographical data by acoustically measuring the water depth directly below, The present invention relates to a technique for maintaining the altitude from the seabed within a certain width. However, the towed body handled in the present invention does not have a special device such as a blade angle control device for depth control. “Depth” refers to the distance of the towed body from the sea surface, where depth + altitude = water depth.

従来、曳航体高度を保持するための制御は、曳航体から得られる曳航体高度情報および曳航船内の航海機器から得られる曳航船直下の水深情報に基づいて、曳航体操作員が経験により曳航索巻揚量をウィンチ操作員に指示することで行っていた。   Conventionally, the control for maintaining the towed vehicle altitude is based on the towed vehicle operator's towage based on experience based on the towed vehicle altitude information obtained from the towed vehicle and the water depth information directly under the towed vessel obtained from the navigation equipment in the towed vessel. This was done by instructing the winch operator on the amount of hoisting.

しかしながら、曳航体操作員が曳航体高度の保持に注意を奪われるため海底映像の監視に集中できないという問題点以外にも、経験の浅い曳航体操作員による曳航体の姿勢の乱れ、曳航体の急激な操作、高度不安定などに起因する海底映像のゆがみ、ひずみの発生、あるいは海底衝突の危険等、多くの問題が経験されてきた。   However, in addition to the problem that the towed vehicle operator is deprived of maintaining the height of the towed vehicle and cannot concentrate on the monitoring of the seafloor image, the towed vehicle operator's attitude may be disturbed by an inexperienced towed vehicle operator, Many problems have been experienced, such as the distortion of the seabed image due to abrupt operation, altitude instability, the occurrence of distortion, or the danger of a seabed collision.

以下に本発明の関連文献を挙げる。特許文献1は、曳航体の姿勢を可動翼によって制御するものの過去の出願例であり、非特許文献1は、曳航体の高度を一定に保持するための基礎研究として曳航体の運動を解析した例であり、非特許文献2および3は翼角制御により曳航体の深度および姿勢を制御する曳航体の開発例である。   The related literature of the present invention is listed below. Patent Document 1 is a past application example of controlling the attitude of a towed body with movable wings, and Non-Patent Document 1 analyzed the motion of the towed body as a basic research for maintaining a constant altitude of the towed body. Non-Patent Documents 2 and 3 are examples of the development of a towed body that controls the depth and attitude of the towed body by wing angle control.

特開平09−159397:曳航体の姿勢制御方法及び姿勢制御装置Japanese Patent Application Laid-Open No. 09-159597: Towing body attitude control method and attitude control apparatus 大楠 丹,柏木 正,小寺山 亘:Towed Vehicleの動力学に関する基礎研究,日本造船学会論文集,第162号(1987),pp.99-109.Dan Otsuki, Tadashi Kashiki, Wataru Koterayama: Basic research on the dynamics of Towed Vehicle, Proceedings of the Japan Shipbuilding Society, No. 162 (1987), pp.99-109. 小寺山 亘,経塚 雄策,中村 昌彦,大楠 丹,柏木 正:海洋観測用曳航体の開発研究(第一報 曳航体の運動と制御について),日本造船学会論文集,第163号(1988),pp.130-140.Wataru Kodera, Yusaku Kyozuka, Masahiko Nakamura, Tan Otsuki, Tadashi Kashiwagi: Developmental research on towed bodies for oceanographic observation (1st report, On the motion and control of towed bodies), JSCE Proceedings, No.163 (1988), pp.130-140. 小寺山 亘,経塚 雄策,中村 昌彦,大楠 丹,柏木 正:海洋観測用曳航体の開発研究(第2報,曳航体の構造と実海域実験),日本造船学会論文集,第166(1989),pp.485-495.Wataru Koderayama, Yusaku Kyozuka, Masahiko Nakamura, Tan Otsuki, Tadashi Kashiwagi: Developmental study of towed bodies for oceanographic observation (2nd report, Structure of towed bodies and actual sea area experiments), Proceedings of the Japan Institute of Shipbuilding, 166 (1989) , Pp.485-495.

