JP2005189342A - Optical isolator - Google Patents

Optical isolator Download PDF

Info

Publication number
JP2005189342A
JP2005189342A JP2003428247A JP2003428247A JP2005189342A JP 2005189342 A JP2005189342 A JP 2005189342A JP 2003428247 A JP2003428247 A JP 2003428247A JP 2003428247 A JP2003428247 A JP 2003428247A JP 2005189342 A JP2005189342 A JP 2005189342A
Authority
JP
Japan
Prior art keywords
optical
optical isolator
polarizer
faraday rotator
resin core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003428247A
Other languages
Japanese (ja)
Other versions
JP4395365B2 (en
Inventor
Yukiko Furukata
由紀子 古堅
Tetsuya Suga
哲也 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003428247A priority Critical patent/JP4395365B2/en
Publication of JP2005189342A publication Critical patent/JP2005189342A/en
Application granted granted Critical
Publication of JP4395365B2 publication Critical patent/JP4395365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of an optical isolator in which optical elements fall off, crack, decrease in joint strength, or degrade in optical characteristics. <P>SOLUTION: In the optical isolator 12 in which the optical elements 1 including a Faraday rotor 2 and polarizers 3 and 4 are joined to one another via joining members 5, each joining member 5 is such that the periphery of a resin core 6 is covered with a molten metal layer 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光源から出射された光を各種光学素子や光ファイバに導入した際に生じる戻り光を除去するために用いられる光アイソレータに関するものである。   The present invention relates to an optical isolator used for removing return light generated when light emitted from a light source is introduced into various optical elements and optical fibers.

光通信用モジュール等において、レーザ光源等の光源から出射した光は、各種光学素子や光ファイバに入射されるが、入射光の一部は各種光学素子や光ファイバの端面や内部で反射されたり散乱されたりする。この反射や散乱した光の一部は、戻り光として光源に戻ろうとするが、この戻り光を防止するために光アイソレータが用いられる。   In an optical communication module or the like, light emitted from a light source such as a laser light source is incident on various optical elements or optical fibers, but a part of the incident light is reflected on the end surfaces or inside of the various optical elements or optical fibers. It is scattered. A part of the reflected or scattered light tries to return to the light source as return light, and an optical isolator is used to prevent the return light.

従来、この種の光アイソレータは、2枚の偏光子の間に平板状のファラデー回転子を設置し、これら3つの部品を筒状の磁石内に部品ホルダを介して収納することにより構成されていた。通常、ファラデー回転子は飽和磁界内において所定の波長をもつ光の偏光面を45°回転する厚みに調整され、また2つの偏光子はそれぞれの透過偏光方向が45°回転方向にずれるように回転調整されて構成されている。   Conventionally, this type of optical isolator is configured by installing a flat Faraday rotator between two polarizers and storing these three components in a cylindrical magnet via a component holder. It was. Normally, the Faraday rotator is adjusted to a thickness that rotates the polarization plane of light having a predetermined wavelength in the saturation magnetic field by 45 °, and the two polarizers rotate so that their transmission polarization directions are shifted by 45 ° rotation direction. Coordinated and configured.

このような構成の光アイソレータは、ファラデー回転子と2つの偏光子の光学素子ごとに、金属製のホルダではんだ等で固定し、次にこの光学素子を固定した金属ホルダ同士をYAG溶接等で接合する製造方法が取られており、そのため部品点数が多くなり組立工数が多くなるばかりか、各部品間の光学上の調整作業が煩雑で、コスト高を招いていた。また小型化が難しかった。   The optical isolator having such a configuration is fixed to each optical element of the Faraday rotator and the two polarizers with a metal holder with solder or the like, and the metal holders to which the optical element is fixed are then bonded to each other by YAG welding or the like. The manufacturing method to join is taken, and therefore the number of parts is increased and the number of assembling steps is increased, and the optical adjustment work between the parts is complicated, resulting in high cost. It was difficult to reduce the size.

このため、平板状のファラデー回転子の光学面の両面にそれぞれ平板状の偏光子を接着一体化した構成の光アイソレータ素子を、筒状の磁石内中央部に配置した光アイソレータも提案されている。   For this reason, an optical isolator has been proposed in which an optical isolator element having a configuration in which a plate-like polarizer is bonded and integrated on both surfaces of the optical surface of a plate-like Faraday rotator is arranged in the center of the cylindrical magnet. .

特許文献1には図7に示す従来の小型化された光アイソレータ15が示されており、以下にその構成について説明する。   Patent Document 1 shows a conventional miniaturized optical isolator 15 shown in FIG. 7, and the configuration thereof will be described below.

光アイソレータ15はファラデー回転子16、偏光子17、18を光透過性が良く屈折率が制御されている光学接着剤19で接着した光アイソレータ素子20と筒状の磁石21とからなる。ここで偏光子17、18は透過する光の一方向の偏波成分を吸収し、その偏波成分に直交する偏波成分を透過する機能を有し、また、ファラデー回転子16は飽和磁界強度において所定波長の光の偏波面を約45度回転する機能を有する。また2つの偏光子17、18は、それぞれの透過偏波方向が約45度ずれるように配置されている。   The optical isolator 15 includes an optical isolator element 20 in which a Faraday rotator 16 and polarizers 17 and 18 are bonded with an optical adhesive 19 having a good light transmittance and a controlled refractive index, and a cylindrical magnet 21. Here, the polarizers 17 and 18 have a function of absorbing a polarization component in one direction of transmitted light and transmitting a polarization component orthogonal to the polarization component, and the Faraday rotator 16 has a saturation magnetic field strength. 1 has a function of rotating the polarization plane of light of a predetermined wavelength by about 45 degrees. The two polarizers 17 and 18 are arranged so that their transmission polarization directions are deviated by about 45 degrees.

図8は従来の光アイソレータ素子20の製造方法を示す図である。   FIG. 8 is a view showing a method of manufacturing the conventional optical isolator element 20.

