JP2005189564A - Three-dimensional plate-shaped optical waveguide - Google Patents

Three-dimensional plate-shaped optical waveguide Download PDF

Info

Publication number
JP2005189564A
JP2005189564A JP2003431766A JP2003431766A JP2005189564A JP 2005189564 A JP2005189564 A JP 2005189564A JP 2003431766 A JP2003431766 A JP 2003431766A JP 2003431766 A JP2003431766 A JP 2003431766A JP 2005189564 A JP2005189564 A JP 2005189564A
Authority
JP
Japan
Prior art keywords
planar optical
optical waveguide
face
input end
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003431766A
Other languages
Japanese (ja)
Inventor
Kimiki Kobayashi
公樹 小林
Eisuke Yamaguchi
英祐 山口
Shinan Ou
士楠 汪
Hitoshi Niidate
均 新舘
Tsutomu Sumimoto
勉 住本
Kazuaki Morita
和章 森田
Tsugio Tamura
次男 田村
Shiro Katsuki
史朗 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP2003431766A priority Critical patent/JP2005189564A/en
Publication of JP2005189564A publication Critical patent/JP2005189564A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional plate-shaped optical waveguide in which even when an optical waveguide is a high-density and multi branching plate-shaped optical waveguide, it can be miniaturized and moreover strength, such as impact resistance is also improved. <P>SOLUTION: In the three-dimensional optical waveguide, a plate-shaped optical waveguide block 2 is constituted by stacking plate-shaped optical waveguides 1a to 1d, another plate-shape optical waveguide 3 is coupled to the plate-shaped optical waveguide 2 by being made to intersect the bolck 2 at 90 degrees, coupling end faces of respective plate-shaped optical waveguides 1a to 1d constituting the block 2 are ground while being slanted by a prescribed angle and a distance among cores of respective plate-shaped optical waveguides 1a to 1d and a distance among cores of the plate-shaped optical waveguide 3 are made to become an equal distance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導波路の小型化及び強度の向上を可能とする平面状光導波路に関する。   The present invention relates to a planar optical waveguide capable of reducing the size and improving the strength of a waveguide.

近年、FTTH(Fiber To The Home)の導入が始まり各家庭での高速インターネットの利用が急速に普及してきている。このような状況において通信ネットワークをますます充実させる必要性が高まり、高信頼性を有し低コストでかつ小型の光導波路が要求されてきている。   In recent years, the introduction of FTTH (Fiber To The Home) has begun, and the use of the high-speed Internet in each home has been rapidly spreading. Under such circumstances, there is an increasing need to enhance the communication network, and there is a demand for a highly reliable, low-cost and small-sized optical waveguide.

光導波路の中で、平面状光導波路は、屈折率の高いコアがこのコアよりも屈折率の低いクラッドに、周囲を覆われた構成をしている。多分岐の平面状光導波路はコアがツリー状に多数分岐して構成されている。   Among the optical waveguides, the planar optical waveguide has a structure in which a core having a high refractive index is covered with a clad having a refractive index lower than that of the core. A multi-branch planar optical waveguide is constituted by a large number of core branches in a tree shape.

このような平面状光導波路は、ガラスなどの基板上に写真製版技術を利用して作製され、コアが2次元に分岐している。従って、分岐数が多くなるとコアが平面状に広がりを持つようになる(例えば、特許文献1、特許文献2参照)。   Such a planar optical waveguide is produced on a substrate such as glass using a photoengraving technique, and the core is branched in two dimensions. Therefore, as the number of branches increases, the core has a planar spread (see, for example, Patent Document 1 and Patent Document 2).

図5は従来の平面状光導波路41を示しており、1つのコア42がツリー状に分岐して16のコアに別れている。即ち、この図は1x16分岐導波路の例を表している。なお、1x16分岐というのは、1個のコアから最終的に16個のコアに分岐をする構成のことをいう。ここで、導波路の幅方向がX軸、厚さ方向がY軸、長手方向がZ軸というように、座標軸を表示した。
特開平4−289803号公報 特開2003−29067号公報
FIG. 5 shows a conventional planar optical waveguide 41, in which one core 42 is branched in a tree shape and divided into 16 cores. That is, this figure shows an example of a 1 × 16 branching waveguide. The 1 × 16 branch means a configuration in which a branch is finally made from one core to 16 cores. Here, coordinate axes are displayed such that the width direction of the waveguide is the X axis, the thickness direction is the Y axis, and the longitudinal direction is the Z axis.
JP-A-4-289803 JP 2003-29067 A

ところで、上記のような従来の技術には、次のような解決すべき課題があった。   By the way, the conventional techniques as described above have the following problems to be solved.