本発明が解決しようとする課題は、海底地形を映像化する音波探査用曳航体を船で曳航する際に、海底衝突を確実に回避することと併せて、曳航体操作員の経験に基づく従来の曳航体高度制御方法では充分でなかった海底映像の品質を改善することである。   The problem to be solved by the present invention is based on the experience of a towed body operator together with reliably avoiding a seabed collision when towing a towed object for sound wave exploration that visualizes the seabed topography. The towed vehicle altitude control method is not enough to improve the quality of the seabed image.

上記の課題は、下記の新しい曳航体高度制御装置により解決することができる。すなわち当該制御装置は、
曳航体が保持すべき新たな目標深度を算出する目標深度算出器、曳航体の深度を変更するために必要な曳航索巻揚量を算出する曳航索巻揚量算出器、及び曳航索の巻揚操作を実行すべき時刻を算出する巻揚開始時刻算出器を備え、
前記目標深度算出器は、前記海底地形データに外部から入力される上下の許容範囲を付加して高度上限関数及び高度下限関数を作成し、曳航船から曳航体までの曳航体の進路に沿う曳航体水平距離に亘って前記高度上下限関数の値を計算し、これら許容される高度の上下限値と曳航体の現在深度とを所定の時間毎に比較して干渉が起きる可能性を判定し、干渉が起きる場合は、干渉地点までの水平距離と曳航船の対地速度から干渉が起きる干渉時刻を求め、かつ干渉地点以降において曳航体が保持すべき目標深度を設定し、
前記曳航索巻揚量算出器は、目標深度、曳航体の現在深度、及び現在の曳航索長を所与のデータとして、水中を牽引される曳航体の曳航索長と曳航体深度に関する曳航体応答特性データベースを参照して、曳航体の対水速度と共に、曳航体の深度を目標深度へ変更するための曳航索巻揚量を算出し、
前記巻揚開始時刻算出器は、現在の曳航索長、曳航体の対水速度、及び曳航索巻揚量を所与のデータとして、曳航索長を変化させてから曳航体深度が静定するまでの応答時間に関するデータベースを参照して曳航体応答時間を求め、前記干渉時刻を曳航体応答時間だけ繰り上げて巻揚開始時刻を算出し、
前記巻揚開始時刻にウィンチに曳航索巻揚量を与えるように構成される。
The above problem can be solved by the following new towed vehicle altitude control device. That is, the control device
A target depth calculator for calculating a new target depth to be held by the towed body, a towline hoisting amount calculator for calculating a towed hoisting amount necessary for changing the depth of the towed object, and a towed rope winding A hoisting start time calculator that calculates the time at which the lifting operation should be performed is provided,
The target depth calculator creates an altitude upper limit function and an altitude lower limit function by adding an upper and lower allowable range input from the outside to the seafloor terrain data, and tows along the course of the towing body from the towing vessel to the towing body The value of the altitude upper / lower limit function is calculated over the horizontal distance of the body, and the upper / lower limit values of the allowable altitude and the current depth of the towed body are compared every predetermined time to determine the possibility of interference. In the case of interference, obtain the interference time when the interference occurs from the horizontal distance to the interference point and the ground speed of the towed ship, and set the target depth that the towed body should hold after the interference point,
The towline hoisting amount calculator calculates a towed object relating to a towed line length and a towed body depth of a towed object to be pulled underwater, using a target depth, a current depth of the towed object, and a current towed line length as given data. Referring to the response characteristics database, calculate the towline hoisting amount for changing the depth of the towed body to the target depth along with the water velocity of the towed body,
The hoisting start time calculator determines the depth of the towed body after changing the towed line length, using the current towed line length, the water speed of the towed body, and the towed line hoisting amount as given data. The towed vehicle response time is obtained with reference to the database related to the response time until the interference time is raised by the towed vehicle response time to calculate the hoisting start time,
It is configured to give a towed hoisting amount to the winch at the hoisting start time.

本発明では、曳航索長を変化させてから曳航体深度が静定するまでの曳航体応答時間を考慮したフィードフォワード的な調節動作を行うので、オーバーシュートを伴わない良好な調節結果を迅速に得ることができる。   In the present invention, since the feed forward adjustment operation is performed in consideration of the towed body response time from the change of the tow length to the stabilization of the towed body depth, a good adjustment result without overshoot can be quickly obtained. Can be obtained.