まず図8(a)(b)に示すように、10mm角程度の大型の偏光子基板22と大型のファラデー回転子基板23と大型の偏光子基板24を接着一体化する。ここで偏光子基板22の透過偏波方向はある1辺に平行な方向に設定されており、偏光子基板24の透過偏波方向は、ある1辺に45度の方向に設定されている。各光学基板の固定は、偏光子基板22とファラデー回転子基板23、および偏光子基板24は互いの1辺が平行になるよう接着される。また、各光学素子の接着一体化には、前述したように光学的に透明な樹脂が接着剤として用いられ、一般的にエポキシ系の有機系接着剤が使用されている。   First, as shown in FIGS. 8A and 8B, a large polarizer substrate 22 of about 10 mm square, a large Faraday rotator substrate 23, and a large polarizer substrate 24 are bonded and integrated. Here, the transmission polarization direction of the polarizer substrate 22 is set to a direction parallel to one side, and the transmission polarization direction of the polarizer substrate 24 is set to a direction of 45 degrees on one side. Each optical substrate is fixed by adhering the polarizer substrate 22, the Faraday rotator substrate 23, and the polarizer substrate 24 so that one side of each is parallel. Further, as described above, an optically transparent resin is used as an adhesive for bonding and integrating the optical elements, and generally an epoxy organic adhesive is used.

ここで、光アイソレータに高いアイソレーションが要求される場合は、ファラデー回転子の偏波回転角度45+α度に対し、偏光子基板22と偏光子基板24の回転ズレを45−α度に精密に調整する必要がある。具体的には光を逆方向から(偏光子基板24側から)入射し、透過してくる光が最も小さくなるように偏光子基板22と偏光子基板24を回転調整する。   Here, when high isolation is required for the optical isolator, the rotational deviation between the polarizer substrate 22 and the polarizer substrate 24 is precisely adjusted to 45-α degrees with respect to the polarization rotation angle 45 + α degrees of the Faraday rotator. There is a need to. Specifically, light is incident from the opposite direction (from the side of the polarizer substrate 24), and the polarizer substrate 22 and the polarizer substrate 24 are rotationally adjusted so that the transmitted light is minimized.

次に図8(c)(d)に示すように、光アイソレータ素子用大型基板25を、ダイシング等で小さなチップ状の多数の光アイソレータ素子20に加工する。   Next, as shown in FIGS. 8C and 8D, the optical isolator element large substrate 25 is processed into a large number of small chip-like optical isolator elements 20 by dicing or the like.

このように光アイソレータ素子20を作製する場合には、大型の偏光子基板22とファラデー回転子基板23を交互に積層して、接着完了後にこれをカットして多数個の光アイソレータ素子20を得るといった方法を用いることにより、作業性や生産量を高くし、さらに部品点数を削減することができる
また特許文献2には、有機系の接着剤ではなくハンダを接合剤として用い、光学素子に形成したメタライズ膜を介して直接接合し、切断する方法も提案されている。
特開平4−338916号 特許第3439279号
When manufacturing the optical isolator element 20 in this way, large polarizer substrates 22 and Faraday rotator substrates 23 are alternately stacked, and after completion of bonding, a large number of optical isolator elements 20 are obtained. By using such a method, workability and production volume can be increased, and the number of parts can be reduced. Also, in Patent Document 2, solder is used as a bonding agent instead of an organic adhesive, and it is formed on an optical element. A method of directly joining and cutting through the metallized film has also been proposed.
JP-A-4-338916 Japanese Patent No. 3439279

しかしながら、図7の特許文献1に示すように、ファラデー回転子16の光学面の両面に板状の偏光子17、18を接着剤19により一体化した光アイソレータ素子20において接着剤19が有機系接着剤の場合は、耐湿性が劣り、特に高温高湿条件下での使用が制限される問題がある。また、長時間あるいは高出力のレーザ光中の使用では接着剤19の変質の危険があり、信頼性に問題がある。   However, as shown in Patent Document 1 in FIG. 7, in the optical isolator element 20 in which the plate-like polarizers 17 and 18 are integrated with the adhesive 19 on both surfaces of the optical surface of the Faraday rotator 16, the adhesive 19 is organic. In the case of an adhesive, moisture resistance is inferior, and there is a problem that its use under high temperature and high humidity conditions is restricted. Further, when used for a long time or in a high-power laser beam, there is a risk of deterioration of the adhesive 19, and there is a problem in reliability.

また、光アイソレータ素子20をレーザモジュールに組み込む際、光アイソレータ15は高温下に曝されるが、接着剤19として有機系接着剤を用いた場合はこれが分解し、気泡の発生、部材の脱落等が生じる。さらに、有機系接着剤19からのアウトガスはレーザチップやレンズなどの光学部品表面上に付着し、光学特性を劣化させる危険がある。   Further, when the optical isolator element 20 is incorporated into the laser module, the optical isolator 15 is exposed to a high temperature. However, when an organic adhesive is used as the adhesive 19, it is decomposed to generate bubbles, drop off members, etc. Occurs. Further, outgas from the organic adhesive 19 adheres to the surface of an optical component such as a laser chip or a lens, and there is a risk of deteriorating the optical characteristics.

またハンダにより光学素子同士がメタライズ膜を介して直接接合し、切断する方法は、偏光子とファラデー回転子の熱膨張係数が一般に大きく異なるため、その影響で偏光子、あるいはファラデー回転子にクラックが発生したり、残留応力により特性が劣化したりする問題がある。特に接合する基板が大きくなるほどクラックの発生は多くなり、歩留まりが悪くその実用性に問題がある。   In addition, the method in which optical elements are directly bonded and cut by soldering through a metallized film is generally greatly different in the thermal expansion coefficient between the polarizer and the Faraday rotator. There is a problem that it occurs or the characteristics deteriorate due to residual stress. In particular, the larger the substrates to be joined, the more cracks are generated, resulting in poor yields and problems in practicality.

本発明は、上記問題点に鑑みてなされたものであり、本発明の光アイソレータは、平板状のファラデー回転子及び偏光子を含む光学素子が互いに接合部材を介して接合されている光アイソレータにおいて、前記接合部材は樹脂コアの外周を溶融金属層で覆ったものであり、前記ファラデー回転子及び偏光子の透過光の有効開口径の領域外で接合されていることを特徴とする。   The present invention has been made in view of the above problems, and the optical isolator of the present invention is an optical isolator in which optical elements including a flat Faraday rotator and a polarizer are bonded to each other via a bonding member. The bonding member is formed by covering the outer periphery of the resin core with a molten metal layer, and is bonded outside the region of the effective aperture diameter of the transmitted light of the Faraday rotator and the polarizer.