近年の通信ネットワークの進展に伴い、平面状光導波路も高密度化が要求されてきている。平面状光導波路が高密度化されるということはコアの分岐数が増加することである。このコアの分岐数が多くなればなるほど、基板の上面に平行な方向、即ちX軸方向とZ軸方向に、コアが広がりを持ち、基板が大型化する傾向がある。   With the recent development of communication networks, planar optical waveguides are also required to have higher density. The increase in the density of the planar optical waveguide means that the number of core branches increases. As the number of branches of the core increases, the core tends to expand in the direction parallel to the upper surface of the substrate, that is, in the X-axis direction and the Z-axis direction, and the substrate tends to increase in size.

一方、市場においては、各種機器類の小型化が望まれており、平面状光導波路も例外ではない。従って、高密度でありながらコンパクトな平面状光導波路の実現が望まれていた。   On the other hand, miniaturization of various devices is desired in the market, and planar optical waveguides are no exception. Therefore, realization of a compact planar optical waveguide with high density has been desired.

また、従来の平面状光導波路は、前記したように、基板上面に平行な方向に2次元に分岐しているために、分岐数が増加すると、基板の面積を拡大させなければならない。しかし、基板の厚さは通常一定であるので、曲げ強度が低下し、耐衝撃性が悪くなるという問題があった。   In addition, since the conventional planar optical waveguide is two-dimensionally branched in a direction parallel to the upper surface of the substrate as described above, the area of the substrate must be increased when the number of branches increases. However, since the thickness of the substrate is usually constant, there is a problem that the bending strength is lowered and the impact resistance is deteriorated.

本発明は以上の点に着目してなされたもので、たとえ高密度化をしても小型化が可能で、しかも耐衝撃性にも優れた特性を有する平面状光導波路を提供することを目的とするものである。   The present invention has been made paying attention to the above points, and it is an object of the present invention to provide a planar optical waveguide that can be reduced in size even if the density is increased and that has excellent impact resistance. It is what.

本発明は以上の点を解決するため次の構成を採用する。   The present invention adopts the following configuration in order to solve the above points.

〈構成1〉
複数の平面状光導波路を、これらの上面が平行になるように積層して成る、平面状光導波路ブロックと、この平面状光導波路ブロックの入力端面に出力端面を結合させた他の平面状光導波路とを備え、上記複数の平面状光導波路と上記他の平面状光導波路とは、いずれも、所定の屈折率のコアがこのコアよりも屈折率の低いクラッドに周囲を覆われた構成をし、前記コアは、それぞれ、入力端面から出力端面に向かって、複数に分岐する分岐路を形成しており、上記平面状光導波路ブロックを構成する各平面状光導波路の上面と、他の平面状光導波路の上面とが、互いに所定の交差角で交差した状態で、前記平面状光導波路ブロックの入力端面と前記他の平面状光導波路の出力端面とが結合され、かつ、上記他の平面状光導波路の出力端面のN個の分岐路にあるN個のコアと、平面状光導波路ブロックを構成するN枚の各平面状光導波路の入力端面の、合計N個のコアが、それぞれ相互に結合されていることを特徴とする3次元平面状光導波路。
<Configuration 1>
A planar optical waveguide block formed by laminating a plurality of planar optical waveguides so that their upper surfaces are parallel to each other, and another planar optical light having an output end face coupled to an input end face of the planar optical waveguide block Each of the plurality of planar optical waveguides and the other planar optical waveguides has a configuration in which a core having a predetermined refractive index is covered with a clad having a refractive index lower than that of the core. Each of the cores forms a branching path that branches into a plurality from the input end face toward the output end face, and the upper surface of each planar optical waveguide constituting the planar optical waveguide block and another plane The input end face of the planar optical waveguide block and the output end face of the other planar optical waveguide are coupled to each other at a predetermined crossing angle with the upper surface of the planar optical waveguide, and the other plane Of the output end face of the optical waveguide A total of N cores of the N cores in each of the branch paths and the input end faces of each of the N planar optical waveguides constituting the planar optical waveguide block are coupled to each other. A three-dimensional planar optical waveguide.

このような構成にすると、平面状光導波路ブロックに3次元的に他の平面状光導波路を結合するようにしたので小型化が可能となりかつ耐衝撃性にも優れた平面状光導波路を実現することができる。   With such a configuration, since the planar optical waveguide block is three-dimensionally coupled to another planar optical waveguide, it is possible to reduce the size and realize a planar optical waveguide with excellent impact resistance. be able to.