また、翼などを用いる制御方法に較べて、曳航体本体及び制御装置の構造が簡単であり安価に実現することができる。   Further, compared to a control method using wings or the like, the structure of the tow body main body and the control device is simple and can be realized at low cost.

本発明は以上のように構成され、的確な判断基準に基づく調節動作が自動的に行われるので、曳航体操作員の労力が軽減され、衝突回避等安全性が向上すると共に、曳航体の高度及び姿勢が安定するため、良好な海底映像を得ることができる。   The present invention is configured as described above, and an adjustment operation based on an accurate judgment criterion is automatically performed. Therefore, labor of a towed vehicle operator is reduced, safety such as collision avoidance is improved, and altitude of the towed vehicle is improved. In addition, since the posture is stable, a good sea bottom image can be obtained.

以下に記載する実施例により、本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described with reference to the following examples.

図1〜図4を参照して説明する。図1は本実施例に係る曳航体高度制御装置100の構成を説明するブロック図である。曳航体高度制御装置100は、高度に関する許容範囲を入力する入力器110、曳航体が保持すべき新たな目標深度を算出する目標深度算出器120、曳航体の深度を変更するために必要な曳航索巻揚量を算出する曳航索巻揚量算出器130、曳航索の巻揚操作を実行すべき時刻を算出する巻揚開始時刻算出器140、及びウィンチ40に与えるドライブ信号の内容を表示する表示器150よりなるものである。   A description will be given with reference to FIGS. FIG. 1 is a block diagram illustrating a configuration of a towed body altitude control apparatus 100 according to the present embodiment. The towed body altitude control apparatus 100 includes an input device 110 for inputting an allowable range related to altitude, a target depth calculator 120 for calculating a new target depth to be held by the towed body, and a towing necessary for changing the depth of the towed body. The towed hoisting amount calculator 130 for calculating the hoisting amount, the hoisting start time calculator 140 for calculating the time at which the hoisting hoisting operation should be executed, and the contents of the drive signal applied to the winch 40 are displayed. The display 150 is provided.

曳航船は常時直下水深を測定しつつ航行し、各地点の水深を海底地形データとして記録する。曳航体は曳航体水平距離だけ遅れて曳航船と同じ地点を通過するから、曳航体近傍の海底地形データは既知である。この海底地形データに入力器110から入力される高度許容範囲を付加したものが「高度上限関数」及び「高度下限関数」である。曳航船から曳航体までの曳航体進路に沿う曳航体水平距離について上限又は下限の高度関数値を計算し、これらと曳航体の現在高度とを比較することで、干渉(交差)が起きる可能性が判断される。もし干渉が起きるようなら、干渉地点以降の曳航体深度を変更しなければならない。同時に、干渉地点までの水平距離と曳航船の対地速度から、曳航体が干渉地点に到達する時刻(干渉時刻)が求まる。   The towed vessel always navigates while measuring the water depth directly below, and records the water depth at each point as submarine topographic data. Since the towed object passes the same point as the towed ship with a delay of the towed object horizontal distance, the seafloor topography data near the towed object is known. An altitude upper limit function and an altitude lower limit function are obtained by adding an allowable altitude range input from the input device 110 to the seafloor topographic data. Interference (crossing) may occur by calculating upper or lower altitude function values for the horizontal distance of the towed body along the towed body path from the towed ship to the towed object, and comparing these with the current altitude of the towed object Is judged. If interference occurs, the towed body depth after the point of interference must be changed. At the same time, the time (interference time) at which the towed body reaches the interference point is obtained from the horizontal distance to the interference point and the ground speed of the towed ship.

