JP2005191384A - Electromagnetic wave shielding material and method for manufacturing the same - Google Patents

Electromagnetic wave shielding material and method for manufacturing the same Download PDF

Info

Publication number
JP2005191384A
JP2005191384A JP2003432802A JP2003432802A JP2005191384A JP 2005191384 A JP2005191384 A JP 2005191384A JP 2003432802 A JP2003432802 A JP 2003432802A JP 2003432802 A JP2003432802 A JP 2003432802A JP 2005191384 A JP2005191384 A JP 2005191384A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave shielding
shielding material
polymerizable composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003432802A
Other languages
Japanese (ja)
Inventor
Teruyoshi Takeuchi
輝義 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2003432802A priority Critical patent/JP2005191384A/en
Publication of JP2005191384A publication Critical patent/JP2005191384A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide electromagnetic wave shielding materials which are excellent in dispersibility and electronic shielding performance in adding and dispersing a conductive filler such as a carbon nano-tube to resin serving as a base. <P>SOLUTION: Conductive nano-size fiber-shaped carbon materials whose diameters are 1 to 200nm and whose length is 1μm to 20μm are added to polymeric composition which is liquefied prior to polymerization or liquefied after being dissolved in organic solvent at the rate of 0.5 to 20 pts.wt. to 100 pts.wt., and mixed in the state of solution, and polymerized and solidified so that electromagnetic wave shielding materials can be configured. Furthermore, a conductive metallic thin film is laminated as necessary. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電磁波遮蔽性材料に関し、さらに詳細には、電磁波遮蔽効果に優れた電磁波遮蔽性材料に関する。   The present invention relates to an electromagnetic wave shielding material, and more particularly to an electromagnetic wave shielding material having an excellent electromagnetic wave shielding effect.

現代社会では高度情報化が進行し、情報技術の効率的な高速伝達の必要性が喧伝されており、情報技術の処理形態が従来のアナログ方式からデジタル方式へ移行し、昨今ではデジタル方式の情報伝達形式が定着しつつある。デジタル方式を採用した情報伝達処理に於いては情報の更なる高密度化を目的とする電子回路などの高周波数化が進行している。   In today's society, advanced information technology has progressed, and the need for efficient high-speed transmission of information technology has been advertised, and the processing form of information technology has shifted from the conventional analog method to the digital method. The transmission format is becoming established. In the information transmission processing adopting the digital method, the frequency of electronic circuits and the like for the purpose of further increasing the density of information is increasing.

一般にデジタル方式回路では採用されるクロック周波数により電磁波障害ノイズの発生が観察されるが、さらに、そのデジタル方式回路が採用する信号電圧が低いため外部環境からの電磁波ノイズにより大きな影響を感受しやすい。このためにデジタル方式回路を有する電子機器、情報関連機器等は電磁波ノイズにより容易に機器誤動作等の障害を誘発される可能性がある。   In general, in the digital circuit, the occurrence of electromagnetic interference noise is observed depending on the clock frequency adopted. However, since the signal voltage adopted by the digital circuit is low, it is easy to be sensitive to electromagnetic noise from the external environment. For this reason, there is a possibility that an electronic device having a digital circuit, an information-related device, and the like are easily caused by a failure such as a device malfunction due to electromagnetic noise.

従って、デジタル方式回路を内蔵する電子機器、情報関連機器では、回路内部から電磁波障害ノイズを発生させないこと、あるいは外部環境から電磁波ノイズの影響を感受しないこと、の両方の対応が求められる。電磁波ノイズを遮蔽するための主要技術としては、たとえば、電器電子機器、情報関連機器等を内蔵する筐体を構成する素材に、導電性樹脂を電磁波遮蔽材として採用する方法、あるいは絶縁樹脂成形体に金属メッキ、金属蒸着、導電性塗装等の処理を施した電磁波遮蔽用材料を採用する方法が提案されている。   Therefore, electronic devices and information-related devices that incorporate digital circuits are required to cope with both not to generate electromagnetic interference noise from the inside of the circuit and not to be affected by electromagnetic noise from the external environment. As a main technique for shielding electromagnetic wave noise, for example, a method of adopting a conductive resin as an electromagnetic wave shielding material for a material constituting a housing containing an electronic device, an information-related device or the like, or an insulating resin molded body There has been proposed a method of employing an electromagnetic wave shielding material that has been subjected to a treatment such as metal plating, metal vapor deposition, or conductive coating.

上記の電磁波遮蔽材として使用する導電性樹脂としては、例えば、樹脂100質量部に対して、直径1〜100nm、長さ50μm以下のカーボンナノチューブ等の導電性ナノサイズ繊維状炭素材料を1〜10質量部の割合で配合することにより、1〜20GHz範囲という広い周波数領域において高電磁波吸収能を発現し、かつ、柔軟性、加工性、施工性にも優れているとした電磁波吸収材料が開示されているが、具体的には、実施例2に、エチレン―プロピレン―ターポリマーゴム100質量部に対して、平均径1.5nm、平均長500nmの単層カーボンナノチューブ6質量部とを配合し、2本ロールミールを用いて混練して、電磁波吸収材料を調製し、この電磁波吸収材料をプレスして、厚さ0.6mm、150mm角のシート状に成形した電磁波吸収材とアルミ箔とを接合したものの周波数約3.8GHz付近に―27dBの吸収ピークが見られたと開示されている。
特開2003-158395号公報(要約および実施例など)
Examples of the conductive resin used as the electromagnetic shielding material include conductive nano-sized fibrous carbon materials such as carbon nanotubes having a diameter of 1 to 100 nm and a length of 50 μm or less with respect to 100 parts by mass of the resin. An electromagnetic wave absorbing material that expresses high electromagnetic wave absorbing ability in a wide frequency range of 1 to 20 GHz by blending at a mass part ratio and is excellent in flexibility, workability, and workability is disclosed. However, specifically, in Example 2, 100 parts by mass of ethylene-propylene-terpolymer rubber was blended with 6 parts by mass of single-walled carbon nanotubes having an average diameter of 1.5 nm and an average length of 500 nm, An electromagnetic wave absorbing material is prepared by kneading using two roll meals, and the electromagnetic wave absorbing material is pressed to form a sheet of 0.6 mm thickness and 150 mm square. Although bonding the molded electromagnetic wave absorbing material and the aluminum foil is disclosed an absorption peak of -27dB near a frequency of about 3.8GHz was seen.
JP 2003-158395 A (Summary and Examples)

しかし、上記の導電性樹脂は、樹脂に導電性フィラーであるカーボンナノチューブ粒子などを配合する手段として樹脂の溶融状態において混練する方法を採用しており、その結果、粒子の分散が不均一となり、薄い場合には十分な電磁波吸収性(遮蔽性)を発揮することが出来ないという問題があつた。   However, the conductive resin described above employs a method of kneading the resin in a molten state as a means for blending the resin with carbon nanotube particles that are conductive fillers. As a result, the dispersion of the particles becomes non-uniform, When it is thin, there is a problem that sufficient electromagnetic wave absorptivity (shielding property) cannot be exhibited.

すなわち、本発明の課題は、ベースとなる樹脂にカーボンナノチューブ等の導電性フィラーを添加し分散させる際に、分散性が優れ、優れた電子遮蔽性を有する電磁波遮蔽性材料を提供することにある。   That is, an object of the present invention is to provide an electromagnetic wave shielding material having excellent dispersibility and excellent electron shielding properties when a conductive filler such as carbon nanotube is added to and dispersed in a base resin. .

本発明は、上記の課題を解決するために、鋭意検討した結果、達成されたものであり、すなわち、本発明の第一の要旨は、重合前は液状または有機溶媒に溶解して液状となる重合性組成物100質量部に対して直径1〜200nm、長さ1μm〜20μmの導電性ナノサイズ繊維状炭素材料を0.5〜20質量部添加し、溶液状態で混合し、重合して固化して得られる電磁波遮蔽性材料に関する。   The present invention has been achieved as a result of intensive studies in order to solve the above-described problems. That is, the first gist of the present invention is that the liquid is dissolved in an organic solvent or liquid before polymerization. 0.5 to 20 parts by mass of a conductive nano-sized fibrous carbon material having a diameter of 1 to 200 nm and a length of 1 to 20 μm is added to 100 parts by mass of the polymerizable composition, mixed in a solution state, polymerized, and solidified. It relates to the electromagnetic wave shielding material obtained.

そして、本発明の第二の要旨は、液状または有機溶媒に溶解して液状である重合性組成物100質量部に対して直径1〜200nm、長さ1μm〜20μmの導電性ナノサイズ繊維状炭素材料を0.5〜20質量部添加して混合し、次いで重合して固形化することを特徴とする電磁波遮蔽性材料の製造方法に関する。   The second gist of the present invention is that conductive nano-sized fibrous carbon having a diameter of 1 to 200 nm and a length of 1 to 20 μm with respect to 100 parts by mass of the polymerizable composition dissolved in a liquid or organic solvent. The present invention relates to a method for producing an electromagnetic wave shielding material, wherein 0.5 to 20 parts by mass of a material is added and mixed, and then polymerized and solidified.

本件発明による電磁波遮蔽性材料は、重合生成物に導電性ナノサイズ繊維状炭素材料を添加したものであって、当該導電性ナノサイズ繊維状炭素材料が上記の重合生成物の重合前の重合性組成物の液状段階において添加され混合されているため、重合生成物内における分散性が優れており、その結果、導電性ナノサイズ繊維状炭素材料の添加量の割に優れた電磁波遮蔽性を有し、かつ電磁波遮蔽性材料全体を極めて薄くすることが可能である。   The electromagnetic wave shielding material according to the present invention is obtained by adding a conductive nano-sized fibrous carbon material to a polymerization product, and the conductive nano-sized fibrous carbon material is polymerizable before the polymerization product is polymerized. Since it is added and mixed in the liquid phase of the composition, it has excellent dispersibility in the polymerization product, and as a result, has excellent electromagnetic shielding properties for the amount of conductive nano-sized fibrous carbon material added. In addition, the entire electromagnetic wave shielding material can be made extremely thin.