〈構成2〉
上記各平面状光導波路を積層一体化したときに、当該各平面状光導波路の入力端面の合計N個のコア端が、当該全ての平面状光導波路の上面と交差する所定の直線上に配列されると同時に、上記他の平面状光導波路の出力端面にあるN個の分岐路にあるN個のコア端の配列間隔を保つように配列されることを特徴とする構成1記載の3次元平面状光導波路。
<Configuration 2>
When the above planar optical waveguides are laminated and integrated, a total of N core ends of the input end faces of the respective planar optical waveguides are arranged on a predetermined straight line that intersects the upper surfaces of all the planar optical waveguides. The three-dimensional structure according to Configuration 1, wherein the three cores are arranged so as to maintain the arrangement interval of the N core ends in the N branch paths on the output end face of the other planar optical waveguide. Planar optical waveguide.

このように各コアの位置関係を調整すると、任意の構成の平面状光導波路を相互に任意の交差角で結合させることができる。   By adjusting the positional relationship between the cores in this way, planar optical waveguides having an arbitrary configuration can be coupled to each other at an arbitrary crossing angle.

〈構成3〉
上記平面状光導波路ブロックを構成する各平面状光導波路の上面と、他の平面状光導波路の上面の交差角が、90度であることを特徴とする構成1記載の3次元平面状光導波路。
<Configuration 3>
3. The three-dimensional planar optical waveguide according to Configuration 1, wherein the crossing angle between the upper surface of each planar optical waveguide constituting the planar optical waveguide block and the upper surface of another planar optical waveguide is 90 degrees. .

このように交差角を90度にすると、通常最も多く作製されている平面状光導波路を小型化して3次元平面状光導波路を構成することができる。   When the crossing angle is set to 90 degrees in this way, the planar optical waveguide that is usually produced most often can be miniaturized to form a three-dimensional planar optical waveguide.

〈構成4〉
伝送光の光軸に対して垂直な面を基準面にしたとき、上記各平面状光導波路の入力端面及び上記他の面状光導波路の出力端面を、前記基準面に対して所定の角度だけ傾斜させるように、上記入力端面あるいは上記出力端面を研磨したことを特徴とする構成1記載の3次元平面状光導波路。
<Configuration 4>
When a plane perpendicular to the optical axis of the transmitted light is used as a reference plane, the input end face of each of the planar optical waveguides and the output end face of the other planar optical waveguide are set at a predetermined angle with respect to the reference plane. The three-dimensional planar optical waveguide according to Configuration 1, wherein the input end face or the output end face is polished so as to be inclined.

このように結合面を斜め研磨することにより、伝送光の反射が防止できるので前記平面状光導波路ブロックと他の平面状光導波路との結合効率が向上する。   By obliquely polishing the coupling surface in this manner, transmission light can be prevented from being reflected, so that the coupling efficiency between the planar optical waveguide block and another planar optical waveguide is improved.

〈構成5〉
各平面状光導波路の各入力端面を、当該平面状光導波路の上面を含む面内で、上記所定の角度だけ傾斜させるように一括研磨したことを特徴とする構成4記載の3次元平面状光導波路。
<Configuration 5>
The three-dimensional planar light guide according to Configuration 4, wherein each input end face of each planar optical waveguide is collectively polished so as to be inclined by the predetermined angle within a plane including the upper surface of the planar optical waveguide. Waveguide.

このように前記平面状光導波路ブロックを構成する各平面状光導波路の端面を長手方向に所定の角度をつけて行うと前記他の平面状光導波路との結合面での光の反射による影響が軽減される。   As described above, when the end surfaces of the respective planar optical waveguides constituting the planar optical waveguide block are formed at a predetermined angle in the longitudinal direction, there is an influence due to the reflection of light at the coupling surface with the other planar optical waveguide. It is reduced.

以下、本発明の実施の形態について具体例を用いて説明する。   Hereinafter, embodiments of the present invention will be described using specific examples.