深度変更のための目標深度としては、干渉時刻経過後の高度上限関数と高度下限関数の範囲内にある深度一定の直線のうち、以後の深度変更の回数(ウィンチの操作回数)が最少となる深度線が選定される。そして、現在の曳航体深度と目標深度との差が深度変更量である。以上の演算は目標深度算出器120が行う。   As the target depth for changing the depth, the number of subsequent depth changes (the number of winch operations) is minimized among straight lines with a constant depth within the range of the altitude upper limit function and altitude lower limit function after the interference time has elapsed. A depth line is selected. The difference between the current towed body depth and the target depth is the depth change amount. The target depth calculator 120 performs the above calculation.

図2は、曳航体応答特性データベースの一部を説明のためにグラフにしたものであり、縦軸に曳航索長(m)、横軸に曳航体深度(m)を取り、両変数の関係を曳航体対水速度(ノット:kt)をパラメータとして表している。その関係は曳航体と曳航索の流体力学的特性によって一義的に定まり、物理的に一つの曳航索長と曳航体深度の値の組には一つの対水速度のみが対応する。実際のデータベースは、種々の曳航索長、曳航体深度、曳航体対水速度の値の組み合わせからなる。したがって、曳航体搭載の深度計から得られる現在の曳航体深度とウィンチから得られる現在の曳航索長からなる値の組を引数として曳航体応答特性データベースを検索して、現在の曳航体深度と曳航索長の値の組に対応する曳航体対水速度を求め、つづいて、求めた曳航体対水速度と現在の曳航体深度に目標深度算出器120で求めた深度変更量を加味した目標深度を引数として曳航体応答特性データベースを検索して深度変更後の曳航索長を求め、最後に、現在の曳航索長と深度変更後の曳航索長との差から上記深度変更量だけ深度を変更するのに必要な曳航索巻揚量を求める。以上の演算は曳航索巻揚量算出器130が行う。   Fig. 2 is a graph of part of the towed body response characteristics database for explanation. The vertical axis shows the towline length (m), the horizontal axis shows the towed body depth (m), and the relationship between the two variables. Is expressed with the towed body-to-water speed (knot: kt) as a parameter. The relationship is uniquely determined by the hydrodynamic characteristics of the towed body and the towed line, and only one water velocity corresponds to a set of physically one towed line length and towed body depth value. The actual database consists of combinations of various towline lengths, towed body depths, and towed body versus water velocity values. Therefore, the towing body response characteristic database is searched using a set of values consisting of the current tow depth obtained from the towed depth meter and the current tow length obtained from the winch as arguments, and the current tow depth and The towed body-to-water velocity corresponding to the towline length value pair is obtained, and then the target to which the depth change amount obtained by the target depth calculator 120 is added to the obtained towed-body-to-water velocity and the current towed body depth. Search the towed vehicle response characteristic database with the depth as an argument to find the towline length after the depth change, and finally calculate the depth by the depth change amount from the difference between the current towline length and the towline length after the depth change. Obtain the towed hoisting amount necessary for the change. The above calculation is performed by the tow rope hoisting amount calculator 130.

図3は、曳航体応答時間データベースの一部を説明のためにグラフにしたものであり、縦軸に曳航体応答時間(s)、横軸に曳航索巻揚量(m)を取り、両変数の関係を曳航体対水速度(ノット:kt)と現在の曳航索長(m)をパラメータとして表している。その関係は曳航体と曳航索の流体力学的特性によって一義的に定まり、一組の曳航体対水速度、現在の曳航索長、曳航索巻揚量の値の組には一つの曳航体応答時間のみが対応する。実際のデータベースは、種々の曳航体対水速度、曳航索巻揚量、現在の曳航索長、曳航体応答時間の値の組み合わせからなる数値テーブルである。したがって、曳航索巻揚量算出器130で算出した曳航体対水速度、曳航索巻揚量、ウィンチからの現在の曳航索長からなる値の組を引数として曳航体応答時間データベースを検索して、曳航体対水速度、曳航索巻揚量、曳航索長の値の組に対応する曳航体応答時間を求める。   FIG. 3 is a graph showing a part of the towed body response time database for explanation. The vertical axis shows the towed body response time (s) and the horizontal axis shows the tow rope hoisting amount (m). The relationship between the variables is expressed using the towed body speed (knot: kt) and the current towing line length (m) as parameters. The relationship is uniquely determined by the hydrodynamic characteristics of the towed body and the towline, and there is one towed body response for a set of towed body-to-water velocity, current towed line length, and towed line lift value. Only time corresponds. The actual database is a numerical table composed of combinations of values of various towed body speeds, towed hoisting amount, current towed rope length, and towed body response time. Accordingly, the towed vehicle response time database is searched by using as a parameter a set of the towed vehicle vs. water speed calculated by the towed hoisting amount calculator 130, the towed hoisting amount, and the current towed rope length from the winch. The towed body response time corresponding to the set of the towed body-to-water velocity, the towed rope winding amount, and the towed rope length value is obtained.