まず、本発明の第一の要旨の電磁波遮蔽性材料は、本発明の第二の要旨の製造方法により製造される。以下、本発明の第一の要旨の電磁波遮蔽性材料を本発明の第二の要旨の製造方法により製造する方法を説明する。 First, the electromagnetic wave shielding material according to the first aspect of the present invention is manufactured by the manufacturing method according to the second aspect of the present invention. Hereinafter, a method for producing the electromagnetic wave shielding material according to the first aspect of the present invention by the production method according to the second aspect of the present invention will be described.

本発明の電磁波遮蔽性材料は、重合前は液状または溶媒に溶解可能なオリゴマー又はポリマーを主成分とする重合性組成物に対して導電性ナノサイズ繊維状炭素材料を添加し混合した後、上記の重合性組成物を重合して成る。   The electromagnetic wave shielding material of the present invention is prepared by adding a conductive nanosize fibrous carbon material to a polymerizable composition mainly composed of an oligomer or polymer that can be dissolved in a liquid or solvent before polymerization, The polymerizable composition is polymerized.

上記の重合性組成物は、極性有機溶媒に可溶な重合性のオリゴマー又はポリマーを主成分とし、その重合生成物である電磁波遮蔽性材料として可撓性のものを希望する場合は、当該主成分がゴム系のオリゴマー又はポリマーが好ましく、中でも液状ゴム成分または液状樹脂成分のものがより好ましい。斯かる重合性組成物を構成する成分としては、例えば、主成分樹脂である分子鎖の両末端がカルボキシル基で置換された液状アクリロニトリルブタジエンゴム、液状スチレンブタジエンゴム、液状ポリブタジエン、液状ポリイソプレン、液状ポリクロロプレン等の反応性オリゴマー又はポリマーから成る主成分樹脂と、硬化剤成分であるビスフェノールA系ジグリシジルエーテル型エポキシ樹脂、ビスフェノールF系ジグリシジルエーテル型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂などのエポキシ樹脂類から成る硬化剤との、混合物が挙げられ、特に、両末端がカルボキシル基で置換された重合性の液状アクリロニトリルブタジエンゴム(CTBN)とビスフェノールA系ジグリシジルエーテル型エポキシ樹脂との組合せが好適に使用される。   The polymerizable composition is mainly composed of a polymerizable oligomer or polymer that is soluble in a polar organic solvent, and a flexible material is desired as the electromagnetic wave shielding material that is a polymerization product thereof. The component is preferably a rubber oligomer or polymer, more preferably a liquid rubber component or a liquid resin component. Examples of the components constituting such a polymerizable composition include liquid acrylonitrile butadiene rubber, liquid styrene butadiene rubber, liquid polybutadiene, liquid polyisoprene, Main component resins composed of reactive oligomers or polymers such as polychloroprene, and epoxy resins such as bisphenol A diglycidyl ether type epoxy resins, bisphenol F diglycidyl ether type epoxy resins and phenol novolac type epoxy resins which are curing agent components In particular, a combination of a polymerizable liquid acrylonitrile butadiene rubber (CTBN) having both ends substituted with carboxyl groups and a bisphenol A diglycidyl ether type epoxy resin is preferred. Used properly.

上記の両末端がカルボキシル基で置換された重合性の液状アクリロニトリルブタジエンゴムは、一般に、化学式(1)で与えられる。   The polymerizable liquid acrylonitrile butadiene rubber in which both ends are substituted with carboxyl groups is generally given by the chemical formula (1).

Figure 2005191384
化学式(1)
上記式(1)において、xは5〜6の整数であり、yは1〜2の整数であり、zは10〜12の整数である。
Figure 2005191384
Chemical formula (1)
In said formula (1), x is an integer of 5-6, y is an integer of 1-2, z is an integer of 10-12.

上記の両末端がカルボキシル基で置換された液状アクリロニトリルブタジエンゴムの例として、例えば、ビーエフグッドリッチ社製Hycar CTBN(商品名)シリーズの化合物として、粘度が55,000〜625,000mPa・s(27℃)、分子量3,000〜4,000、アクリロニトリル含有率が10〜27%であるものが市場で入手できる。   As an example of the liquid acrylonitrile butadiene rubber in which both ends are substituted with carboxyl groups, for example, as a compound of Hycar CTBN (trade name) series manufactured by BF Goodrich, the viscosity is 55,000 to 625,000 mPa · s (27 ° C), molecular weight of 3,000 to 4,000, and acrylonitrile content of 10 to 27% are commercially available.

また、上記のビスフェノールA系ジグリシジルエーテル型エポキシ樹脂は両末端にエポキシ環を有する化合物であり、斯かるビスフェノールA系ジグリシジルエーテル型エポキシ樹脂としては、例えば、DER−331(ダウケミカル日本株式会社製商品)が市場で入手できる。その粘度は11,000〜15,000cPs(25℃)であり、例えば、以下の化学式2で与えられる。   The bisphenol A-based diglycidyl ether type epoxy resin is a compound having an epoxy ring at both ends. Examples of the bisphenol A-based diglycidyl ether type epoxy resin include DER-331 (Dow Chemical Japan Co., Ltd.). Product) available on the market. The viscosity is 11,000 to 15,000 cPs (25 ° C.), and is given by, for example, the following chemical formula 2.

Figure 2005191384
化学式(2)

ここにnは0〜2の整数である。
Figure 2005191384
Chemical formula (2)

N is an integer of 0-2 here.

重合性組成物の構成成分として上記の両末端がカルボキシル基で置換された液状アクリロニトリルブタジエンゴムと、ビスフェノールA系ジグリシジルエーテル型エポキシ樹脂とを使用した場合、上記の両末端がカルボキシル基で置換された液状アクリロニトリルブタジエンゴムと、ビスフェノールA系ジグリシジルエーテル型エポキシ樹脂との混合比は通常、100:10〜100:50であり、好ましくは100:30(質量比)とされる。   When a liquid acrylonitrile butadiene rubber in which both ends are substituted with carboxyl groups and a bisphenol A diglycidyl ether type epoxy resin are used as a constituent of the polymerizable composition, both ends are substituted with carboxyl groups. The mixing ratio of the liquid acrylonitrile butadiene rubber and the bisphenol A diglycidyl ether type epoxy resin is usually 100: 10 to 100: 50, preferably 100: 30 (mass ratio).

上記の重合性組成物は、そのままでは粘度が高く、水飴状を呈し攪拌などの操作性に劣るため、有機溶媒を添加して30〜50質量%溶液程度に希釈して樹脂組成物の混合溶液として使用するのが実用的である。斯かる有機溶媒としては、例えば、アセトン、エチルメチルケトン、ジクロロメタン、クロロホルム等の極性を有する有機溶媒が挙げられる。   The above polymerizable composition has a high viscosity as it is, and exhibits a water tank-like shape and is inferior in operability such as stirring. It is practical to use as Examples of such an organic solvent include polar organic solvents such as acetone, ethyl methyl ketone, dichloromethane, and chloroform.

前記の導電性ナノサイズ繊維状炭素材料は、所謂、ナノサイズの繊維状炭素材料であり、導電性を有するものである。斯かる導電性ナノサイズ繊維状炭素材料としては、直径1〜200nm、長さ1μm〜20μmの繊維状のものが好ましく、例えば、カーボンナノチューブ及び気相成長炭素繊維が挙げられ、これらを単独で、あるいは適宜配合して使用することが出来る。   The conductive nano-sized fibrous carbon material is a so-called nano-sized fibrous carbon material and has conductivity. As such a conductive nano-sized fibrous carbon material, a fibrous material having a diameter of 1 to 200 nm and a length of 1 μm to 20 μm is preferable, and examples thereof include carbon nanotubes and vapor-grown carbon fibers. Or it can mix | blend suitably and can be used.

上記のカーボンナノチューブは、別名グラファイトフィブリルナノチューブと呼称され、通常、炭素六角網面が円筒形状に閉環した単層構造体を呈するもの、これらの単層構造体が同心円状に配置された多層構造体を呈するもの、あるいは単層構造体と多層構造体が共存しているものが含まれる。これらのカーボンナノチューブは、例えば、炭素含有ガスによる気相分解反応や炭素棒炭素繊維等を用いたアーク放電法、あるいはレーザー蒸着法等で製造される。上記のカーボンナノチューブは、通常、その繊維径が1nm 〜50nm、繊維長が1μm〜50μmあり、繊維長と繊維径の比、いわゆるアスペクト比は20〜1000であるが、これらの寸法に限定されるものではない。上記カーボンナノチューブとしては、公知の種々のカーボンナノチューブを用いることができるが、例えば、Multiwall carbon nanotube(アルドリッチ社製商品名)、あるいはカーボンナノチューブMWCNT95(イルジン社製商品名)等が市場で入手できる。   The above-mentioned carbon nanotubes are also called graphite fibril nanotubes, usually exhibiting a single-layer structure in which carbon hexagonal mesh faces are closed in a cylindrical shape, and a multilayer structure in which these single-layer structures are arranged concentrically. Or those in which a single layer structure and a multilayer structure coexist. These carbon nanotubes are produced by, for example, a gas phase decomposition reaction using a carbon-containing gas, an arc discharge method using a carbon rod carbon fiber, or a laser vapor deposition method. The above-mentioned carbon nanotubes usually have a fiber diameter of 1 nm to 50 nm, a fiber length of 1 μm to 50 μm, and a ratio of fiber length to fiber diameter, so-called aspect ratio is 20 to 1000, but is limited to these dimensions. It is not a thing. As the carbon nanotube, various known carbon nanotubes can be used. For example, Multiwall carbon nanotube (trade name, manufactured by Aldrich) or carbon nanotube MWCNT95 (trade name, manufactured by Irjin) is available on the market.