また、前記光学素子のファラデー回転子及び偏光子は、平面が略同形の四角形状であり、前記ファラデー回転子又は偏光子面の四隅にメタライズ膜を形成するとともに、該メタライズ膜を介して前記接合部材が接合されていることを特徴とする。   Further, the Faraday rotator and the polarizer of the optical element have a rectangular shape with substantially the same plane, and a metallized film is formed at four corners of the Faraday rotator or the polarizer surface, and the bonding is performed via the metallized film. The members are joined.

さらに、前記光学素子の透過光の有効開口径の領域は、その平面に内接する円、または楕円形状であることを特徴とする。   Furthermore, the region of the effective aperture diameter of the transmitted light of the optical element is a circle or an ellipse inscribed in the plane.

本発明の構成によれば、光アイソレータの光学素子を、樹脂コアの外周を溶融金属層で覆った接合部材で接合することにより、外的応力を樹脂コアにより受け止めることができ、これにより、偏光子とファラデー回転子の熱膨張係数の差により生じる接合時のストレスが低減され、光学素子のクラックや接合部材のひび、光学特性の低下が発生せず、接合強度も増大する。その結果、温度サイクル試験や振動衝撃試験の信頼性も向上する。   According to the configuration of the present invention, the external stress can be received by the resin core by bonding the optical element of the optical isolator with the bonding member in which the outer periphery of the resin core is covered with the molten metal layer. The stress at the time of joining caused by the difference between the thermal expansion coefficients of the child and the Faraday rotator is reduced, the crack of the optical element, the crack of the joining member, the deterioration of the optical characteristics does not occur, and the joining strength increases. As a result, the reliability of the temperature cycle test and vibration shock test is also improved.

また、光学素子の間隔は、樹脂コア径dの大きさで一定とすることができ、設計値通りに光アイソレータ素子を作製することができる。さらに、光路上に樹脂接着剤が存在しないため、耐環境性、特に高温高湿特性、耐光性に優れた光アイソレータ提供できる。しかも、前記光学素子の透過光の有効開口径の領域は、その平面に内接する円、または楕円形状になるように構成したことで、上述の効果を有した小型化の光アイソレータを提供することができる。   Further, the interval between the optical elements can be made constant by the size of the resin core diameter d, and an optical isolator element can be manufactured as designed. Furthermore, since no resin adhesive is present on the optical path, it is possible to provide an optical isolator having excellent environmental resistance, particularly high temperature and high humidity characteristics, and light resistance. In addition, the area of the effective aperture diameter of the transmitted light of the optical element is configured to be a circle or an ellipse inscribed in the plane, thereby providing a miniaturized optical isolator having the above-described effects. Can do.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の光アイソレータに用いられる光アイソレータ素子の実施形態を示す斜視図であり、図2は本発明の特徴である光学素子1の透過光の有効開口径とメタライズ領域を示す図であり、図3は本発明に用いる接合部材の構造を示す断面図である。   FIG. 1 is a perspective view showing an embodiment of an optical isolator element used in the optical isolator of the present invention, and FIG. 2 is a diagram showing an effective aperture diameter and metallized region of transmitted light of the optical element 1 which is a feature of the present invention. FIG. 3 is a cross-sectional view showing the structure of the joining member used in the present invention.

なおここで有効開口径とは、光学素子の入射面上で、光が遮断されることなく透過する領域Aを示し、一般的に透過光のスポット形状が円形あるいは楕円形であることから、円形、あるいは楕円形の領域である。   Here, the effective aperture diameter refers to a region A through which light is transmitted without being blocked on the incident surface of the optical element. Since the spot shape of transmitted light is generally circular or elliptical, it is circular. Or an elliptical region.

光アイソレータ素子10は、偏光子3、ファラデー回転子2、偏光子4からなる光学素子1と、光学素子1のそれぞれを接続する接合部材5とから構成されている。   The optical isolator element 10 includes an optical element 1 including a polarizer 3, a Faraday rotator 2, and a polarizer 4, and a bonding member 5 that connects each of the optical elements 1.

偏光子3、4は、例えば、楕円体形の金属粒子がガラス内に分散された構造の偏光ガラスからなる。この偏光ガラスは長く延伸された金属粒子をガラス自身の中に一方向に配列させることにより偏光特性を持たせたガラスであり、金属粒子の延伸方向に垂直な偏波面を持つ光が透過し、平行な偏波面を持つ光は吸収される。例えば楕円体形の金属粒子がガラス内に分散された構造の偏光ガラスからなる。この偏光ガラスは長く延伸された金属粒子をガラス自身の中に一方向に配列させることにより偏光特性を持たせたガラスであり、金属粒子の延伸方向に垂直な偏波面を持つ光が透過し、平行な偏波面を持つ光は吸収される。   The polarizers 3 and 4 are made of, for example, polarizing glass having a structure in which ellipsoidal metal particles are dispersed in glass. This polarizing glass is a glass having polarization characteristics by arranging long stretched metal particles in one direction in the glass itself, light having a polarization plane perpendicular to the stretch direction of the metal particles is transmitted, Light with a parallel polarization plane is absorbed. For example, it is made of polarizing glass having a structure in which ellipsoidal metal particles are dispersed in glass. This polarizing glass is a glass having polarization characteristics by arranging long stretched metal particles in one direction in the glass itself, light having a polarization plane perpendicular to the stretch direction of the metal particles is transmitted, Light with a parallel polarization plane is absorbed.

ファラデー回転子2は常温において入射した光の偏波方向が45度回転する厚みに調整されている。材質は例えば、ビスマス置換ガーネット結晶等で、一般に、偏波面を回転させるためには、入射光線の光軸L方向に十分な磁界を印可することが必要であり、図1に示す光アイソレータ素子10に十分な磁界を印加すると後述する構成の光アイソレータとして機能する。   The Faraday rotator 2 is adjusted to have a thickness at which the polarization direction of light incident at room temperature rotates 45 degrees. The material is, for example, a bismuth-substituted garnet crystal. Generally, in order to rotate the plane of polarization, it is necessary to apply a sufficient magnetic field in the direction of the optical axis L of the incident light, and the optical isolator element 10 shown in FIG. When a sufficient magnetic field is applied to the optical isolator, it functions as an optical isolator having a configuration described later.