一例として、曳航体の対水速度10ktにおいて、長さ300mの曳航索を14m巻き上げる場合の応答時間は約22秒である。すなわちウィンチ40を起動すると曳航体深度が変化し始め(この場合は高度が増大)、約22秒経過後に静定する。したがって、上で求めた干渉時刻より、ここで求められる曳航体応答時間分だけ早い時刻を巻揚開始時刻としなければならない。   As an example, the response time when a tow rope having a length of 300 m is wound up by 14 m at a water velocity of 10 kt is about 22 seconds. That is, when the winch 40 is activated, the towed body depth begins to change (in this case, the altitude increases), and settles after about 22 seconds. Therefore, a time earlier than the interference time obtained above by the towing body response time obtained here must be set as the winding start time.

前記巻揚開始時刻は現在時刻と比較され、現在時刻が巻揚開始時刻を経過していたならば曳航索巻揚を表示器150及びウィンチ40に出力し、以後、干渉時刻まで(曳航体が静定するまで)は巻揚開始時刻の算出は行わない。以上の演算は巻揚開始時刻算出器140が行う。   The hoisting start time is compared with the current time, and if the current time has passed the hoisting start time, the towing hoisting is output to the display 150 and the winch 40, and thereafter, until the towing time ( The winding start time is not calculated until it is settled. The above calculation is performed by the winding start time calculator 140.

表示器150は、図4のようにドライブ信号の内容をはじめ、曳航船と曳航体の位置関係、海底状況、高度許容範囲、高度上限関数、高度下限関数、目標深度線を図示する。   As shown in FIG. 4, the display 150 illustrates the contents of the drive signal, the positional relationship between the towed ship and the towed body, the seabed condition, the altitude allowable range, the altitude upper limit function, the altitude lower limit function, and the target depth line.

本発明は、海底地形を映像化する音波探査用曳航体を曳航船により曳航しつつ、当該曳航体の海底からの高度を制御する技術に関するので、海運業、海底資源探査や沈没船調査事業等に利用することができる。特に昨今は、大陸棚条約に基づくわが国沿岸の大陸棚調査活動における活用が期待される。   The present invention relates to a technology for controlling the altitude of the towed vehicle from the seabed while towing the towed vehicle for sound wave exploration that visualizes the seafloor topography with a towed ship, so that it can be used for maritime transportation, submarine resource exploration, sunken ship investigation business, etc. Can be used. In particular, in recent years, it is expected to be used in continental shelf survey activities along the coast of Japan based on the Continental Shelf Convention.

本発明の一実施例を示す機器構成図である。It is an apparatus block diagram which shows one Example of this invention. 上記実施例における曳航索巻揚量算出器に使用する曳航体応答特性データベースを説明のためグラフ化して示した概念図である。It is the conceptual diagram which graphed and showed the towing body response characteristic database used for the tow rope hoisting amount calculator in the said Example. 上記実施例における巻揚開始時刻算出器に使用する曳航体応答時間データベースを説明のためグラフ化して示した概念図である。It is the conceptual diagram which graphed and showed the towing body response time database used for the winding start time calculator in the said Example for description. 上記実施例における表示器画面の一例である。It is an example of the display screen in the said Example.