また、前記の気相成長炭素繊維は、通常、鉄やニッケル等の遷移金属の触媒作用により第一段階生成繊維である素繊維が形成され、次いで、この素繊維の周辺に熱分解炭素層が気相成長して中空繊維軸の周りに同心円状に成長した年輪状の横断面を有する繊維状物であり、通常、繊維径が80−200nm、繊維長が10〜20μmの、繊維長と繊維径の比いわゆるアスペクト比は通常50〜200であるがこれに限定するものではない。斯かる気相成長炭素繊維としては、公知のものを使用することが出来るが、例えば、VGCF(昭和電工株式会社製商品名)等が市場で入手できる。   In addition, the vapor-grown carbon fiber is usually formed as a first-stage formed fiber by catalytic action of a transition metal such as iron or nickel, and then a pyrolytic carbon layer is formed around the elementary fiber. It is a fibrous material having an annual ring-shaped cross section grown concentrically around a hollow fiber axis by vapor phase growth, and usually has a fiber diameter of 80 to 200 nm and a fiber length of 10 to 20 μm. The ratio of diameters, the so-called aspect ratio, is usually 50 to 200, but is not limited thereto. As such a vapor growth carbon fiber, a publicly known one can be used. For example, VGCF (trade name, manufactured by Showa Denko KK) is available on the market.

本発明の電磁波遮蔽性材料は、前記の液状である重合性組成物に必要により有機溶媒をで溶解希釈して濃度および/または粘度を調整した後、上記の導電性ナノサイズ繊維状炭素材料と、必要により反応触媒としてさらに3級アミン触媒とを添加した後、当該重合性組成物を重合して固化することによって得られる。上記の固形分濃度および/または粘度は、特に限定する必要はないが、通常、固形分濃度は20〜30質量%とし、粘度は5〜30(単位mPa・s)とするのが実用的である。   The electromagnetic wave shielding material of the present invention is obtained by adjusting the concentration and / or viscosity by dissolving and diluting an organic solvent in the liquid polymerizable composition as required, and then adjusting the concentration and / or viscosity. If necessary, a tertiary amine catalyst is further added as a reaction catalyst, and then the polymerizable composition is polymerized and solidified. The solid content concentration and / or viscosity need not be particularly limited, but it is usually practical that the solid content concentration is 20 to 30% by mass and the viscosity is 5 to 30 (unit mPa · s). is there.

斯かる導電性ナノサイズ繊維状炭素材料の添加割合は、所望の電磁波遮蔽性能により適宜選択することが可能であるが、通常、溶媒を除く液状の重合性組成物100質量部に対して0.5〜20質量部であり、望ましくは5〜15質量部である。上記の重合性組成物に導電性ナノサイズ繊維状炭素材料を添加する際、それぞれの成分を別々に添加前にあらかじめ希釈用の極性有機溶媒を使用してこれに溶解し又は分散した後、混合するのが好ましい。そして、全成分を混合した後、再度よく攪拌分散して均一に分散させるのが好ましい。     The addition ratio of such conductive nano-sized fibrous carbon material can be appropriately selected depending on the desired electromagnetic wave shielding performance, but is usually from about 0.1 to 100 parts by mass of the liquid polymerizable composition excluding the solvent. 5 to 20 parts by mass, preferably 5 to 15 parts by mass. When the conductive nano-sized fibrous carbon material is added to the above polymerizable composition, each component is separately dissolved or dispersed in a polar organic solvent for dilution before addition, and then mixed. It is preferable to do this. And after mixing all the components, it is preferable to stir and disperse again and disperse | distribute uniformly.

上記の3級アミン触媒としては、特に限定するものではないが、例えば、N,N−ジメチルメタンアミン、N,N−ジエチルエタンアミン、N,N−ジプロピルプロパンアミン、N,N−ジブチルブタンアミン、N,N−ジフェニルベンゼンアミン等を用いることができる。そしてその添加量は、特に制限されないが、通常、上記の重合性組成物固形分100質量部に対して1〜5質量部であり、好ましくは1〜2質量部である。   The tertiary amine catalyst is not particularly limited. For example, N, N-dimethylmethanamine, N, N-diethylethanamine, N, N-dipropylpropanamine, N, N-dibutylbutane An amine, N, N-diphenylbenzeneamine, or the like can be used. And although the addition amount in particular is not restrict | limited, Usually, it is 1-5 mass parts with respect to 100 mass parts of said polymeric composition solid content, Preferably it is 1-2 mass parts.

上記の重合性組成物、導電性ナノサイズ繊維状炭素材料、必要により添加される3級アミン触媒および希釈溶媒を含む反応溶液は、重合反応により固形化し、電磁波遮蔽性材料を製造することが出来る。上記の重合時の加熱処理条件は、上記の重合性組成物の反応溶液の組成により適宜調整されるが、例えば、3級アミン触媒を使用しない場合は、通常、150〜180℃で30〜40時間、3級アミン触媒を使用する場合は、通常、150〜180℃で15〜20時間とされ、3級アミン触媒を用いなくとも十分な反応時間を要すれば、柔軟で薄い場合にも電磁波遮蔽性に優れた電磁波遮蔽性材料を得ることができる。   The reaction solution containing the polymerizable composition, the conductive nano-sized fibrous carbon material, the tertiary amine catalyst added as necessary, and the diluting solvent can be solidified by a polymerization reaction to produce an electromagnetic wave shielding material. . The heat treatment conditions at the time of the polymerization are appropriately adjusted depending on the composition of the reaction solution of the polymerizable composition. For example, when a tertiary amine catalyst is not used, the temperature is usually 150 to 180 ° C. and 30 to 40. When a tertiary amine catalyst is used for 15 hours, it is normally 15 to 20 hours at 150 to 180 ° C. If sufficient reaction time is required without using a tertiary amine catalyst, electromagnetic waves can be used even when flexible and thin. An electromagnetic wave shielding material having excellent shielding properties can be obtained.

なお、上記のアミン触媒を使用した場合の重合性組成物の重合反応機構は、以下のように考えられる。まず、主剤である両末端がカルボキシル基で置換された液状アクリロニトリルブタジエンゴムのカルボキシル基と3級アミン触媒とが反応し、カルボキシル塩が生成する。生成したカルボキシル塩は速やかにビスフェノールA系ジグリシジルエーテル型エポキシ樹脂と反応して3級アミン触媒は脱離し、高分子鎖延長反応が進行する。これらの反応を繰り返して高分子鎖を形成する。3級アミン触媒はカルボキシル塩と反応後、カルボキシル基とエポキシ環との反応で生成するいわゆるペンダント型の水酸基と反応し、引き続いてビスフェノールA系ジグリシジルエーテル型エポキシ樹脂との間で架橋反応を誘起し、三次元構造の高分子化合物である生成物を形成する。   The polymerization reaction mechanism of the polymerizable composition when the above amine catalyst is used is considered as follows. First, the carboxyl group of the liquid acrylonitrile butadiene rubber in which both ends as the main agent are substituted with carboxyl groups reacts with the tertiary amine catalyst to produce a carboxyl salt. The produced carboxyl salt quickly reacts with the bisphenol A diglycidyl ether type epoxy resin, the tertiary amine catalyst is eliminated, and the polymer chain extension reaction proceeds. These reactions are repeated to form a polymer chain. Tertiary amine catalyst reacts with carboxyl salt, then reacts with so-called pendant type hydroxyl group formed by reaction of carboxyl group and epoxy ring, and subsequently induces cross-linking reaction with bisphenol A diglycidyl ether type epoxy resin. Then, a product which is a polymer compound having a three-dimensional structure is formed.

また、本発明の電磁波遮蔽性材料は、例えば、上記の重合性組成物を所定の型の中に流し込み、、または、型枠内に流延し、あるいは他の物品の表面上に塗布して所定の形状に成形した後、溶媒を除去し、所定の条件で重合反応させる事により、得ることができる。   In addition, the electromagnetic wave shielding material of the present invention may be obtained by, for example, pouring the polymerizable composition into a predetermined mold, casting it in a mold, or applying it on the surface of another article. After forming into a predetermined shape, the solvent can be removed and a polymerization reaction can be performed under predetermined conditions.

上記の型枠内に流延する場合、型枠の内面に離型剤を塗布しておくのが好ましい。斯かる離型剤としては、PFA、PEEKあるいはPTFEの溶液が挙げられるが、中でも耐磨耗性、耐久性などの点でPFAがより好ましい。また、上記の重合性組成物を塗布する方法としては、特に制限されるものではないが、例えば、ロールコート法、スピンコート法、スプレーコート法、ディッピングコート法、さらに刷毛などを使用して手動で塗布する方法など、公知の塗布法によって塗布することが可能である。   When casting in said mold, it is preferable to apply a release agent to the inner surface of the mold. As such a mold release agent, a solution of PFA, PEEK or PTFE can be mentioned. Among them, PFA is more preferable in terms of wear resistance and durability. Further, the method for applying the polymerizable composition is not particularly limited. For example, a roll coating method, a spin coating method, a spray coating method, a dipping coating method, and a manual operation using a brush or the like. It is possible to apply by a known application method such as a method of applying by the method of

上記のようにして得られた本発明の電磁波遮蔽性材料は、そのまま実用することも出来るが、シート状材料(電磁波遮蔽性シート)の場合は、さらにその片面、その両面、或いは二つののシート層間に、金属箔を積層または挟設して複合シートにすることができる。   The electromagnetic wave shielding material of the present invention obtained as described above can be used as it is. However, in the case of a sheet-like material (electromagnetic wave shielding sheet), one side, both sides thereof, or two sheets are further provided. Metal foil can be laminated or sandwiched between the layers to form a composite sheet.