ところで、図1、図2に示すように、偏光子3、4やファラデー回転子2の光学素子1はいずれも平面が略同型の四角形状に加工されており、各対向する面の透過光の有効開口の領域Aを除く四隅にはメタライズ膜が形成されている。このメタライズ膜の材料は一般的には下地層としてCr、Ta、W、Ti、Mo、Ni、またはPtのうちの1種類の金属、あるいは少なくとも1種類を含む合金からなる層が形成され、最表層にはAu、Ni、Ptなどが使用される。さらに下地層と最表層の間に、中間層としてNi、Ptなどからなる層が形成されることもある。また、メタライズ膜14の形成方法としては、メッキ法によるウェットプロセスおよび真空蒸着法、スパッタリング法などのドライプロセスが知られているが、光学素子1の光学面または反射防止膜にキズの発生およびゴミの付着を防止するため、ドライプロセスが多用されている。   By the way, as shown in FIGS. 1 and 2, the optical elements 1 of the polarizers 3 and 4 and the Faraday rotator 2 are all processed into a quadrangular shape having substantially the same shape. Metallized films are formed at the four corners excluding the area A of the effective opening. The material of this metallized film is generally formed as a layer made of one kind of metal of Cr, Ta, W, Ti, Mo, Ni, or Pt or an alloy containing at least one kind as an underlayer. Au, Ni, Pt or the like is used for the surface layer. Furthermore, a layer made of Ni, Pt or the like may be formed as an intermediate layer between the base layer and the outermost layer. Further, as a method for forming the metallized film 14, a wet process by plating, a dry process such as a vacuum deposition method, and a sputtering method are known. However, scratches and dust are generated on the optical surface of the optical element 1 or the antireflection film. A dry process is often used to prevent the adhesion of slag.

光学素子1の透過光の有効開口径の領域Aは四角形状の光学素子1の平面4辺に内接した円、または楕円形状で、透過光の有効開口径の領域Aよりも外側をメタライズ領域14とするのが好ましい。即ち、光学素子1の偏光子3、ファラデー回転子2のそれぞれのメタライズ領域を対向させ、この部分のみに微小な樹脂コア6の外周に溶融金属層7で覆った接合部材5を介して接合することにより、光学的に不要な部分であるデッドスペースを有効に利用することができるので、透過光の有効開口径の領域Aに接合部材5がかかることなく、かつ接合時の応力は樹脂コア6で充分緩和されるので接合面積は少なくとも、大きな接合強度で接合することができる。その結果、小型化の光アイソレータ素子10を提供することが可能となるものである。   The area A of the effective aperture diameter of the transmitted light of the optical element 1 is a circle or an ellipse inscribed in the four sides of the rectangular optical element 1, and the outer side of the area A of the effective aperture diameter of the transmitted light is a metallized area. 14 is preferable. That is, the metallized regions of the polarizer 3 and the Faraday rotator 2 of the optical element 1 are opposed to each other, and only this portion is joined via the joining member 5 covered with the molten metal layer 7 on the outer periphery of the minute resin core 6. Thus, since the dead space which is an optically unnecessary portion can be effectively used, the joining member 5 is not applied to the region A of the effective aperture diameter of the transmitted light, and the stress at the time of joining is the resin core 6. Therefore, the bonding area can be bonded with at least a large bonding strength. As a result, the miniaturized optical isolator element 10 can be provided.

接合部材5は図3に示すように樹脂コア6に溶融金属層7をメッキした真球状の微小球で、樹脂コア6には耐熱性が高く、温度による減量率の少なく、溶融金属層7を溶融させる工程からその耐熱性は200℃以上必要の樹脂、具体的にはジビニルベンゼンやフッ素樹脂(ポリテトラフルオロエチレン等)、ポリスチレン等の材料を用いるとよい。   As shown in FIG. 3, the joining member 5 is a spherical microsphere in which a molten metal layer 7 is plated on a resin core 6. The resin core 6 has a high heat resistance and a small weight loss rate due to temperature. A resin having a heat resistance of 200 ° C. or higher from the melting step, specifically, a material such as divinylbenzene, a fluororesin (polytetrafluoroethylene, etc.), polystyrene, or the like may be used.

また、樹脂コア6の外周に好ましくは金属層8を介して溶融金属層7を形成してもよい。これにより、溶融金属層7との密着性を向上することができる。金属層8は溶融金属層7の密着をよくするため銅などの金属を数μmメッキする。溶融金属層7はその上から数μm〜数十μmの厚みで形成する。溶融金属層7はAu−Sn合金やPb−Sn合金、Au−Ge合金等のハンダ材や各種ロウ材を用いる。樹脂コア6とする接合部材5の大きさはΦ0.5mm〜Φ0.05mm程度の中から光学素子1の四隅に施したメタライズの面積に応じて選択するのがよい。   Further, the molten metal layer 7 may be formed on the outer periphery of the resin core 6 preferably through the metal layer 8. Thereby, adhesiveness with the molten metal layer 7 can be improved. The metal layer 8 is plated with a metal such as copper by several μm in order to improve the adhesion of the molten metal layer 7. The molten metal layer 7 is formed with a thickness of several μm to several tens of μm from above. The molten metal layer 7 uses a solder material such as an Au—Sn alloy, a Pb—Sn alloy, or an Au—Ge alloy, and various brazing materials. The size of the bonding member 5 serving as the resin core 6 is preferably selected from about Φ0.5 mm to Φ0.05 mm according to the areas of metallization applied to the four corners of the optical element 1.

なお、樹脂コア6にかかる応力を緩和するためにも、用いる樹脂のヤング率は1×1010Pa以下が好ましい。その理由は、溶融金属7として比較的やわらかくPb−Sn合金のヤング率が1.6×1010Paであるが、樹脂コア6を用いず溶融金属7のみで光学素子を接合した場合、接合時の残留応力の影響で光学素子1にクラックが発生したり、金属層8が光学素子1から剥離したりすることがある。従って樹脂コアは少なくとも1.6×1010Paより小さいことが必須であり、精鋭研究の結果、10mm角の光学素子を接合し1mm角に切り出しする場合、樹脂コア6のヤング率が1×1010Pa以下であれば光学素子あるいは溶融金属にクラック、割れの発生がないことがわかった。 In order to relieve the stress applied to the resin core 6, the Young's modulus of the resin used is preferably 1 × 10 10 Pa or less. The reason is that the Young's modulus of the Pb—Sn alloy is relatively soft as the molten metal 7 is 1.6 × 10 10 Pa, but when the optical element is bonded only by the molten metal 7 without using the resin core 6, Due to the residual stress, the optical element 1 may be cracked or the metal layer 8 may be peeled off from the optical element 1. Therefore, it is essential that the resin core is smaller than at least 1.6 × 10 10 Pa. As a result of elaborate research, when a 10 mm square optical element is bonded and cut out to 1 mm square, the Young's modulus of the resin core 6 is 1 × 10 6. It was found that there was no occurrence of cracks or cracks in the optical element or molten metal at 10 Pa or less.