符号の説明Explanation of symbols

10 深度計
20 航海機器
30 音響測位装置
40 ウィンチ
100 曳航体高度制御装置
110 入力器
120 目標深度算出器
130 曳航索巻揚量算出器
140 巻揚開始時刻算出器
150 表示器


DESCRIPTION OF SYMBOLS 10 Depth meter 20 Navigation equipment 30 Acoustic positioning device 40 Winch 100 Towed body altitude control device 110 Input device 120 Target depth calculator 130 Towing rope hoisting amount calculator 140 Hoist start time calculator 150 Display


Claims (4)

海底地形を映像化する音波探査用曳航体を、直下水深を音響測定して海底地形データを取得しつつ所定の対地速度で航行する曳航船により曳航する際に、当該曳航体の海底からの高度をある幅の中に保持するための曳航体高度制御装置であって、
曳航体が保持すべき新たな目標深度を算出する目標深度算出器、曳航体の深度を変更するために必要な曳航索巻揚量を算出する曳航索巻揚量算出器、及び曳航索の巻揚操作を実行すべき時刻を算出する巻揚開始時刻算出器を備え、
前記目標深度算出器は、前記海底地形データに外部から入力される上下の許容範囲を付加して高度上限関数及び高度下限関数を作成し、曳航船から曳航体までの曳航体進路に沿う曳航体水平距離に亘って前記高度上下限関数の値を計算し、これら許容される高度の上下限値と曳航体の現在深度とを比較して干渉が起きる可能性を判定し、干渉が起きる場合は、干渉地点までの水平距離と曳航船の対地速度から干渉が起きる干渉時刻を求め、かつ干渉地点以降において曳航体が保持すべき目標深度を設定し、
前記曳航索巻揚量算出器は、目標深度、曳航体の現在深度、及び現在の曳航索長の組を引数として、水中を牽引される曳航体の曳航索長と曳航体深度に関する曳航体応答特性データベースを検索して、曳航体の対水速度と共に、曳航体の深度を目標深度へ変更するための曳航索巻揚量を算出し、
前記巻揚開始時刻算出器は、現在の曳航索長、曳航体の対水速度、及び曳航索巻揚量の組を引数として、曳航索長を変化させてから曳航体深度が静定するまでの応答時間に関するデータベースを検索して曳航体応答時間を求め、前記干渉時刻を曳航体応答時間だけ繰り上げて巻揚開始時刻を算出し、
前記巻揚開始時刻にウィンチに曳航索巻揚量を与えるように構成される前記制御装置。
When towing a towed vehicle for acoustic exploration that visualizes the ocean floor topography by towing a towed vessel that navigates at a predetermined ground speed while acquiring ocean floor topographical data by acoustically measuring the water depth directly below, the altitude from the bottom of the towed vehicle A towed vehicle altitude control device for holding the aircraft within a certain width,
A target depth calculator for calculating a new target depth to be held by the towed body, a towline hoisting amount calculator for calculating a towed hoisting amount necessary for changing the depth of the towed object, and a towed rope winding A hoisting start time calculator that calculates the time at which the lifting operation should be performed is provided,
The target depth calculator creates an altitude upper limit function and an altitude lower limit function by adding an upper and lower allowable range inputted from the outside to the seafloor topographic data, and the towed body along the towed body path from the towed ship to the towed body Calculate the value of the altitude upper / lower limit function over the horizontal distance, compare the upper and lower limit values of the allowable altitude with the current depth of the towed vehicle, determine the possibility of interference, and if interference occurs , Obtain the interference time when the interference occurs from the horizontal distance to the interference point and the ground speed of the towing vessel, and set the target depth that the towed body should hold after the interference point,
The towline hoisting amount calculator calculates a towed body response related to a towed line length and a towed body depth of a towed object to be pulled underwater with a set of a target depth, a current depth of the towed object, and a current towed line length as arguments. Search the characteristic database and calculate the towline hoisting amount to change the towed object depth to the target depth along with the towed object water velocity,
The hoisting start time calculator uses the current towline length, towed water velocity, and towline hoisting amount as a set of arguments until the towed body depth is stabilized after the towline length is changed. The towed vehicle response time is obtained by searching a database related to the response time, and the interference start time is calculated by raising the interference time by the towed vehicle response time,
The said control apparatus comprised so that a tow rope hoisting amount may be given to a winch at the said winding start time.
前記目標深度算出器は、曳航船から曳航体までの曳航体進路に沿う曳航体水平距離に亘って前記高度上限関数値と高度下限関数値の範囲内にある深度一定の直線のうち、以後必要になる深度変更回数が最少のものを目標深度として選定する、請求項1記載の曳航体高度制御装置。   The target depth calculator is necessary after the straight line having a constant depth within the range of the upper altitude function value and the altitude lower limit function value over the horizontal distance of the towed body along the towed body path from the towed ship to the towed body. The towed body altitude control apparatus according to claim 1, wherein the target depth is selected as the target depth with the smallest number of depth changes. 前記曳航索巻揚量算出器において参照される曳航体応答特性データベースは、曳航索長と曳航体深度の関係を、曳航体の対水速度をパラメータとする一群の数値列により表すものであり、現在の曳航体の深度と曳航索長からなるデータの組が属する数値列を見いだすことにより、曳航体の対水速度が求められ、当該数値列内で目標深度に対応する曳航索長を見いだすことにより、現在の曳航索長との差として曳航索巻揚量が求められるものである、請求項1記載の曳航体高度制御装置。   The towed body response characteristic database referred to in the towed rope hoisting amount calculator represents the relationship between the towed rope length and the towed body depth by a group of numerical sequences with the towed body's water velocity as a parameter, By finding the numerical sequence to which the data set consisting of the current depth of the towed body and the towline length belongs, the water velocity of the towed body is obtained, and the towline length corresponding to the target depth is found in the numerical sequence. The towed body altitude control device according to claim 1, wherein the towed hoisting amount is obtained as a difference from the current towed rope length. 前記巻揚開始時刻算出器において参照される曳航体応答時間に関するデータベースは、曳航索長を変化させてから曳航体深度が静定するまでの応答時間の関係を、曳航体の対水速度及び曳航索長をパラメータとする一群の数値列により表すものであり、所与の曳航体対水速度及び曳航索長から定まる数値列内で、曳航索巻揚量に対応する曳航体応答時間が求められるものである、請求項1記載の曳航体高度制御装置。