上記の金属箔としては、たとえばアルミニウム箔、銅箔、ニッケル箔、金箔、銀箔、白金箔などが挙げられ、、実用的にはアルミニウム箔または銅箔が好適に用いられる。斯かる金属箔の厚さは、一般に厚いほど遮蔽性が高まり、薄いほど密着性が良くなり、希望する電磁波遮蔽性の程度と、使用時の物品表面への密着性に応じて適宜選択されるが、通常、10〜80μmとされ、好ましくは、20〜40μmとされる。厚さが80μmを超える場合は柔軟性、シーリング性が不十分であり、10μm未満の場合は、金属箔の取り扱いが困難であると共に、併用する効果が顕著でない。   As said metal foil, aluminum foil, copper foil, nickel foil, gold foil, silver foil, platinum foil etc. are mentioned, for example, Aluminum foil or copper foil is used suitably practically. The thickness of such a metal foil is generally appropriately selected according to the desired degree of electromagnetic wave shielding and the adhesion to the surface of the article during use, as the thicker the film, the better the shielding, and the thinner. Is normally 10 to 80 μm, preferably 20 to 40 μm. When the thickness exceeds 80 μm, flexibility and sealing properties are insufficient, and when the thickness is less than 10 μm, handling of the metal foil is difficult and the combined effect is not remarkable.

上記の金属箔の金属成分を選択する際、情報関連機器、基板等が格納される電気伝導性を有する筐体がしばしばその耐久性、軽量化、耐候性等の問題からアルミニウムダイキャスト製であることが多く、その様な場合は、上記の金属箔が同種の金属であるアルミニウム箔であるものがより望ましい。なぜならば異なる金属同士が接触することによりそれぞれの金属に固有の酸化還元電位の相違から、接触界面に於いて容易に電位差が誘起され、大気中に存在する水分等の影響を感受することにより電解浸食が発生する可能性が高く、結果的に外部環境からの電磁波障害の防御が困難となるからである。   When selecting the metal component of the above metal foil, the case having electrical conductivity in which information-related equipment, substrates, etc. are stored is often made of aluminum die cast due to its durability, weight reduction, weather resistance, etc. In many cases, it is more desirable that the metal foil is an aluminum foil of the same metal. This is because different metals come into contact with each other and the difference in oxidation-reduction potential inherent to each metal easily induces a potential difference at the contact interface. This is because erosion is likely to occur, and as a result, it is difficult to prevent electromagnetic interference from the external environment.

これらの金属箔を上記の電磁波遮蔽性シートに積層し又は挟設する場合、当該金属箔は、予めその片面または両面に接着剤層が設けられている金属箔を使用するのが実用的である。この際、上記接着剤としては、電磁波遮蔽性シートの層間の導電性を保持し、電磁波遮蔽効果が十分に発揮させるために導電性接着剤を使用するのが好ましい。かかる接着剤層が設けられているものとして、例えば、アクリル系導電性接着剤を塗布した金属箔基材両面テープアルミ箔20μ(株式会社寺岡製作所製商品名)、あるいは金属箔基材両面テープ銅箔35μ(株式会社寺岡製作所製商品名)などが市場で入手できる。   When laminating or sandwiching these metal foils on the electromagnetic wave shielding sheet, it is practical to use a metal foil in which an adhesive layer is previously provided on one or both surfaces of the metal foil. . At this time, as the adhesive, a conductive adhesive is preferably used in order to maintain the conductivity between the layers of the electromagnetic wave shielding sheet and to sufficiently exhibit the electromagnetic wave shielding effect. For example, the metal foil base double-sided tape aluminum foil 20μ (trade name, manufactured by Teraoka Seisakusho Co., Ltd.) coated with an acrylic conductive adhesive, or the metal foil base double-sided tape copper is provided with such an adhesive layer. Foil 35μ (trade name, manufactured by Teraoka Seisakusho Co., Ltd.) is available on the market.

以上のようにして得られる電磁波遮蔽性複合シートは、例えば、厚さ0.35mmでも20dBの電磁波遮蔽効果があり、さらに厚さ20μmのアルミニウム箔などの金属薄膜層を片面に積層したものは38dB以上、両面に積層したものは80dBの遮蔽効果を有する事が出来る。このように、薄くしかも優れた電磁波遮蔽効果を有する電磁波遮蔽性複合シートを提供することが出来る。   The electromagnetic wave shielding composite sheet obtained as described above has, for example, an electromagnetic wave shielding effect of 20 dB even at a thickness of 0.35 mm, and a metal thin film layer such as an aluminum foil having a thickness of 20 μm laminated on one side is 38 dB. As described above, those laminated on both surfaces can have a shielding effect of 80 dB. Thus, an electromagnetic wave shielding composite sheet having a thin and excellent electromagnetic wave shielding effect can be provided.

以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Examples The present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

なお、本件発明において、電磁波遮蔽性材料または複合シートとしての遮蔽性能は、ASTM D4935による同軸管方式測定法の電磁波遮蔽効果測定装置であるベクトルネットワークアナライザを使用し、、常温にて、測定周波数500MHz〜10GHzで走査し、順方向伝送特性である材料パラメータS21を測定し4GHzにおける値を読み取った。電磁波遮蔽効果SEは、電磁波遮蔽性材料に入射した電磁波と透過した電磁波の比で表現され、下記式(3)で与えられる。
SE=10×log(Pt/Pi) (3)
ここに、Piは入射電力、Ptは透過電力である。
In the present invention, the shielding performance as an electromagnetic shielding material or a composite sheet is measured at a measurement frequency of 500 MHz at room temperature using a vector network analyzer which is an electromagnetic shielding effect measuring device of a coaxial tube method measuring method according to ASTM D4935. The material parameter S21 which is a forward transmission characteristic was measured by scanning at 10 GHz, and the value at 4 GHz was read. The electromagnetic wave shielding effect SE is expressed by the ratio of the electromagnetic wave incident on the electromagnetic wave shielding material and the transmitted electromagnetic wave, and is given by the following formula (3).
SE = 10 × log (P t / P i ) (3)
Here, P i is incident power, and P t is transmitted power.

[実施例1]
Hycar CTBN(ビーエフグッドリッチ社製商品名)を25gとDER−331(ダウケミカル日本株式会社製商品名)7.5g、および硬化触媒としてN,N−ジブチルブタンアミン0.45gとを、有機系極性溶媒であるトルエン10gに投入し、マグネットスターラーを用いて10分間攪拌して十分に溶解させた。別にカーボンナノチューブ、Multiwall carbon nanotube(アルドリッチ社製商品名)4.50gを別に有機系極性溶媒であるトルエン100質量部に投入し、十分に攪拌して分散させた。そして、上記の二つの溶液および分散液を混合し、高精度加温機能付きマグネットスターラーを使用して75〜85℃で加熱しながらさらに3時間程度、攪拌してカーボンナノチューブが均質に分散した重合性組成物を得た。
[Example 1]
Hycar CTBN (trade name, manufactured by BF Goodrich) 25 g, DER-331 (trade name, manufactured by Dow Chemical Japan Co., Ltd.) 7.5 g, and N, N-dibutylbutanamine 0.45 g as a curing catalyst The solution was added to 10 g of toluene, which is a polar solvent, and sufficiently stirred by stirring for 10 minutes using a magnetic stirrer. Separately, 4.50 g of carbon nanotube, Multiwall carbon nanotube (trade name, manufactured by Aldrich) was added to 100 parts by mass of toluene, which is an organic polar solvent, and sufficiently stirred and dispersed. Then, the above two solutions and dispersion are mixed, and the mixture is stirred at a temperature of 75 to 85 ° C. using a magnetic stirrer with a high-precision heating function, and further stirred for about 3 hours to polymerize the carbon nanotubes uniformly. Sex composition was obtained.

外寸法200mm×200mm、高さ20mmのアルミニウム製構造部材の平滑上表面に、内寸法150mm×150mm、深さ2mmの凹部を掘削し、かつ凹部を形成する内面にパーフルオロアルコキシアルカン(PFA)をきわめて均一にコーティングして内面が離型性のアルミニウム製流延用型枠を作製た。同装置の凹部に、上記の重合性組成物溶液、すなわち極性有機溶媒トルエン濃度68.8質量%の重合性組成物溶液27.0gを流延した。   A recess having an inner dimension of 150 mm × 150 mm and a depth of 2 mm is excavated on the smooth upper surface of an aluminum structural member having an outer dimension of 200 mm × 200 mm and a height of 20 mm, and perfluoroalkoxyalkane (PFA) is formed on the inner surface forming the recess. An aluminum casting form with an extremely uniform coating and releasable inner surface was produced. The above polymerizable composition solution, that is, 27.0 g of the polymerizable composition solution having a polar organic solvent toluene concentration of 68.8% by mass was cast into the recess of the apparatus.

上記の重合性組成物溶液を流延したアルミニウム製型枠をそのまま80℃に温度調整した防爆型電気乾燥炉において12時間静置して極性有機溶媒成分を揮発させた。その後さらに、150℃に温度調節した防爆型電気乾燥炉において15時間静置して重合性組成物を重合反応させて厚さ0.35mm、表面が平滑で黒色の電磁波遮蔽性シートを得た。上記の硬化重合反応後、形成された電磁波遮蔽性シートは、上記のPFAコーティングによる離型層によりアルミニウム製型枠から破壊することなく容易に剥離することができた。   The aluminum mold frame in which the polymerizable composition solution was cast was allowed to stand for 12 hours in an explosion-proof electric drying furnace whose temperature was adjusted to 80 ° C. to volatilize the polar organic solvent component. Thereafter, the polymerizable composition was allowed to stand for 15 hours in an explosion-proof electric drying furnace whose temperature was adjusted to 150 ° C. to polymerize the polymerizable composition to obtain a black electromagnetic wave shielding sheet having a thickness of 0.35 mm and a smooth surface. After the curing polymerization reaction, the formed electromagnetic wave shielding sheet could be easily peeled off from the aluminum mold by the release layer formed by the PFA coating.