図1は本発明の平面状光導波路の3次元的に結合した状況を示す斜視図である。
図1においては、1x4分岐の、それぞれ全く同一の構成の平面状光導波路1a〜1dが、4枚積層されて、破線で囲んだ一つの平面状光導波路ブロック2を形成している。この図の例では、各平面状光導波路1a〜1dの間に一定の幅の隙間が形成されている。各平面状光導波路1a〜1dは、例えば、適当なスペーサを挟んで積層してもよいし、あるいは隙間なく密着させて一体化してもよい。これとは別に、平面状光導波路1a〜1dと全く同一の構成の、1x4分岐の平面状光導波路3が用意される。この平面状光導波路3のことを、他の平面状光導波路3と呼ぶことにする。また、図のように、平面状光導波路3を構成する基板の光入力側の端面Tを入力端面、光分岐出力側の端面を出力端面と呼ぶことにする。なお、いずれの平面状光導波路も、それぞれ、所定の屈折率のコアがこのコアよりも屈折率の低いクラッドに、周囲を覆われた構成をしている。
FIG. 1 is a perspective view showing a three-dimensionally coupled state of planar optical waveguides of the present invention.
In FIG. 1, four planar optical waveguides 1a to 1d having exactly the same configuration, each having a 1 × 4 branch, are laminated to form one planar optical waveguide block 2 surrounded by a broken line. In the example of this figure, a gap having a certain width is formed between the planar optical waveguides 1a to 1d. Each of the planar optical waveguides 1a to 1d may be laminated, for example, with an appropriate spacer interposed therebetween, or may be integrated by closely contacting without any gap. Separately, a 1 × 4 branched planar optical waveguide 3 having the same configuration as that of the planar optical waveguides 1a to 1d is prepared. This planar optical waveguide 3 will be referred to as another planar optical waveguide 3. Further, as shown in the figure, the end face T on the light input side of the substrate constituting the planar optical waveguide 3 is called the input end face, and the end face on the light branching output side is called the output end face. Each of the planar optical waveguides has a configuration in which a core having a predetermined refractive index is covered with a clad having a refractive index lower than that of the core.

本発明では、平面状光導波路ブロック2と、1枚の他の平面状光導波路3とを3次元的に結合する。即ち、平面状光導波路ブロック2を構成する各平面状光導波路1a〜1dの上面と、他の平面状光導波路3の上面とが互いに90度交差した状態で結合されている。なお、上面というのは、導波路が形成された基板面のことである。その結果、平面状光導波路3の出力端面の4個の分岐されたコア4と、平面状光導波路ブロック2を構成する各平面状光導波路1a〜1dの入力端面の、合計4個のコア5が、それぞれ相互に結合される。平面状光導波路3は1x4分岐で、各平面状光導波路1a〜1dも1x4分岐である。従って、全体として、1x16分岐の平面状光導波路を形成することができる。また、この全体を図4に示したものと比較すると、X軸方向の幅を十分に狭くできるので、小型化が実現できる。   In the present invention, the planar optical waveguide block 2 and one other planar optical waveguide 3 are three-dimensionally coupled. That is, the upper surfaces of the planar optical waveguides 1a to 1d constituting the planar optical waveguide block 2 and the upper surfaces of the other planar optical waveguides 3 are coupled so as to intersect each other by 90 degrees. The top surface is the substrate surface on which the waveguide is formed. As a result, a total of four cores 5 consisting of the four branched cores 4 on the output end face of the planar optical waveguide 3 and the input end faces of the planar optical waveguides 1a to 1d constituting the planar optical waveguide block 2 are obtained. Are coupled to each other. The planar optical waveguide 3 has 1 × 4 branches, and the planar optical waveguides 1a to 1d also have 1 × 4 branches. Therefore, a 1 × 16 branched planar optical waveguide can be formed as a whole. Compared with the whole shown in FIG. 4, the width in the X-axis direction can be sufficiently narrowed, so that downsizing can be realized.

図2(a)は、各平面状光導波路1a〜1dと他の平面状光導波路3とを結合させた、完成後の平面状光導波路の斜視図である。
図1に示したしたものの完成後の平面状光導波路はこの図のようになる。一般的に矩形断面を有する材料の破断強度は断面係数に比例する。ここで、断面係数は、断面の幅(X軸方向のサイズ)をw、厚さ(Y軸方向のサイズ)をtとすると、wt2/6と表すことができる。即ち、幅wが小さく厚さtが厚くなるほど強度が向上することになる。本発明のような構成の平面状光導波路は、幅方向(図1のX軸方向)の広がりを抑制することができるから、小型化が可能となるばかりではなく、耐衝撃性等の強度にも優れたものとなる。さらに、4枚の平面状光導波路1a〜1dを積層するから、厚さtが増し、強度が向上する。
FIG. 2A is a perspective view of a completed planar optical waveguide in which the planar optical waveguides 1a to 1d and another planar optical waveguide 3 are coupled.
The planar optical waveguide after completion of what is shown in FIG. 1 is as shown in this figure. Generally, the breaking strength of a material having a rectangular cross section is proportional to the section modulus. Here, the section modulus is the width of the cross-section (the size of the X-axis direction) w, when the thickness of the (Y-axis direction size) t, can be expressed as wt 2/6. That is, the strength is improved as the width w is reduced and the thickness t is increased. Since the planar optical waveguide having the configuration as in the present invention can suppress the spread in the width direction (X-axis direction in FIG. 1), not only can the size be reduced, but also the strength such as impact resistance can be obtained. Will also be excellent. Further, since the four planar optical waveguides 1a to 1d are laminated, the thickness t is increased and the strength is improved.