The database on the towed vehicle response time referred to in the hoisting start time calculator shows the relationship between the response time from the change of the towed rope length to the stabilization of the towed body depth, the towed body's water velocity and the towed vehicle. It is expressed by a group of numerical values with the length of the rope as a parameter, and the towed body response time corresponding to the towed rope take-up amount is obtained within the numerical value determined from the given towed body speed and the length of the towed line. The towed body altitude control device according to claim 1, wherein


JP2004001805A 2004-01-07 2004-01-07 Advanced control device for towed vehicle Expired - Lifetime JP4010456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001805A JP4010456B2 (en) 2004-01-07 2004-01-07 Advanced control device for towed vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004001805A JP4010456B2 (en) 2004-01-07 2004-01-07 Advanced control device for towed vehicle

Publications (2)

Publication Number Publication Date
JP2005193767A true JP2005193767A (en) 2005-07-21
JP4010456B2 JP4010456B2 (en) 2007-11-21

Family

ID=34817210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001805A Expired - Lifetime JP4010456B2 (en) 2004-01-07 2004-01-07 Advanced control device for towed vehicle

Country Status (1)

Country Link
JP (1) JP4010456B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247101A (en) * 2007-03-29 2008-10-16 Kawasaki Heavy Ind Ltd Control method and device of depth of towed body
JP2009526682A (en) * 2006-02-14 2009-07-23 エアバス フランス Aircraft control method and system
JP2017105306A (en) * 2015-12-09 2017-06-15 国立研究開発法人 海上・港湾・航空技術研究所 Route setting method of underwater sailing body, optimum control method of underwater sailing body using the same, underwater sailing body, and route setting method of moving body
CN116215813A (en) * 2023-05-09 2023-06-06 清华四川能源互联网研究院 Composite buoyancy adjusting device, autonomous underwater vehicle and control method of autonomous underwater vehicle
FR3130743A1 (en) 2021-12-21 2023-06-23 Thales METHOD FOR AIDING THE GUIDANCE OF A SURFACE VESSEL INTENDED TO TOW AN UNDERWATER DEVICE VIA THE INTERMEDIATE OF A CABLE