上記の電磁波遮蔽性シートについて、図1に示す層構成のように、当該電磁波遮蔽性シートの片面に、両面にアクリル系導電性接着剤層を有する金属箔基材両面テープアルミ箔20μ(金属箔の株式会社寺岡製作所製商品名)を接合した。そして当該金属箔基材両面テープアルミ箔20μの反対面の粘着層面上に、エンボスPET38×1−A3(ニッパ株式会社製商品名)を接合し、さらに上記の電磁波遮蔽性シートの金属箔基材両面テープ状アルミ箔20μの非被接合面にPET50(A)PLシン11L(リンテック株式会社製商品名)を粘着層により接合し、金属箔を積層した電磁波遮蔽用複合シートを得た。なお、上記のリンテック株式会社製PET50(A)PLシン11Lは、片面に接着剤層を有する無色透明のフィルム状である。上記の金属箔を積層した電磁波遮蔽性複合シートについて、前記の測定法により電磁波遮蔽性能を測定し、その結果を、主な原料組成と共に、表1に示した。さらに電磁波遮蔽性能を測定チャートを図4に示した。   About said electromagnetic wave shielding sheet | seat, as the layer structure shown in FIG. 1, the metal foil base material double-sided tape aluminum foil 20micromicrometer (metal foil) which has an acrylic conductive adhesive layer on both surfaces on the single side | surface of the said electromagnetic wave shielding sheet Of Teraoka Seisakusho Co., Ltd.). And embossed PET38x1-A3 (product name made by Nipper Co., Ltd.) is joined on the adhesive layer surface opposite to the metal foil base double-sided tape aluminum foil 20μ, and the metal foil base material of the electromagnetic wave shielding sheet described above. PET 50 (A) PL thin 11L (trade name, manufactured by Lintec Co., Ltd.) was bonded to the non-bonded surface of the double-sided tape-like aluminum foil 20 μm with an adhesive layer to obtain an electromagnetic wave shielding composite sheet in which metal foils were laminated. The above-mentioned PET 50 (A) PL thin 11L manufactured by Lintec Corporation is a colorless and transparent film having an adhesive layer on one side. About the electromagnetic wave shielding composite sheet laminated with the above metal foil, the electromagnetic wave shielding performance was measured by the above-described measurement method, and the results are shown in Table 1 together with main raw material compositions. Further, a measurement chart of electromagnetic wave shielding performance is shown in FIG.

[実施例2]
実施例1と同様にしてカーボンナノチューブが均一に分散した厚さ0.35mm、表面が平滑で黒色の電磁波遮蔽性シートを得た。この様にして得た電磁波遮蔽性シート2枚をカーボン系導電性接着剤(信越化学株式会社製KE3491)で相互に接合し、さらに接合体の外側の両面に無色透明のリンテック株式会社製PET50(A)PLシン11Lを積層して被覆し、最終構成としての2シートを積層した電磁波遮蔽性複合シートを得た。この積層電磁波遮蔽性複合シートについて前記の測定法により電磁波遮蔽性能を測定し、さらに、三菱化学製MCP T−410型(4探針法)装置を使用して体積固有抵抗率を測定し、その結果を主な原料組成と共に、表1に示した。さらに電磁波遮蔽性能を測定チャートを図5に示した。
[Example 2]
In the same manner as in Example 1, a black electromagnetic wave shielding sheet having a thickness of 0.35 mm in which carbon nanotubes were uniformly dispersed and a smooth surface was obtained. The two electromagnetic wave shielding sheets obtained in this way were bonded to each other with a carbon-based conductive adhesive (KE3491 manufactured by Shin-Etsu Chemical Co., Ltd.), and colorless and transparent Lintec Co., Ltd. PET50 (on both sides of the bonded body) A) PL thin 11L was laminated and covered to obtain an electromagnetic wave shielding composite sheet in which two sheets as a final structure were laminated. The laminated electromagnetic wave shielding composite sheet was measured for electromagnetic wave shielding performance by the above-described measurement method, and further, the volume resistivity was measured using an MCP T-410 type (4 probe method) device manufactured by Mitsubishi Chemical. The results are shown in Table 1 together with main raw material compositions. Further, a measurement chart of electromagnetic wave shielding performance is shown in FIG.

[実施例3]
実施例1において、カーボンナノチューブ、Multiwall carbon nanotube(アルドリッチ社製商品名)4.50gの代わりに、昭和電工株式会社製気相成長炭素繊維VGCF(商品名)4.50gを使用した以外は、実施例1と全く同様にして、気相成長炭素繊維が均一に分散した厚さ0.35mm、表面が平滑で黒色の電磁波遮蔽性シートを得、さらに実施例1と同様にして図1に示す層構成のように、上記の金属箔基材両面テープアルミ箔20μを積層した電磁波遮蔽性複合シートを得た。上記の金属箔を積層した電磁波遮蔽性複合シートについて、前記の測定法により電磁波遮蔽性能を測定し、その結果を主な原料組成と共に、表1に示した。さらに電磁波遮蔽性能を測定チャートを図6に示した。
[Example 3]
In Example 1, in place of 4.50 g of carbon nanotube, Multiwall carbon nanotube (trade name, manufactured by Aldrich), except that 4.50 g of vapor-grown carbon fiber VGCF (trade name) manufactured by Showa Denko KK was used. In exactly the same manner as in Example 1, a 0.35 mm thick, black-surfaced electromagnetic wave shielding sheet in which vapor-grown carbon fibers were uniformly dispersed was obtained, and the layers shown in FIG. An electromagnetic wave shielding composite sheet in which the metal foil base double-sided tape aluminum foil 20 μ was laminated as described above was obtained. About the electromagnetic wave shielding composite sheet laminated with the above metal foil, the electromagnetic wave shielding performance was measured by the above measuring method, and the results are shown in Table 1 together with main raw material compositions. Further, a measurement chart of electromagnetic wave shielding performance is shown in FIG.

[実施例4]
実施例3と同様にして気相成長炭素繊維が均一に分散した厚さ0.35mm、表面が平滑で黒色の電磁波遮蔽性シートを得た。この様にして得たシート状電磁波遮蔽性材料2枚をカーボン系導電性接着剤(信越化学株式会社製KE3491)で相互に接合し、さらに接合体の外側の両面に無色透明のリンテック株式会社製PET50(A)PLシン11Lを積層して被覆し、最終構成としての2シートを積層した電磁波遮蔽性複合シートを得た。この電磁波遮蔽性複合シートについて前記の測定法により電磁波遮蔽性能を測定し、し、さらに、三菱化学製MCP T−410型(4探針法)装置を使用して体積固有抵抗率を測定し、その結果を主な原料組成と共に、表1に示した。さらに電磁波遮蔽性能を測定チャートを図7に示した。
[Example 4]
In the same manner as in Example 3, a black electromagnetic wave shielding sheet having a thickness of 0.35 mm in which vapor-grown carbon fibers were uniformly dispersed and a smooth surface was obtained. Two sheets of the electromagnetic wave shielding material obtained in this way are bonded to each other with a carbon-based conductive adhesive (KE3491 manufactured by Shin-Etsu Chemical Co., Ltd.), and are further made of colorless and transparent Lintec Co., Ltd. on both sides of the bonded body. PET 50 (A) PL thin 11L was laminated and covered to obtain an electromagnetic wave shielding composite sheet in which two sheets as the final structure were laminated. For this electromagnetic wave shielding composite sheet, the electromagnetic wave shielding performance is measured by the above-described measurement method, and further, the volume resistivity is measured using an MCP T-410 type (4 probe method) device manufactured by Mitsubishi Chemical, The results are shown in Table 1 together with main raw material compositions. Further, a measurement chart of electromagnetic wave shielding performance is shown in FIG.

[実施例5]
実施例1と同様にして、カーボンナノチューブが均一に分散した厚さ0.35mm、表面が平滑で黒色の電磁波遮蔽性シートを得た。この様にして得た電磁波遮蔽性シート2枚の間に、両面にアクリル系導電性接着剤を塗布した前記の金属箔基材両面テープアルミ箔20μ(株式会社寺岡製作所製商品名)を挟設して積層し、さらに、図3に示す層構成のように、当該積層体の外側の両面に前記のPET50(A)PLシン11L(リンテック株式会社製商品名)を接着剤層により接合して被覆し、最終構成として2シートの間に金属箔を挟設した電磁波遮蔽性複合シートを得た。この電磁波遮蔽性複合シートについて前記の測定法により電磁波遮蔽性能を測定し、その結果を主な原料組成と共に、表1に示した。さらに電磁波遮蔽性能を測定チャートを図8に示した。
[Example 5]
In the same manner as in Example 1, a black electromagnetic wave shielding sheet having a thickness of 0.35 mm in which carbon nanotubes were uniformly dispersed and a smooth surface was obtained. Between the two electromagnetic wave shielding sheets thus obtained, the metal foil base double-sided tape aluminum foil 20 μ (trade name, manufactured by Teraoka Seisakusho Co., Ltd.) coated with an acrylic conductive adhesive on both sides is sandwiched. Further, as in the layer configuration shown in FIG. 3, the PET 50 (A) PL thin 11L (trade name, manufactured by Lintec Corporation) is bonded to both outer surfaces of the laminate by an adhesive layer. As a final configuration, an electromagnetic wave shielding composite sheet having a metal foil sandwiched between two sheets was obtained. The electromagnetic wave shielding performance of the electromagnetic wave shielding composite sheet was measured by the above-described measurement method, and the results are shown in Table 1 together with main raw material compositions. Further, a measurement chart of electromagnetic wave shielding performance is shown in FIG.