図4は光学素子1の偏光子2とファラデー回転子3との接合状態を示す一部拡大断面図である。   FIG. 4 is a partially enlarged cross-sectional view showing a bonding state between the polarizer 2 and the Faraday rotator 3 of the optical element 1.

図に示すように接合部材5はメタライズ膜全面にぬれ、接合部材5の中心には樹脂コア6が配置されている。そして、接合部材5を介して光学素子1の偏光子3及びファラデー回転子2が接合されており、透過光の有効開口の領域A(図4では不図示)には偏光子2とファラデー回転子2間に空気層のみが存在する構成となっている。図示はされていないが、ファラデー回転子2と偏光子4との接合も上述と同様になっている。   As shown in the figure, the joining member 5 is wetted on the entire surface of the metallized film, and a resin core 6 is disposed at the center of the joining member 5. Then, the polarizer 3 and the Faraday rotator 2 of the optical element 1 are joined via the joining member 5, and the polarizer 2 and the Faraday rotator are in the region A (not shown in FIG. 4) of the effective aperture for transmitted light. Only the air layer exists between the two. Although not shown, the connection between the Faraday rotator 2 and the polarizer 4 is the same as described above.

このように光学素子1間の接合に、上述した樹脂コア6を有する接合部材5を用いることにより、外適応力を樹脂コア6全体で受け止めるため、ファラデー回転子2の熱膨張係数は約10.5×10−6/℃と偏光子3、4の熱膨張係数約6.5×10−6/℃の差により生じる接合のストレスが低減され、クラックや接合部材のひび、光学特性の低下が発生しにくくなる。さらに、温度サイクル試験や振動衝撃試験の信頼性も向上する。また、光学素子1の間隔は、樹脂コア6径dの大きさで一定となり、設計値通りに光アイソレータ素子10を作製することができる。 In this way, by using the bonding member 5 having the resin core 6 described above for bonding between the optical elements 1, the external adaptation force is received by the entire resin core 6, so that the thermal expansion coefficient of the Faraday rotator 2 is about 10.4. Bonding stress caused by the difference between the thermal expansion coefficient of about 6.5 × 10 −6 / ° C. between 5 × 10 −6 / ° C. and the polarizers 3 and 4 is reduced, and cracks, cracks in the bonding member, and optical characteristics are reduced. Less likely to occur. Furthermore, the reliability of the temperature cycle test and vibration shock test is also improved. Further, the distance between the optical elements 1 is constant with the size of the diameter d of the resin core 6, and the optical isolator element 10 can be manufactured as designed.

図5は、本発明の光アイソレータ素子10の製造方法を示す図である。   FIG. 5 is a diagram showing a method for manufacturing the optical isolator element 10 of the present invention.

まず、図5(a)に示すように、10mm角程度の偏光子基板22と偏光子基板24の各一面と、ファラデー回転子基板23の両面にメタライズ膜を形成する。メタライズ膜は光アイソレータ素子10の透過光の有効開口の領域Aを除く四隅に形成するため、基板上に略菱形パターンのメタライズ膜を多数個形成しておく。ここで偏光子22の透過偏波方向はある1辺に平行な方向に設定されており、偏光子24の透過偏波方向は、ある1辺に45度の方向に設定されている。このとき、偏光子基板22と偏光子基板24の相対的なあわせ位置をメタライズ膜の形成位置により決めておくことにより、光アイソレータ素子10を精度良く組み立てることができる。   First, as shown in FIG. 5A, metallized films are formed on each surface of the polarizer substrate 22 and the polarizer substrate 24 of about 10 mm square and both surfaces of the Faraday rotator substrate 23. Since the metallized films are formed at the four corners excluding the region A of the effective opening of the transmitted light of the optical isolator element 10, a number of metallized films having a substantially rhombus pattern are formed on the substrate. Here, the transmission polarization direction of the polarizer 22 is set to a direction parallel to one side, and the transmission polarization direction of the polarizer 24 is set to a direction of 45 degrees on one side. At this time, the optical isolator element 10 can be assembled with high accuracy by determining the relative alignment position of the polarizer substrate 22 and the polarizer substrate 24 by the formation position of the metallized film.

次に図5(b)に示すように、偏光子基板22、ファラデー回転子基板23、偏光子基板24の順に、樹脂コア6を有する接合部材5を間に挟んで、熱処理炉により接合部材5を溶融、固化して接合した。接合部材5は1メタライズパターンを4分割したサイズで4個用いても良いし、1メタライズパターンと同サイズで1個用いても良い。1メタライズパターンと同サイズの接合部材5を用いる場合は、接合領域における接合部材の割合が多くなり、より大きな接合強度が得られる。また接合部材の数も少なくなり、コスト削減および工数の削減の効果もある。なお、このように接合部材5を1メタライズパターンと同サイズで1個用いる場合、ダイシング加工にて樹脂コア6が4分割されるが、樹脂部に加工応力が残りやすいため、加工後に150度程度のアニール処理を行うことが望ましい。   Next, as shown in FIG. 5B, the bonding member 5 having a resin core 6 is sandwiched between the bonding member 5 in the order of the polarizer substrate 22, the Faraday rotator substrate 23, and the polarizer substrate 24. Were melted, solidified and joined. Four joining members 5 may be used in a size obtained by dividing one metallized pattern into four, or one joint member 5 may be used in the same size as one metallized pattern. When the bonding member 5 having the same size as that of one metallized pattern is used, the ratio of the bonding members in the bonding region is increased, and a larger bonding strength can be obtained. Further, the number of joining members is reduced, and there are effects of cost reduction and man-hour reduction. When one joining member 5 having the same size as that of one metallized pattern is used in this way, the resin core 6 is divided into four parts by dicing, but since processing stress tends to remain in the resin part, about 150 degrees after processing. It is desirable to perform the annealing process.