図2(b)と(c)は、平面状光導波路ブロック2と他の平面状光導波路3との交差角の説明をする説明図である。
上記の実施例1において、平面状光導波路ブロック2を構成する各平面状光導波路1a〜1dの上面と、他の平面状光導波路3の上面とは、必ずしも、互いに正確に90度交差した状態で結合される必要はない。各平面状光導波路の構成も、それぞれ同一である必要はない。例えば、平面状光導波路1a〜1dのうちの一枚は、1x8分岐のものでもよい。即ち、いずれの平面状光導波路も、入力端面から出力端面に向かって、複数に分岐する、1xN(Nは2以上の正の任意の整数)分岐の分岐路を形成している。上記コア4は他の平面状光導波路3の分岐路にある。平面状光導波路ブロック2の積層枚数は、他の平面状光導波路3の分岐数と一致させればよく、複数の、任意の数の平面状光導波路を、これらの上面が平行になるように積層して成る、平面状光導波路ブロックを製造すればよい。
FIGS. 2B and 2C are explanatory diagrams for explaining the crossing angle between the planar optical waveguide block 2 and another planar optical waveguide 3.
In the first embodiment, the upper surfaces of the planar optical waveguides 1a to 1d constituting the planar optical waveguide block 2 and the upper surfaces of the other planar optical waveguides 3 are not necessarily in a state where they intersect each other exactly 90 degrees. There is no need to combine them. The configuration of each planar optical waveguide need not be the same. For example, one of the planar optical waveguides 1a to 1d may be a 1 × 8 branch. That is, any planar optical waveguide forms a branch path of 1 × N (N is a positive arbitrary integer of 2 or more) branching into a plurality of branches from the input end face toward the output end face. The core 4 is in a branch path of another planar optical waveguide 3. The number of stacked planar optical waveguide blocks 2 may be the same as the number of branches of other planar optical waveguides 3, and a plurality of arbitrary number of planar optical waveguides may be parallel to each other. A planar optical waveguide block formed by stacking may be manufactured.

各平面状光導波路1a〜1dの、入力端面のコア5の位置も、任意でよい。しかし、これら入力端面のコア5の端は、各平面状光導波路1a〜1dを積層一体化したときに、図の(b)に示すように、全ての平面状光導波路1a〜1dと交差する所定の直線8上に配列される。同時に、平面状光導波路3の出力端面にある4個の分岐路にある4個のコア4の端の配列間隔を保つように正確に配列されなければならない。この関係を保つ限り、平面状光導波路ブロック2を構成する各平面状光導波路1a〜1dの上面と、他の平面状光導波路3の上面の交差角αは、図の(b)と(c)に示すように、90度に満たない角度で構わない。   The position of the core 5 on the input end face of each of the planar optical waveguides 1a to 1d may be arbitrary. However, when the planar optical waveguides 1a to 1d are laminated and integrated, the ends of the cores 5 of these input end faces intersect with all the planar optical waveguides 1a to 1d as shown in FIG. They are arranged on a predetermined straight line 8. At the same time, it must be arranged accurately so as to maintain the arrangement interval of the ends of the four cores 4 in the four branch paths on the output end face of the planar optical waveguide 3. As long as this relationship is maintained, the crossing angle α between the upper surfaces of the respective planar optical waveguides 1a to 1d constituting the planar optical waveguide block 2 and the upper surfaces of the other planar optical waveguides 3 is as shown in FIGS. ), An angle less than 90 degrees may be used.