[実施例6]
実施例3と同様にして、前記の気相成長炭素繊維VGCFが均一に分散した厚さ0.35mm、表面が平滑で黒色の電磁波遮蔽性シートを得た。この電磁波遮蔽性シートの両面に、前記の金属箔基材両面テープアルミ箔20μを積層し、さらに、図2に示す層構成のように、当該両金属箔基材両面テープアルミ箔20μの非被接合面側に前記のエンボスPET38×1−A3を積層して被覆し、最終構成として両面に金属箔を積層した電磁波遮蔽性複合シートを得た。この電磁波遮蔽性複合シートについて前記の測定法により電磁波遮蔽性能を測定し、その結果を主な原料組成と共に、表1に示した。さらに電磁波遮蔽性能を測定チャートを図9に示した。
[Example 6]
In the same manner as in Example 3, a black electromagnetic wave shielding sheet having a thickness of 0.35 mm, a smooth surface, and a black surface was obtained in which the above-mentioned vapor grown carbon fiber VGCF was uniformly dispersed. The metal foil base double-sided tape aluminum foil 20μ is laminated on both surfaces of the electromagnetic wave shielding sheet, and the two metal foil base double-sided tape aluminum foil 20μ is not covered as in the layer structure shown in FIG. The embossed PET 38 × 1-A3 was laminated and coated on the bonding surface side, and an electromagnetic wave shielding composite sheet having metal foil laminated on both sides as a final configuration was obtained. The electromagnetic wave shielding performance of the electromagnetic wave shielding composite sheet was measured by the above-described measurement method, and the results are shown in Table 1 together with main raw material compositions. Further, a measurement chart of electromagnetic wave shielding performance is shown in FIG.

[比較例1]
実施例1において、カーボンナノチューブ、Multiwall carbon nanotube(アルドリッチ社製商品名)4.50gの代わりに、ケッチェンブラックEC(ライオン株式会社製商品名)4.50gを使用した以外は、実施例1と全く同様にして、ケッチェンブラックECが均一に分散した厚さ0.35mm、表面が平滑で黒色の電磁波遮蔽性シートを得、さらに実施例1と同様にして図1に示す層構成のように、金属箔を積層した電磁波遮蔽性複合シートを得た。上記の金属箔を積層した電磁波遮蔽性複合シートについて、前記の測定法により電磁波遮蔽性能を測定し、その結果を主な原料組成と共に、表1に示した。さらに電磁波遮蔽性能を測定チャートを図10に示した。
[Comparative Example 1]
Example 1 is the same as Example 1 except that 4.50 g of Ketjen Black EC (trade name, manufactured by Lion Corporation) was used instead of 4.50 g of carbon nanotube, Multiwall carbon nanotube (trade name, manufactured by Aldrich). Exactly in the same manner, a black electromagnetic wave shielding sheet having a thickness of 0.35 mm in which Ketjen Black EC is uniformly dispersed and a smooth surface is obtained. Further, as in Example 1, the layer structure shown in FIG. An electromagnetic wave shielding composite sheet in which metal foils were laminated was obtained. About the electromagnetic wave shielding composite sheet laminated with the above metal foil, the electromagnetic wave shielding performance was measured by the above measuring method, and the results are shown in Table 1 together with main raw material compositions. Further, a measurement chart of electromagnetic wave shielding performance is shown in FIG.

[比較例2]
実施例3において、気相成長炭素繊維の代わりに前記のケッチェンブラックEC4.50gを使用した他は、実施例3と全く同様にして、最終構成としての2した積層電磁波遮蔽性複合シートを得た。この電磁波遮蔽性複合シートについて前記の測定法により電磁波遮蔽性能および三菱化学製MCP T−410型(4探針法)装置を使用して体積固有抵抗率を測定し、その結果を主な原料組成と共に、表1に示した。さらに電磁波遮蔽性能を測定チャートを図11に示した。
[Comparative Example 2]
In Example 3, a double laminated electromagnetic wave shielding composite sheet as a final structure was obtained in the same manner as in Example 3 except that 4.55 g of Ketjen Black EC was used instead of the vapor grown carbon fiber. It was. The electromagnetic wave shielding performance and volume specific resistivity of this electromagnetic wave shielding composite sheet were measured by the above-described measurement method using an MCP T-410 type (4 probe method) apparatus manufactured by Mitsubishi Chemical, and the results were used as main raw material compositions. The results are shown in Table 1. Further, a measurement chart of electromagnetic wave shielding performance is shown in FIG.

[比較例3]
Zetpol 4310(HNBRゴム、AN=18質量%)100g、ノクラックCD(老化防止剤)1g、ノクラックMB(老化防止剤)0.5g部、TAIC(架橋助剤)2.5gおよび架橋剤パーヘキサ25B(有機過酸化物)3gを170℃に加熱した二本ロール型6インチテストロール(入江鉄工所製)を使用して前ロール15rpm、後ロール12rpm条件でで混練しつつ実施例3で使用したものと同じ気相成長炭素繊維VGCF15質量部を少量ずつ添加しつつ添加終了後30分間混練して外観上均一になったカーボン粒子含有ゴムを得、このゴムを100トンプレス(東邦マシナリー製)を使用してバンピング2回、170℃・プレス圧力150kgf/cm2で20分プレス加工して、厚さ0.5mm、100mm×100mm大のシート2枚を成形して外観が良好なシートを得た。このシートについて三菱化学製MCP T−410型(4探針法)装置を使用して体積固有抵抗率を測定したが、測定範囲に入らず、107Ω・cm以上と推定された。この結果を主な原料組成と共に、表1に示した。

[Comparative Example 3]
100 g of Zetpol 4310 (HNBR rubber, AN = 18% by mass), 1 g of NOCLACK CD (anti-aging agent), 0.5 g part of NOCRACK MB (anti-aging agent), 2.5 g of TAIC (crosslinking aid) and the cross-linking agent perhexa 25B ( What was used in Example 3 while knead | mixing on the conditions of front roll 15rpm and rear roll 12rpm using the 2 roll type 6 inch test roll (made by Irie Iron Works) which heated 3g of organic peroxide) to 170 degreeC. Add 15 parts by mass of the same vapor-grown carbon fiber VGCF as in step 1, and knead for 30 minutes after completion of addition to obtain a carbon particle-containing rubber that is uniform in appearance. Use 100 ton press (manufactured by Toho Machinery) for this rubber. to bumping twice, and 20 minutes pressing at 170 ° C. · press pressure 150 kgf / cm 2, thickness 0.5 mm, 100 mm × 1 Appearance was obtained excellent sheet by molding the two large sheets 0 mm. The volume resistivity of this sheet was measured using an MCP T-410 type (4-probe method) apparatus manufactured by Mitsubishi Chemical, but was not within the measurement range, and was estimated to be 10 7 Ω · cm or more. The results are shown in Table 1 together with main raw material compositions.

Figure 2005191384
Figure 2005191384

[実施例および比較例による結果のまとめ]
表1に示した結果から明らかなように、添加する導電性微粒子としてカーボンナノチューブ、気相成長炭素繊維およびケッチェンブラックECを比較した場合、カーボンナノチューブおよび気相成長炭素繊維を用いたものの体積固有抵抗率は、ケッチェンブラックECを使用したものに比べて導電性が圧倒的に優れているが、その導電性が優れたカーボンナノチューブおよび気相成長炭素繊維を用いたものの中でも、樹脂成分がポリマーになる前の溶液状態のときに導電性微粒子を添加し、その状態で樹脂成分を共重合して得た目的とする電磁波遮蔽性材料は分散性が優れているため、金属箔を併用した場合も併用しない場合も共にそれぞれ、従来公知の樹脂への溶融状態での混練による添加法のものに比べて、優れた電磁波遮蔽効果を有する。
[Summary of results by Examples and Comparative Examples]
As is clear from the results shown in Table 1, when carbon nanotubes, vapor-grown carbon fibers, and ketjen black EC are compared as conductive fine particles to be added, the volume-specificity of those using carbon nanotubes and vapor-grown carbon fibers The resistivity is overwhelmingly superior to that using Ketjen Black EC, but among those using carbon nanotubes and vapor-grown carbon fibers with excellent conductivity, the resin component is a polymer. When the metal foil is used in combination with the target electromagnetic wave shielding material obtained by adding conductive fine particles in the solution state before becoming a resin and copolymerizing the resin component in that state. In both cases, the electromagnetic wave shielding effect is superior to those of conventional addition methods by kneading in a molten state in a known resin. .

本発明の電磁波遮蔽用材料は、添加した導電性フィラーの分散性が優れているため、薄いシートでも優れた電磁遮蔽性を与えるため、外部環境からの電磁波障害を防御し、さらに詳しくは携帯端末、電器電子機器、家電用機器、高度医療用電子機器、精密電子機器、自動車車載用電子機器などの分野において、特に高周波数帯領域(GHz帯領域)の電磁波による誤動作等の障害を防御、防止するために使用でき、その産業上の効果は大である。   The electromagnetic shielding material of the present invention is excellent in the dispersibility of the added conductive filler, and thus provides excellent electromagnetic shielding even with a thin sheet, thus preventing electromagnetic interference from the external environment. Protects and prevents malfunctions caused by electromagnetic waves in the high frequency band (GHz band) especially in fields such as electrical and electronic equipment, home appliances, advanced medical electronic equipment, precision electronic equipment, and automotive electronic equipment The industrial effect is great.