次に図5(c)(d)に示すように、光アイソレータ素子10の大型基板25を、ダイシング等で小さなチップ状の多数の光アイソレータ素子10に加工する。ダイシングは菱形のメタライズパターンの略中心を切断するように加工する。なお、1メタライズパターンと同サイズの接合部材5を1個用いる場合、ダイシング加工にて樹脂コア6が4分割されるが、樹脂部に加工応力が残りやすいため、加工後に150度程度のアニール処理を行うことが望ましい。   Next, as shown in FIGS. 5C and 5D, the large substrate 25 of the optical isolator element 10 is processed into a large number of small chip-like optical isolator elements 10 by dicing or the like. Dicing is processed so as to cut approximately the center of the diamond-shaped metallized pattern. When one joining member 5 having the same size as that of one metallized pattern is used, the resin core 6 is divided into four parts by dicing processing. However, since processing stress tends to remain in the resin portion, an annealing process of about 150 degrees after processing is performed. It is desirable to do.

以上説明したように、光アイソレータ素子10を作製する場合には、大型の偏光子基板22、23と大型のファラデー回転子基板23を交互に積層して、接着完了後にこれをカットして多数個の光アイソレータ素子10を得るといった方法を用いることにより、作業性や生産量を高くし、さらに部品点数を削減することができる。さらに樹脂コア6の外周に溶融金属層7を形成した接合部材5で接合することで、偏光子2、ファラデー回転子3とも溶融金属層7のみで接合する場合と比べて、大型の基板で接合時のわれ、クラック等の発生が非常に少なくなる。   As described above, when the optical isolator element 10 is manufactured, the large polarizer substrates 22 and 23 and the large Faraday rotator substrate 23 are alternately stacked, and after the completion of bonding, a large number of them are cut. By using the method of obtaining the optical isolator element 10, workability and production volume can be increased, and the number of parts can be reduced. Furthermore, by joining with the joining member 5 which formed the molten metal layer 7 in the outer periphery of the resin core 6, compared with the case where the polarizer 2 and the Faraday rotator 3 are joined only by the molten metal layer 7, they are joined by a large substrate. The occurrence of cracks, cracks, etc. is greatly reduced.

また偏光子基板22、24、およびファラデー回転子基板23は図4(a)と同じく略菱形のパターンでメタライズ膜を形成しておき、その後接合する前にあらかじめ所定のサイズに切り出しておき、個別に組み立てても良い。組み立ては、樹脂コア6の外周に溶融金属層7を形成した接合部材5を間に挟んで、熱処理炉により溶融金属層7を溶融、固化して接合する。このような製造方法の場合、組み立ての工数は若干多くなるが、ダイシング時のハンダ屑による汚れや光学素子のチッピングを少なくすることができ、歩留まりの向上が期待できる。   Further, the polarizer substrates 22, 24 and the Faraday rotator substrate 23 are formed with a metallized film in a substantially rhombus pattern as in FIG. 4A, and then cut into a predetermined size in advance before bonding. You may assemble to. Assembling is performed by melting and solidifying the molten metal layer 7 in a heat treatment furnace with the bonding member 5 having the molten metal layer 7 formed on the outer periphery of the resin core 6 interposed therebetween. In the case of such a manufacturing method, the number of assembling steps is slightly increased, but it is possible to reduce dirt due to solder scraps during dicing and chipping of the optical element, and an improvement in yield can be expected.

図6は、本発明の光アイソレータ12を示す断面図である。   FIG. 6 is a sectional view showing the optical isolator 12 of the present invention.

図1にて説明した光アイソレータ素子10の周りに円筒形の磁石9を配置し、さらに光アイソレータ素子10と磁石9は金属ホルダ11に接合されている。金属ホルダへの接合は、たとえばロウ材やハンダ材を用いる場合には、光アイソレータ素子10の接合に用いた接合部材5の溶融温度より低い温度で溶融するものを用いる。また樹脂の接着剤等を用いても良い。磁石はファラデー回転子に十分な飽和磁界強度を与えるサイズで、材質はSm−Co磁石などを用い、磁石の形状は円筒形に限ることもなく、ファラデー回転子に所定の磁界強度を満足すれば、その形状は限定されない。また、磁石不要のファラデー回転子を用いる場合は、本発明の光アイソレータ素子10のみで光アイソレータとして動作する。 A cylindrical magnet 9 is disposed around the optical isolator element 10 described with reference to FIG. 1, and the optical isolator element 10 and the magnet 9 are joined to a metal holder 11. For example, when a brazing material or a solder material is used, the metal holder is melted at a temperature lower than the melting temperature of the bonding member 5 used for bonding the optical isolator element 10. A resin adhesive or the like may also be used. The magnet is sized to give a sufficient saturation magnetic field strength to the Faraday rotator, and the material is Sm-Co magnet, and the shape of the magnet is not limited to a cylindrical shape, and if the Faraday rotator satisfies a predetermined magnetic field strength. The shape is not limited. When a Faraday rotator that does not require a magnet is used, the optical isolator element 10 of the present invention alone operates as an optical isolator.

また、本実施例では樹脂コア6、溶融金属層7とも球状体の場合について説明したが、本発明はこれに限らず、樹脂コア6形状は角型、プレート状等他の形状でもよい。   In the present embodiment, the case where both the resin core 6 and the molten metal layer 7 are spherical has been described. However, the present invention is not limited to this, and the resin core 6 may have other shapes such as a square shape and a plate shape.