ところで、積層した平面状光導波路1a〜1dの端面と平面状光導波路3の端面とを結合する時に、その入力端面と出力端面とを光導波路の長手方向の光軸に対して垂直に密着させると、端面に光の反射が生じ結合損失が大きくなってしまう。そこで、通常は入出力両端面を斜めに研磨して、光の反射を減少させるようにすることが行われている。従って、本発明では、伝送光の光軸に対して垂直な面を基準面にしたとき、平面状光導波路の入力端面及び出力端面を、基準面に対して所定の角度だけ傾斜させる。   By the way, when the end faces of the laminated planar optical waveguides 1a to 1d and the end faces of the planar optical waveguide 3 are coupled, the input end face and the output end face are brought into close contact with the optical axis in the longitudinal direction of the optical waveguide. Then, light is reflected on the end face, resulting in a large coupling loss. Therefore, normally, both input and output end faces are polished obliquely so as to reduce light reflection. Therefore, in the present invention, when the plane perpendicular to the optical axis of the transmitted light is used as the reference plane, the input end face and the output end face of the planar optical waveguide are inclined by a predetermined angle with respect to the reference plane.

図3は実施例3の平面状光導波路を示したものであり、図3(a)は一実施例の側面図、(b)は他の実施例の側面図である。
例えば図3(a)に示すように、積層した各平面状光導波路1a〜1dの入力端面と平面状光導波路3の出力端面を角度βだけ傾斜させるように研磨すると、平面状光導波路3の端面からの光が反射して再び平面上光導波路3に戻ることがなくなる。図の(b)に示す実施例では、各平面状光導波路1a〜1dの入力端面をそれぞれ個別に、また平面状光導波路3の出力端面を角度βだけ傾斜させるように研磨した。即ち、図のZ軸方向が伝送光の光軸方向であり、X軸とY軸を含む面が、伝送光の光軸に対して垂直な面であるが、この面を基準にしたとき、各平面状光導波路1a〜1dの入力端面及び他の平面状光導波路3の出力端面を所定の角度だけ傾斜させる。これで、他の平面状光導波路3からの光が反射して再び平面上光導波路3に戻ることがなくなる。
FIG. 3 shows a planar optical waveguide of Example 3, FIG. 3 (a) is a side view of one example, and FIG. 3 (b) is a side view of another example.
For example, as shown in FIG. 3A, when the input end faces of the laminated planar optical waveguides 1a to 1d and the output end face of the planar optical waveguide 3 are polished so as to be inclined by an angle β, the planar optical waveguide 3 Light from the end face is not reflected and returned to the planar optical waveguide 3 again. In the embodiment shown in FIG. 5B, the input end faces of the respective planar optical waveguides 1a to 1d are polished individually and the output end face of the planar optical waveguide 3 is polished by an angle β. That is, the Z-axis direction in the figure is the optical axis direction of the transmission light, and the plane including the X axis and the Y axis is a plane perpendicular to the optical axis of the transmission light. The input end faces of the respective planar optical waveguides 1a to 1d and the output end faces of the other planar optical waveguides 3 are inclined by a predetermined angle. Thus, the light from the other planar optical waveguide 3 is not reflected and returned to the planar optical waveguide 3 again.

図4は実施例4の平面状光導波路を示したものであり、図4(a)はその斜視図、図4(b)は、平面状光導波路1a〜1dの各入力端面と平面状光導波路3の出力端面との関係を示す平面図である。
図の(b)に示すように、平面状光導波路1a〜1dの各入力端面と平面状光導波路3の出力端面を平面状光導波路1a〜1dの上面を含む面内で、角度θだけ傾斜させるように一括研磨した。このように平面状光導波路1a〜1dの各入力端面を研磨すると、全ての平面状光導波路1a〜1dの、各入力端面のコア5と、平面状光導波路3の、出力端面のコア4との位置関係が同等になり、実施例3と同様に、結合損失を少なくすることができるとともに反射光による影響がなくなる。
FIG. 4 shows a planar optical waveguide of Example 4, FIG. 4 (a) is a perspective view thereof, and FIG. 4 (b) is an input end face of the planar optical waveguides 1a to 1d and a planar optical waveguide. 3 is a plan view showing a relationship with an output end face of a waveguide 3. FIG.
As shown in FIG. 5B, the input end faces of the planar optical waveguides 1a to 1d and the output end face of the planar optical waveguide 3 are inclined by an angle θ within a plane including the upper surfaces of the planar optical waveguides 1a to 1d. Lump-polishing to allow When the input end faces of the planar optical waveguides 1a to 1d are polished in this way, the cores 5 of the input end faces of all the planar optical waveguides 1a to 1d and the cores 4 of the output end faces of the planar optical waveguides 3 As in the third embodiment, the coupling loss can be reduced and the influence of the reflected light is eliminated.