実施例1、実施例3、比較例1の電磁波遮蔽性複合シートの層構成説明図Layer structure explanatory drawing of the electromagnetic wave shielding composite sheet of Example 1, Example 3, and Comparative Example 1 実施例6の電磁波遮蔽性複合シートの層構成説明図Layer structure explanatory drawing of the electromagnetic wave shielding composite sheet of Example 6 実施例5の電磁波遮蔽性複合シートの層構成説明図Layer structure explanatory drawing of the electromagnetic wave shielding composite sheet of Example 5 実施例1の電磁波遮蔽性複合シートの電磁波遮蔽効果測定チャートElectromagnetic wave shielding effect measurement chart of electromagnetic wave shielding composite sheet of Example 1 実施例2の電磁波遮蔽性複合シートの電磁波遮蔽効果測定チャートElectromagnetic wave shielding effect measurement chart of electromagnetic wave shielding composite sheet of Example 2 実施例3の電磁波遮蔽性複合シートの電磁波遮蔽効果測定チャートElectromagnetic wave shielding effect measurement chart of electromagnetic wave shielding composite sheet of Example 3 実施例4の電磁波遮蔽性複合シートの電磁波遮蔽効果測定チャートElectromagnetic wave shielding effect measurement chart of electromagnetic wave shielding composite sheet of Example 4 実施例5の電磁波遮蔽性複合シートの電磁波遮蔽効果測定チャートElectromagnetic wave shielding effect measurement chart of electromagnetic wave shielding composite sheet of Example 5 実施例6の電磁波遮蔽性複合シートの電磁波遮蔽効果測定チャートElectromagnetic wave shielding effect measurement chart of electromagnetic wave shielding composite sheet of Example 6 比較例1の電磁波遮蔽性複合シートの電磁波遮蔽効果測定チャートElectromagnetic wave shielding effect measurement chart of electromagnetic wave shielding composite sheet of Comparative Example 1 比較例2の電磁波遮蔽性シートの電磁波遮蔽効果測定チャートElectromagnetic wave shielding effect measurement chart of electromagnetic wave shielding sheet of Comparative Example 2

符号の説明Explanation of symbols

1:電磁波遮蔽性シート
2:アルミニウム箔層
3:同上アルミニウム箔に塗布された導電性接着剤層
4:PETフイルム層
5:同上フイルムに塗布された接着剤層
6:エンボスPETフイルム層


1: Electromagnetic wave shielding sheet 2: Aluminum foil layer 3: Conductive adhesive layer applied to aluminum foil as above 4: PET film layer 5: Adhesive layer applied as above film 6: Embossed PET film layer


Claims (18)

重合前は液状または有機溶媒に溶解して液状となる重合性組成物100質量部に対して直径1〜200nm、長さ1μm〜20μmの導電性ナノサイズ繊維状炭素材料を0.5〜20質量部添加し、溶液状態で混合し、重合して固化することにより得られる電磁波遮蔽性材料。
Before polymerization, 0.5 to 20 mass of conductive nano-sized fibrous carbon material having a diameter of 1 to 200 nm and a length of 1 to 20 μm with respect to 100 parts by mass of a polymerizable composition that is dissolved in a liquid or an organic solvent. An electromagnetic wave shielding material obtained by adding a part, mixing in a solution state, polymerizing and solidifying.
前記導電性ナノサイズ繊維状炭素材料がカーボンナノチューブであることを特徴とする請求項1に記載の電磁波遮蔽性材料。
2. The electromagnetic wave shielding material according to claim 1, wherein the conductive nano-sized fibrous carbon material is a carbon nanotube.
前記導電性ナノサイズ繊維状炭素材料が気相成長炭素繊維であることを特徴とする請求項1に記載の電磁波遮蔽性材料。
2. The electromagnetic wave shielding material according to claim 1, wherein the conductive nano-sized fibrous carbon material is a vapor-grown carbon fiber.
前記重合性組成物が、両末端がカルボキシル基で置換された液状アクリロニトリルブタジエン共重合体とエポキシ系樹脂とを主成分とすることを特徴とする請求項1から3までのいずれか1つに記載のいずれか一つに記載の電磁波遮蔽性材料。
The said polymerizable composition has as a main component the liquid acrylonitrile butadiene copolymer by which the both terminal was substituted by the carboxyl group, and an epoxy-type resin, It is any one of Claim 1 to 3 characterized by the above-mentioned. Electromagnetic wave shielding material as described in any one of these.
前記のエポキシ系樹脂が、ビスフェノールA系ジグリシジルエーテル型エポキシ樹脂であることを特徴とする請求項4に記載の電磁波遮蔽性材料。
The electromagnetic wave shielding material according to claim 4, wherein the epoxy resin is a bisphenol A diglycidyl ether type epoxy resin.
混合した溶液が所望の形状に成形された後に重合して固化されて成ることを特徴とする請求項1から5のいずれかに記載の電磁波遮蔽性材料。
6. The electromagnetic wave shielding material according to claim 1, wherein the mixed solution is polymerized and solidified after being formed into a desired shape.
電磁波遮蔽性材料がシート状であり、その少なくとも一つの面に金属箔を積層して成ることを特徴とする請求項6に記載の電磁波遮蔽性複合シート。
The electromagnetic wave shielding composite sheet according to claim 6, wherein the electromagnetic wave shielding material is in a sheet form and is formed by laminating a metal foil on at least one surface thereof.
複数のシート状電磁波遮蔽性材料の層を含み、その隣接するシート状電磁波遮蔽性材料層間の少なくとも一つの界面に金属箔が挟設されて成ることを特徴とする請求項6に記載の電磁波遮蔽性複合シート。
The electromagnetic wave shielding according to claim 6, comprising a plurality of sheet-like electromagnetic wave shielding material layers, and a metal foil sandwiched between at least one interface between adjacent sheet-like electromagnetic wave shielding material layers. Composite sheet.
電磁波遮蔽性材料の各々の厚さが1mm以下であり、且つ各金属箔の厚さが5μm〜50μmであることを特徴とする請求項7または8に記載の電磁波遮蔽性複合シート。
9. The electromagnetic wave shielding composite sheet according to claim 7, wherein each of the electromagnetic wave shielding materials has a thickness of 1 mm or less, and each metal foil has a thickness of 5 μm to 50 μm.
前記金属箔が、アルミニウム箔、銅箔、ニッケル箔から成る群より選択された少なくとも一つであることを特徴とする請求項7から9までのいずれか一つに記載の電磁波遮蔽性複合シート。
The electromagnetic shielding composite sheet according to any one of claims 7 to 9, wherein the metal foil is at least one selected from the group consisting of an aluminum foil, a copper foil, and a nickel foil.
液状または有機溶媒に溶解して液状である重合性組成物100質量部に対して直径1〜200nm、長さ1μm〜20μmの導電性ナノサイズ繊維状炭素材料を0.5〜20質量部添加して混合し、次いで重合して固形化することを特徴とする電磁波遮蔽性材料の製造方法。
0.5 to 20 parts by mass of a conductive nano-sized fibrous carbon material having a diameter of 1 to 200 nm and a length of 1 to 20 μm is added to 100 parts by mass of a polymerizable composition dissolved in a liquid or an organic solvent. A method for producing an electromagnetic wave shielding material, which comprises mixing and then polymerizing and solidifying.
重合性組成物が両末端がカルボキシル基で置換された液状アクリロニトリルブタジエンゴムとビスフェノールA系ジグリシジルエーテル型エポキシ樹脂とを含むことを特徴とする請求項11に記載の電磁波遮蔽性材料の製造方法。
The method for producing an electromagnetic wave shielding material according to claim 11, wherein the polymerizable composition comprises a liquid acrylonitrile butadiene rubber having both ends substituted with carboxyl groups and a bisphenol A diglycidyl ether type epoxy resin.
重合性組成物100質量部対してに重合触媒として3級アミン触媒を1〜5質量部併用することを特徴とする請求項11または12に記載の電磁波遮蔽性材料の製造方法。
The method for producing an electromagnetic wave shielding material according to claim 11 or 12, wherein 1 to 5 parts by mass of a tertiary amine catalyst as a polymerization catalyst is used in combination with 100 parts by mass of the polymerizable composition.
前記3級アミン触媒が、NN―ジメチルメタンアミン、NN―ジエチルエタンアミン、NN―ジプロピルプロパンアミン、NN―ジブチルブタンアミン、NN−ジフェニルベンゼンアミンの中の少なくとも1つであることを特徴とする請求項13記載の電磁波遮蔽性材料の製造方法。
The tertiary amine catalyst is at least one of NN-dimethylmethanamine, NN-diethylethanamine, NN-dipropylpropanamine, NN-dibutylbutanamine, NN-diphenylbenzeneamine. The manufacturing method of the electromagnetic wave shielding material of Claim 13.
重合反応に際して、150〜180℃で15〜20時間加熱し固形化することを特徴とする請求項13又は14に記載の電磁波遮蔽性材料の製造方法。
15. The method for producing an electromagnetic wave shielding material according to claim 13, wherein the polymerization reaction is solidified by heating at 150 to 180 ° C. for 15 to 20 hours.
重合触媒として3級アミン触媒を使用しない場合は150〜180℃で30〜40時間加熱することを特徴とする請求項11または12に記載の電磁波遮蔽性材料の製造方法。
The method for producing an electromagnetic wave shielding material according to claim 11 or 12, wherein when a tertiary amine catalyst is not used as the polymerization catalyst, heating is performed at 150 to 180 ° C for 30 to 40 hours.
混合した溶液が所望の形状に成形された後に重合して固化されて成ることを特徴とする請求項11から16までのいずれか一つに記載の電磁波遮蔽性材料の製造方法。
The method for producing an electromagnetic wave shielding material according to any one of claims 11 to 16, wherein the mixed solution is formed into a desired shape and then polymerized and solidified.
所望の形状に成形する方法が、重合性組成物溶液を内面が離型性の型枠内に流延した後、先ず溶媒を除去するものであることを特徴とする請求項17に記載の電磁波遮蔽性材料の製造方法。


The electromagnetic wave according to claim 17, wherein the method of forming the desired shape is to first remove the solvent after casting the polymerizable composition solution into a mold having an inner surface that is releasable. Manufacturing method of shielding material.