以上説明したように、本発明の構成によれば、熱膨張係数の異なる偏光子とファラデー回転子を、樹脂コア6の外周に溶融金属層7を形成した接合部材5を介して接合することにより、熱膨張係数の差により生じる接合のストレスが低減され、光学素子のクラックや接合部材のひび、光学特性の低下が発生しない。さらに温度サイクル試験や振動衝撃試験の信頼性も向上する。また、光学素子1の間隔は、樹脂コア6の径dの大きさで一定となり、設計値通りに光アイソレータ素子10を作製することができる。さらに、光路上に樹脂接着剤が存在しないため、耐環境性、特に高温高湿特性、耐光性に優れた光アイソレータ提供できる。   As described above, according to the configuration of the present invention, the polarizer and the Faraday rotator having different thermal expansion coefficients are joined via the joining member 5 in which the molten metal layer 7 is formed on the outer periphery of the resin core 6. Bonding stress caused by the difference in thermal expansion coefficient is reduced, and cracks in the optical element, cracks in the bonding member, and deterioration in optical characteristics do not occur. Furthermore, the reliability of the temperature cycle test and vibration shock test is improved. Further, the distance between the optical elements 1 is constant depending on the size of the diameter d of the resin core 6, and the optical isolator element 10 can be manufactured as designed. Furthermore, since no resin adhesive is present on the optical path, it is possible to provide an optical isolator having excellent environmental resistance, particularly high temperature and high humidity characteristics, and light resistance.

本発明の実施例として図6に示した本発明の光アイソレータを試作し、その特性、温度サイクル試験を行った。各部品と構成について以下に説明する。   As an example of the present invention, the optical isolator of the present invention shown in FIG. 6 was prototyped and its characteristics and temperature cycle test were conducted. Each component and configuration will be described below.

偏光子基板は、コーニング社製のポーラコア(製品名)を用い、サイズは11mm角で厚み0.2mmのものを使用し、ある一辺を基準辺とし、入射側の偏光子3は基準辺に平行な偏波方向を透過し、出射側の偏光子基板は基準辺に対して45度の偏波方向を透過するように設定した。偏光子の熱膨張係数は6.5×10−6/℃である。 As the polarizer substrate, a polar core (product name) manufactured by Corning Inc. is used. The size is 11 mm square and the thickness is 0.2 mm. One side is a reference side, and the polarizer 3 on the incident side is parallel to the reference side. The polarization substrate on the output side was set to transmit a polarization direction of 45 degrees with respect to the reference side. The thermal expansion coefficient of the polarizer is 6.5 × 10 −6 / ° C.

ファラデー回転子はビスマス置換ガーネットを用い、サイズは11mm角で厚み0.4mm、飽和磁界強度中における偏波回転角は45度であった。いずれも波長1.55μmの光に対して動作する素子であり、偏光子、ファラデー回転子の両面には対空気(n=1)の反射防止膜が施されている。ファラデー回転子の熱膨張係数は10.5×10−6/℃である。 The Faraday rotator was a bismuth-substituted garnet, the size was 11 mm square, the thickness was 0.4 mm, and the polarization rotation angle in the saturation magnetic field strength was 45 degrees. Both are elements that operate with respect to light having a wavelength of 1.55 μm, and antireflection films for air (n = 1) are provided on both surfaces of the polarizer and the Faraday rotator. The thermal expansion coefficient of the Faraday rotator is 10.5 × 10 −6 / ° C.

偏光子基板の一面(ファラデー回転子と対向する面)とファラデー回転子の両面にメタライズ膜を形成した。この時のメタライズ膜形成方法はRFマグネトロンスパッタリング法とし、使用金属は下地にTi、中間層にPt、表面にAuの3層膜とした。次にそれぞれの光学素子基板を1mm角にダイシングにより切り出した。切り出し方向は基準辺に略平行方向、垂直方向で、メタライズ膜の形成領域を4分割するように切り出した。   Metallized films were formed on one surface of the polarizer substrate (the surface facing the Faraday rotator) and on both surfaces of the Faraday rotator. At this time, the metallized film was formed by RF magnetron sputtering, and the metal used was a three-layer film of Ti for the base, Pt for the intermediate layer, and Au for the surface. Next, each optical element substrate was cut into 1 mm square by dicing. The cut-out direction was substantially parallel to the reference side and perpendicular to the reference side, and the metallized film formation region was cut into four.

次に偏光子、ファラデー回転子、偏光子の順に重ね、各対向するメタライズ膜部8箇所に樹脂コアとする接合部材を配置し、熱処理炉により溶融固化して光学素子間の接合を行った。このとき接合部材はAu−Snとし、また樹脂コアの材料はジビニルベンゼンでその大きさは直径0.25mm、接合部材を含めたボールの直径は、0.3mmのものを使用した。   Next, a polarizer, a Faraday rotator, and a polarizer were stacked in this order, and a bonding member serving as a resin core was placed at each of the eight metallized film portions facing each other, and melted and solidified in a heat treatment furnace to bond the optical elements. At this time, the joining member was Au-Sn, the resin core material was divinylbenzene, the diameter was 0.25 mm, and the diameter of the ball including the joining member was 0.3 mm.

溶融固定された偏光子とファラデー回転子は図6に示すように、金属ホルダと磁石を取り付け、光アイソレータを5個作製し、特性の評価を行った。   As shown in FIG. 6, the melted and fixed polarizer and Faraday rotator were attached with a metal holder and a magnet to produce five optical isolators, and the characteristics were evaluated.

表1は試作した5個の光アイソレータのインサーションロス、アイソレーション特性とその平均値を示す。

Figure 2005189342
Table 1 shows the insertion loss and isolation characteristics of five prototype optical isolators and their average values.
Figure 2005189342

インサーションロスの平均値は0.21dB、アイソレーションの平均値が44.6dBといずれの光アイソレータもばらつきなく良好な特性が確認できた。また、光学素子へのクラック、われ、接合部材へのひび等の発生もなく、良好な結果を得ることができた。   The average value of the insertion loss was 0.21 dB and the average value of the isolation was 44.6 dB. All optical isolators were found to have good characteristics without variation. Further, there were no cracks in the optical element, cracks, cracks in the joining member, etc., and good results could be obtained.

以上の試作の結果から、50個の光アイソレータを作製し特性を測定し、信頼性評価を行った。試験は、Telcordia1221に示される振動試験、衝撃試験、温度サイクル試験、高温保持試験、低温保持試験、高温高湿試験を実施し、すべての試験において、挿入損失の変化量が±0.2dB以下、アイソレーションの変化量が±3dB以下と非常に良好な結果を得ることができた。   From the results of the above trial manufacture, 50 optical isolators were manufactured, characteristics were measured, and reliability was evaluated. The tests were conducted vibration test, impact test, temperature cycle test, high temperature holding test, low temperature holding test, high temperature high humidity test shown in Telcordia 1221. In all tests, the amount of change in insertion loss is ± 0.2 dB or less, A very good result was obtained in which the amount of change in isolation was ± 3 dB or less.