上記したように本発明の平面状光導波路は、積層した複数の平面状光導波路により構成される平面状光導波路ブロックに対して、他の平面状光導波路を3次元的に結合したので、小型化が可能となり耐衝撃性等の強度も向上した特性を有するようになった。   As described above, the planar optical waveguide of the present invention is small in size because the other planar optical waveguide is three-dimensionally coupled to the planar optical waveguide block constituted by a plurality of laminated planar optical waveguides. It has become possible to make it possible to improve the strength such as impact resistance.

本発明の一実施の形態を表した斜視図である。It is a perspective view showing one embodiment of the present invention. (a)は完成後の平面状光導波路の斜視図、(b)と(c)は交差角の説明をする説明図である。(A) is the perspective view of the planar optical waveguide after completion, (b) and (c) are explanatory drawings explaining the crossing angle. 実施例3の平面状光導波路を示し、(a)は比較例の側面図、(b)は実施例の側面図である。The planar optical waveguide of Example 3 is shown, (a) is a side view of a comparative example, (b) is a side view of an Example. 実施例4の平面状光導波路を示したもので、(a)はその斜視図、(b)は入力端面と出力端面との関係を示す平面図である。FIG. 7 shows a planar optical waveguide of Example 4, where (a) is a perspective view and (b) is a plan view showing the relationship between an input end face and an output end face. 従来の平面状光導波路を表す斜視図である。It is a perspective view showing the conventional planar optical waveguide.

符号の説明Explanation of symbols

1 平面状光導波路
2 平面状光導波路ブロック
3 他の平面状光導波路
4 他の平面状光導波路のコア
5 平面状光導波路のコア
DESCRIPTION OF SYMBOLS 1 Planar optical waveguide 2 Planar optical waveguide block 3 Other planar optical waveguide 4 Core of other planar optical waveguide 5 Core of planar optical waveguide

Claims (5)

複数の平面状光導波路を、これらの上面が平行になるように積層して成る、平面状光導波路ブロックと、
この平面状光導波路ブロックの入力端面に出力端面を結合させた他の平面状光導波路とを備え、
前記複数の平面状光導波路と前記他の平面状光導波路とは、いずれも、所定の屈折率のコアがこのコアよりも屈折率の低いクラッドに周囲を覆われた構成をし、前記コアは、それぞれ、入力端面から出力端面に向かって、複数に分岐する分岐路を形成しており、
前記平面状光導波路ブロックを構成する各平面状光導波路の上面と、他の平面状光導波路の上面とが、互いに所定の交差角で交差した状態で、前記平面状光導波路ブロックの入力端面と前記他の平面状光導波路の出力端面とが結合され、
かつ、前記他の平面状光導波路の出力端面のN個の分岐路にあるN個のコアと、平面状光導波路ブロックを構成するN枚の各平面状光導波路の入力端面の、合計N個のコアが、それぞれ相互に結合されていることを特徴とする3次元平面状光導波路。
A planar optical waveguide block formed by laminating a plurality of planar optical waveguides such that their upper surfaces are parallel;
Another planar optical waveguide having an output end face coupled to the input end face of the planar optical waveguide block;
The plurality of planar optical waveguides and the other planar optical waveguides each have a configuration in which a core having a predetermined refractive index is covered with a clad having a refractive index lower than that of the core, , Each of which forms a branching path that branches into a plurality from the input end face toward the output end face,
The input end face of the planar optical waveguide block, with the upper surface of each planar optical waveguide constituting the planar optical waveguide block and the upper surface of another planar optical waveguide intersecting each other at a predetermined intersection angle The output end face of the other planar optical waveguide is coupled,
In addition, a total of N cores including N cores in N branch paths on the output end face of the other planar optical waveguide and input end faces of each of the N planar optical waveguides constituting the planar optical waveguide block The three-dimensional planar optical waveguides are characterized in that the cores are coupled to each other.
前記各平面状光導波路を積層一体化したときに、当該各平面状光導波路の入力端面の合計N個のコア端が、当該全ての平面状光導波路の上面と交差する所定の直線上に配列されると同時に、前記他の平面状光導波路の出力端面にあるN個の分岐路にあるN個のコア端の配列間隔を保つように配列されることを特徴とする請求項1記載の3次元平面状光導波路。   When the planar optical waveguides are laminated and integrated, a total of N core ends of the input end faces of the planar optical waveguides are arranged on a predetermined straight line that intersects the upper surfaces of all the planar optical waveguides. 3. At the same time, the other planar optical waveguides are arranged so as to maintain an arrangement interval of N core ends in N branch paths on an output end face of the other planar optical waveguide. Dimensional planar optical waveguide. 前記平面状光導波路ブロックを構成する各平面状光導波路の上面と、他の平面状光導波路の上面の前記交差角が、90度であることを特徴とする請求項1記載の3次元平面状光導波路。   2. The three-dimensional planar shape according to claim 1, wherein the crossing angle between the upper surface of each planar optical waveguide constituting the planar optical waveguide block and the upper surface of another planar optical waveguide is 90 degrees. Optical waveguide. 伝送光の光軸に対して垂直な面を基準面にしたとき、前記各平面状光導波路の入力端面及び前記他の面状光導波路の出力端面を、前記基準面に対して所定の角度だけ傾斜させるように、前記入力端面あるいは前記出力端面を研磨したことを特徴とする請求項1記載の3次元平面状光導波路。   When a plane perpendicular to the optical axis of the transmitted light is used as a reference plane, the input end face of each planar optical waveguide and the output end face of the other planar optical waveguide are set at a predetermined angle with respect to the reference plane. The three-dimensional planar optical waveguide according to claim 1, wherein the input end face or the output end face is polished so as to be inclined. 各平面状光導波路の各入力端面を、当該平面状光導波路の上面を含む面内で、前記所定の角度だけ傾斜させるように一括研磨したことを特徴とする請求項4記載の3次元平面状光導波路。   5. The three-dimensional planar shape according to claim 4, wherein each input end face of each planar optical waveguide is collectively polished so as to be inclined by the predetermined angle within a plane including the upper surface of the planar optical waveguide. Optical waveguide.
JP2003431766A 2003-12-26 2003-12-26 Three-dimensional plate-shaped optical waveguide Pending JP2005189564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431766A JP2005189564A (en) 2003-12-26 2003-12-26 Three-dimensional plate-shaped optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431766A JP2005189564A (en) 2003-12-26 2003-12-26 Three-dimensional plate-shaped optical waveguide

Publications (1)

Publication Number Publication Date
JP2005189564A true JP2005189564A (en) 2005-07-14

Family

ID=34789665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431766A Pending JP2005189564A (en) 2003-12-26 2003-12-26 Three-dimensional plate-shaped optical waveguide

Country Status (1)

Country Link
JP (1) JP2005189564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152272A (en) * 2012-01-24 2013-08-08 Nippon Telegr & Teleph Corp <Ntt> Higher order mode planar light wave circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152272A (en) * 2012-01-24 2013-08-08 Nippon Telegr & Teleph Corp <Ntt> Higher order mode planar light wave circuit

Similar Documents

Publication Publication Date Title
JP5747384B2 (en) Multi-layer waveguide type optical input / output terminal
US7127131B2 (en) Wavelength insensitive integrated optic polarization splitter
US8913860B2 (en) Optical waveguide structure and optical waveguide device
JP5240583B2 (en) Optical waveguide and spot size converter using the same
US8718423B2 (en) Optical branching element and optical branching circuit
JP5259829B2 (en) Optical coupling device and optical multiplexing / demultiplexing device
US7068871B2 (en) Optical wiring substrate, method of manufacturing optical wiring substrate and multilayer optical wiring
CN105980896A (en) Low loss optical crossing
US6801701B1 (en) System for bending polymer or glass optical wave guides
JP2008261952A (en) Waveguides crossing each other three-dimensionally
TWI442117B (en) Optical waveguide circuit and multi-core central processing unit using the same
JP5504476B2 (en) Optical waveguide crossing structure
JP4549949B2 (en) Optical element
JP2005189564A (en) Three-dimensional plate-shaped optical waveguide
JP2010085564A (en) Optical waveguide circuit and optical circuit device
JP5104568B2 (en) Light guide plate and optical module
TW202232156A (en) Compact dual polarization couplers for multi-core optical fibers
CN100356213C (en) Wavelength insensitive integrated optic polarization splitter
WO2023106167A1 (en) Optical connecting circuit device
JP2003131046A (en) Optical wiring connection structure
WO2014156959A1 (en) Optical end coupling type silicon optical integrated circuit
JPH02110425A (en) Optical circuit element
JPS6320965Y2 (en)
JP3897231B2 (en) Optical splitter
JP2879849B2 (en) Striped laterally confined optical waveguide