JP2003432802A 2003-12-26 2003-12-26 Electromagnetic wave shielding material and method for manufacturing the same Pending JP2005191384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003432802A JP2005191384A (en) 2003-12-26 2003-12-26 Electromagnetic wave shielding material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432802A JP2005191384A (en) 2003-12-26 2003-12-26 Electromagnetic wave shielding material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005191384A true JP2005191384A (en) 2005-07-14

Family

ID=34790393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432802A Pending JP2005191384A (en) 2003-12-26 2003-12-26 Electromagnetic wave shielding material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005191384A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091859A (en) * 2005-09-28 2007-04-12 Koyo Sangyo Co Ltd Conductive paint
WO2007046410A1 (en) * 2005-10-19 2007-04-26 Bussan Nanotech Research Institute Inc. Composition for reaction injection molding and object molded by reaction injection molding
JP2007291184A (en) * 2006-04-21 2007-11-08 Kuraray Co Ltd Nanocomposite resin composition and method for producing the same and molded form
CN100420714C (en) * 2006-06-09 2008-09-24 中国科学院广州化学研究所 Process for preparing carbon nano tube/epoxy resin composite material
CN100539821C (en) * 2007-11-29 2009-09-09 中国航空工业第一集团公司北京航空材料研究院 The preparation method of carbon nano-tube nonwoven cloth electromagnetic shielding composite material
CN102344645A (en) * 2010-08-05 2012-02-08 富葵精密组件(深圳)有限公司 Epoxy resin composite material and manufacturing method thereof
KR101383658B1 (en) 2010-11-10 2014-04-10 한국기계연구원 A Microwave Absorbing Structure composed of a dielectric lossy sheet and method thereof
KR20140058578A (en) * 2011-07-26 2014-05-14 세이지 까가와 Electromagnetic wave absorption film having high heat dissipation properties
WO2014087883A1 (en) 2012-12-03 2014-06-12 積水化学工業株式会社 Electromagnetic wave blocking material and layered body for elecromagnetic wave blocking
CN106042500A (en) * 2016-07-21 2016-10-26 苏州佳值电子工业有限公司 Ultrathin conductive aluminum foil
JP2017118073A (en) * 2015-12-25 2017-06-29 日本ゼオン株式会社 Electromagnetic wave absorbing material
JPWO2017110615A1 (en) * 2015-12-25 2018-10-18 国立研究開発法人産業技術総合研究所 Electromagnetic wave shielding carbon nanotube polymer composite material, electromagnetic wave shielding material, and method for producing electromagnetic wave shielding carbon nanotube polymer composite material
JP2018206812A (en) * 2017-05-30 2018-12-27 三井化学株式会社 Electromagnetic wave shielding body, manufacturing method and use of electromagnetic wave shielding body
KR101991722B1 (en) * 2019-02-20 2019-06-21 정민호 Electromagnetic wave shielding film and panel and manufacturing method thereof
JP2019143094A (en) * 2018-02-23 2019-08-29 ユニチカ株式会社 Conductive coating composition and conductive coating film
CN112105250A (en) * 2016-05-30 2020-12-18 阿莫绿色技术有限公司 Ultra-thin electromagnetic wave shielding sheet and electronic device having the same
CN113881108A (en) * 2021-10-07 2022-01-04 华南理工大学 Pineapple leaf fiber-reinforced flexible electromagnetic shielding film and preparation method thereof
CN117343572A (en) * 2023-11-22 2024-01-05 广东炎墨方案科技有限公司 Matte solder resist ink and preparation method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091859A (en) * 2005-09-28 2007-04-12 Koyo Sangyo Co Ltd Conductive paint
WO2007046410A1 (en) * 2005-10-19 2007-04-26 Bussan Nanotech Research Institute Inc. Composition for reaction injection molding and object molded by reaction injection molding
JP2007291184A (en) * 2006-04-21 2007-11-08 Kuraray Co Ltd Nanocomposite resin composition and method for producing the same and molded form
CN100420714C (en) * 2006-06-09 2008-09-24 中国科学院广州化学研究所 Process for preparing carbon nano tube/epoxy resin composite material
CN100539821C (en) * 2007-11-29 2009-09-09 中国航空工业第一集团公司北京航空材料研究院 The preparation method of carbon nano-tube nonwoven cloth electromagnetic shielding composite material
CN102344645A (en) * 2010-08-05 2012-02-08 富葵精密组件(深圳)有限公司 Epoxy resin composite material and manufacturing method thereof
KR101383658B1 (en) 2010-11-10 2014-04-10 한국기계연구원 A Microwave Absorbing Structure composed of a dielectric lossy sheet and method thereof
KR101953599B1 (en) * 2011-07-26 2019-03-04 세이지 까가와 Electromagnetic wave absorption film having high heat dissipation properties
KR20140058578A (en) * 2011-07-26 2014-05-14 세이지 까가와 Electromagnetic wave absorption film having high heat dissipation properties
WO2014087883A1 (en) 2012-12-03 2014-06-12 積水化学工業株式会社 Electromagnetic wave blocking material and layered body for elecromagnetic wave blocking
US10597508B2 (en) 2012-12-03 2020-03-24 Sekisui Chemical Co., Ltd. Electromagnetic wave shielding material and layered body for electromagnetic wave shielding
JP2017118073A (en) * 2015-12-25 2017-06-29 日本ゼオン株式会社 Electromagnetic wave absorbing material
JPWO2017110615A1 (en) * 2015-12-25 2018-10-18 国立研究開発法人産業技術総合研究所 Electromagnetic wave shielding carbon nanotube polymer composite material, electromagnetic wave shielding material, and method for producing electromagnetic wave shielding carbon nanotube polymer composite material
CN112105250A (en) * 2016-05-30 2020-12-18 阿莫绿色技术有限公司 Ultra-thin electromagnetic wave shielding sheet and electronic device having the same
CN106042500A (en) * 2016-07-21 2016-10-26 苏州佳值电子工业有限公司 Ultrathin conductive aluminum foil
JP2018206812A (en) * 2017-05-30 2018-12-27 三井化学株式会社 Electromagnetic wave shielding body, manufacturing method and use of electromagnetic wave shielding body
JP2019143094A (en) * 2018-02-23 2019-08-29 ユニチカ株式会社 Conductive coating composition and conductive coating film
JP7083148B2 (en) 2018-02-23 2022-06-10 ユニチカ株式会社 Conductive paint and conductive film
KR101991722B1 (en) * 2019-02-20 2019-06-21 정민호 Electromagnetic wave shielding film and panel and manufacturing method thereof
CN113881108A (en) * 2021-10-07 2022-01-04 华南理工大学 Pineapple leaf fiber-reinforced flexible electromagnetic shielding film and preparation method thereof
CN117343572A (en) * 2023-11-22 2024-01-05 广东炎墨方案科技有限公司 Matte solder resist ink and preparation method thereof
CN117343572B (en) * 2023-11-22 2024-03-19 广东炎墨方案科技有限公司 Matte solder resist ink and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2005191384A (en) Electromagnetic wave shielding material and method for manufacturing the same
Jia et al. Synergistic effect of graphite and carbon nanotubes on improved electromagnetic interference shielding performance in segregated composites
JP4836581B2 (en) Resin composition for GHz band electronic parts and GHz band electronic parts
Sobha et al. Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites
JP5205947B2 (en) Resin carbon composite material
Al-Saleh et al. Carbon nanofiber/polyethylene nanocomposite: Processing behavior, microstructure and electrical properties
KR20080030064A (en) Electromagnetic wave absorber
US20100311866A1 (en) Heirarchial polymer-based nanocomposites for emi shielding
WO2010085887A1 (en) Nanomaterial composites and methods of making
Jang et al. Effects of carbon fiber modification with multiwall CNT on the electrical conductivity and EMI shielding effectiveness of polycarbonate/carbon fiber/CNT composites
Verma et al. Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer composites
JP2956875B2 (en) Molding material for electromagnetic shielding
KR20210087026A (en) Boron nitride nanomaterial, and resin composition
US20190077975A1 (en) Nano-material shielding film and manufacturing method thereof
Xie et al. Microwave-assisted sintering to rapidly construct a segregated structure in low-melt-viscosity poly (lactic acid) for electromagnetic interference shielding
Sushmita et al. The journey of polycarbonate-based composites towards suppressing electromagnetic radiation
Wu et al. Effect of surface functionalized SiO2 particles filled polyolefin on the dielectric properties of laminates
Kwon et al. Scalable electrically conductive spray coating based on block copolymer nanocomposites
JP2019021838A (en) Electromagnetic wave shielding film, method for manufacturing the same, electromagnetic wave shielding film-attached printed wiring board, and method for manufacturing the same
KR101135055B1 (en) Fabrication method of polymer/carbon nanotube composite with good electromagnetic interference shielding efficiency and polymer/carbon nanotube composite using the same
Sit et al. Superior EMI shielding effectiveness with enhanced electrical conductivity at low percolation threshold of flexible novel ethylene methyl acrylate/single‐walled carbon nanotube nanocomposites
KR20190053666A (en) Carbon material composites
Zhang et al. Preparation of silver-coated silica microspheres with high electrical conductivity through Pyrogallol-Fe (Ш) coordinated surface functionalization
Khandelwal et al. Carbon nanotubes and polyaniline filled hybrid epoxy composites: assessing the viscoelastic behavior and mechanical properties
Vas et al. Electromagnetic shielding properties of nano carbon filled silicone rubber composites