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526682A (en) * 2006-02-14 2009-07-23 エアバス フランス Aircraft control method and system
JP2008247101A (en) * 2007-03-29 2008-10-16 Kawasaki Heavy Ind Ltd Control method and device of depth of towed body
JP2017105306A (en) * 2015-12-09 2017-06-15 国立研究開発法人 海上・港湾・航空技術研究所 Route setting method of underwater sailing body, optimum control method of underwater sailing body using the same, underwater sailing body, and route setting method of moving body
WO2017099219A1 (en) * 2015-12-09 2017-06-15 国立研究開発法人 海上・港湾・航空技術研究所 Route setting method for underwater vehicle, underwater vehicle optimum control method using same, and underwater vehicle
CN108698677A (en) * 2015-12-09 2018-10-23 国立研究开发法人 海上·港湾·航空技术研究所 The method for setting path of underwater sailing body, using this method underwater sailing body optimum controling method and underwater sailing body
US11048274B2 (en) 2015-12-09 2021-06-29 National Institute of Maritime, Port, and Aviation Technology Route setting method for underwater vehicle, underwater vehicle optimum control method using same, and underwater vehicle
FR3130743A1 (en) 2021-12-21 2023-06-23 Thales METHOD FOR AIDING THE GUIDANCE OF A SURFACE VESSEL INTENDED TO TOW AN UNDERWATER DEVICE VIA THE INTERMEDIATE OF A CABLE
WO2023117518A1 (en) 2021-12-21 2023-06-29 Thales Method for assisting with guiding a surface vessel for towing an underwater device by means of a cable
CN116215813A (en) * 2023-05-09 2023-06-06 清华四川能源互联网研究院 Composite buoyancy adjusting device, autonomous underwater vehicle and control method of autonomous underwater vehicle

Also Published As

Publication number Publication date
JP4010456B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
AU2013251283B2 (en) Ship course obstruction warning transport
US11052974B2 (en) Dynamic tug winch control
Rundtop et al. Experimental evaluation of hydroacoustic instruments for ROV navigation along aquaculture net pens
US9223002B2 (en) System and method for determining the position of an underwater vehicle
CN105824036B (en) Position locking of a vessel using an auxiliary water craft
KR20150140172A (en) Dron flight and sea floor scanning exploration system using the same
Campbell et al. AUV technology for seabed characterization and geohazards assessment
US20220268926A1 (en) Sonar beam footprint presentation
NO341050B1 (en) Motion compensating crane system
Maki et al. Low-altitude and high-speed terrain tracking method for lightweight AUVs
EP4309994A1 (en) System for coupling aquatic relay machine and underwater cruising body, and operation method therefor
JP4010456B2 (en) Advanced control device for towed vehicle
Totland et al. Kayak Drone–a silent acoustic unmanned surface vehicle for marine research
Iwen et al. Benefits of using ASV MBES surveys in shallow waters and restriced areas
Hayashi et al. Customizing an Autonomous Underwater Vehicle and developing a launch and recovery system
JP2001247085A (en) Depth measuring method by diving machine
JP6345417B2 (en) Underwater vehicle control method and underwater vehicle
Maki et al. AUV HATTORI: A lightweight platform for high-speed low-altitude survey of rough terrains
Konoplin et al. Application of autonomous underwater vehicles for research of ecosystems in the southern ocean
JP2009236503A (en) Speed measuring system of underwater navigation object
Nakatani et al. Dives of cruising-AUV “JINBEI” to methane hydrate area on Joetsu knoll and Umitaka Spur
KR20150047159A (en) Dynamic positioning system considering movement of rov and dynamic positioning method of the same
JP5755071B2 (en) Towing body control method and control apparatus therefor, and towed body control system
RU106965U1 (en) TECHNOLOGICAL COMPLEX &#34;ABISSAL-3&#34; FOR MARINE DEEP-WATER GEOLOGICAL EXPLORATION WORKS
Hyakudome et al. Development of AUV for scientific observation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4010456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term