以上の試作により、光学特性が安定し、かつ、組み立てが容易で工数が少なく、光学素子の脱落、クラック、特性劣化がない信頼性に優れた光アイソレータを提供することができる。   By the above trial manufacture, it is possible to provide an optical isolator having stable optical characteristics, easy assembly, less man-hours, and excellent in reliability without dropping, cracking, and characteristic deterioration of optical elements.

本発明の光アイソレータ素子の実施形態を示す斜視図である。It is a perspective view which shows embodiment of the optical isolator element of this invention. 図2は光学素子の有効開口とメタライズ領域を示す図である。FIG. 2 is a diagram showing an effective aperture and a metallized region of the optical element. 樹脂コアとする接合部材の構造を示す断面図である。It is sectional drawing which shows the structure of the joining member used as a resin core. 光学素子の接合状態を示す断面図である。It is sectional drawing which shows the joining state of an optical element. 本発明の光アイソレータ素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the optical isolator element of this invention. 本発明の光アイソレータを示す断面図である。It is sectional drawing which shows the optical isolator of this invention. 従来の小型化された光アイソレータの構成を示す図である。It is a figure which shows the structure of the conventional optical isolator miniaturized. 従来の光アイソレータ素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the conventional optical isolator element.

符号の説明Explanation of symbols

1:光学素子
15、12:光アイソレータ
2、16:ファラデー回転子
3、4、17、18:偏光子
5:接合部材
6:樹脂コア
7:溶融金属層
8:金属層
9、21:磁石
10、20:光アイソレータ素子
11:金属ホルダ
13:有効開口
14:メタライズ領域
19:接着剤
22、24:偏光子基板
23:ファラデー回転子基板
25:光アイソレータ素子の大型基板
1: Optical elements 15, 12: Optical isolators 2, 16: Faraday rotators 3, 4, 17, 18: Polarizer 5: Bonding member 6: Resin core 7: Molten metal layer 8: Metal layers 9, 21: Magnet 10 , 20: optical isolator element 11: metal holder 13: effective opening 14: metallized region 19: adhesive 22, 24: polarizer substrate 23: Faraday rotator substrate 25: large substrate of optical isolator element

Claims (4)

平板状のファラデー回転子及び偏光子を含む光学素子が互いに接合部材を介して接合されている光アイソレータにおいて、前記接合部材は樹脂コアの外周を溶融金属層で覆ったものであり、前記ファラデー回転子及び偏光子の透過光の有効開口径の領域外で接合されていることを特徴とする光アイソレータ。 In an optical isolator in which optical elements including a flat Faraday rotator and a polarizer are bonded to each other via a bonding member, the bonding member is formed by covering the outer periphery of a resin core with a molten metal layer, and the Faraday rotation An optical isolator, wherein the optical isolator is bonded outside the region of the effective aperture diameter of the transmitted light of the polarizer and the polarizer. 前記光学素子のファラデー回転子及び偏光子は、平面が略同形の四角形状であり、前記ファラデー回転子又は偏光子面の四隅にメタライズ膜を形成するとともに、該メタライズ膜を介して前記接合部材が接合されていることを特徴とする請求項1に記載の光アイソレータ。 The Faraday rotator and the polarizer of the optical element have a rectangular shape with substantially the same plane, and a metallized film is formed at four corners of the Faraday rotator or polarizer surface, and the bonding member is interposed through the metallized film. The optical isolator according to claim 1, wherein the optical isolator is bonded. 前記光学素子の透過光の有効開口径の領域は、その平面に内接する円、または楕円形状であることを特徴とする請求項2に記載の光アイソレータ。 3. The optical isolator according to claim 2, wherein the region of the effective aperture diameter of the transmitted light of the optical element is a circle or an ellipse inscribed in the plane. 前記接合部材は球状体であることを特徴とする請求項1又は2に記載の光アイソレータ。 The optical isolator according to claim 1, wherein the joining member is a spherical body.
JP2003428247A 2003-12-24 2003-12-24 Optical isolator Expired - Fee Related JP4395365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428247A JP4395365B2 (en) 2003-12-24 2003-12-24 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428247A JP4395365B2 (en) 2003-12-24 2003-12-24 Optical isolator

Publications (2)

Publication Number Publication Date
JP2005189342A true JP2005189342A (en) 2005-07-14
JP4395365B2 JP4395365B2 (en) 2010-01-06

Family

ID=34787312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428247A Expired - Fee Related JP4395365B2 (en) 2003-12-24 2003-12-24 Optical isolator

Country Status (1)

Country Link
JP (1) JP4395365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158511A (en) * 2010-01-29 2011-08-18 Kyocera Kinseki Corp Optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158511A (en) * 2010-01-29 2011-08-18 Kyocera Kinseki Corp Optical device

Also Published As

Publication number Publication date
JP4395365B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP4395365B2 (en) Optical isolator
JP2000171631A (en) Polarizer and optical isolator using the same
JPH08146351A (en) Element for optical isolator and its production
JP2003255269A (en) Optical isolator
TW201741727A (en) Optical isolator
JP3439279B2 (en) Manufacturing method of optical isolator
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JP3570869B2 (en) Optical isolator element and method of manufacturing the same
JP4340102B2 (en) Optical isolator
JP4443212B2 (en) Method for manufacturing optical isolator element
JPH0712969Y2 (en) Optical isolator
JP4666931B2 (en) Optical isolator
JP2006098493A (en) Compound optical component and optical isolator element
JP3645700B2 (en) Optical isolator element and manufacturing method thereof
JP2001091899A (en) Surface mounting type isolator
JP2001356301A (en) Optical device
JPH09318912A (en) Optical element chip for optical isolator and its manufacture, and optical isolator
JP3688865B2 (en) Method for manufacturing device for optical isolator
JP2005283697A (en) Optical isolator
JP2005215328A (en) Optical isolator
JPH0954284A (en) Production of optical isolator
JP2023005437A (en) Optical element and manufacturing method therefor, optical isolator, and optical transmission device
JP2005283799A (en) Optical isolator
JPH03179317A (en) Faraday rotor for optical isolator and metallizing method thereof
JP2922627B2 (en) Optical isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061117

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090915

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20091019

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees