JP2005189186A - Flow-measuring device - Google Patents

Flow-measuring device Download PDF

Info

Publication number
JP2005189186A
JP2005189186A JP2003433463A JP2003433463A JP2005189186A JP 2005189186 A JP2005189186 A JP 2005189186A JP 2003433463 A JP2003433463 A JP 2003433463A JP 2003433463 A JP2003433463 A JP 2003433463A JP 2005189186 A JP2005189186 A JP 2005189186A
Authority
JP
Japan
Prior art keywords
water level
flow
divided
flow rate
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003433463A
Other languages
Japanese (ja)
Inventor
Yoshinori Kimura
伊徳 木村
Satoshi Iida
聡 飯田
Hiroaki Mori
浩昭 森
Masahiro Wakishima
政博 脇嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Denshikiki Co Ltd
Original Assignee
Yokogawa Denshikiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Denshikiki Co Ltd filed Critical Yokogawa Denshikiki Co Ltd
Priority to JP2003433463A priority Critical patent/JP2005189186A/en
Publication of JP2005189186A publication Critical patent/JP2005189186A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Measuring Volume Flow (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance measurement precision in the measurement of flow rate. <P>SOLUTION: This flow-measuring device is provided with a current meter for measuring the flow velocity of each of a plurality of divided areas set in the width direction of a measuring object, a water level gauge for measuring the water level of each divided area, and a calculating means for storing a section shape data showing the section shape of the measuring object; calculating the sectional area of each divided area, based on the water level obtained from the water level gauge and the section shape data; calculating the division flow rate of each divided area, based on the cross sectional area of each divided area and the flow velocity of each divided area obtained from the current meter; and calculating the total flow rate of the measuring object by adding each division flow rate together. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、測定対象の流量を測定する流量測定装置に関する。   The present invention relates to a flow rate measuring device for measuring a flow rate of a measurement target.

例えば特開平02−083416号公報には、複数の流速検出器を用いて河川の幅方向の各水面の流速を検出すると共に、単一の水位発信器を用いて河川の水位を検出し、各流速検出器の出力信号(流速信号)及び水位発信器の出力信号(水位信号)並びに河川の水位計測断面における断面形状データに基づいて河川の流量をリアルタイムに自動計測する河川流量監視システムが開示されている。この河川流量監視システムでは、流速の測線数に応じて河川を幅方向に分割し、各分割領域の断面積(分割断面積)を水位と断面形状データとに基づいて求め、各分割断面積を加算することによって全断面積を求め、この全断面積に流速を掛け合わせることによって流量を求める。
特開平02−083416号公報
For example, in Japanese Patent Application Laid-Open No. 02-083416, a plurality of flow velocity detectors are used to detect the flow velocity of each water surface in the width direction of the river, and a single water level transmitter is used to detect the water level of the river. A river flow rate monitoring system that automatically measures the flow rate of a river in real time based on an output signal (flow rate signal) of a flow velocity detector, an output signal (water level signal) of a water level transmitter, and cross-sectional shape data in a river water level measurement section is disclosed. ing. In this river flow monitoring system, the river is divided in the width direction according to the number of lines of flow velocity, and the sectional area (divided sectional area) of each divided area is obtained based on the water level and sectional shape data, and each divided sectional area is calculated. The total cross-sectional area is obtained by adding, and the flow rate is obtained by multiplying the total cross-sectional area by the flow velocity.
Japanese Patent Laid-Open No. 02-083416

ところで、河川流量監視システムでは、河川の低水位時における測定精度が低下するという問題がある。例えば、低水位になると河川の水路が分断されることがある。上記河川流量監視システムでは単一の水位発信器で河川の一箇所の水位のみを検出するので、このような分断状態の場合、単一の水位発信器で検出した一方の流路の水位に基づいて他方の流路の流量を求めると水位の差異による誤差が生じ、測定精度を著しく低下させる。なお、このような河川の幅方向における水位の差異は、低水位時における流路の分断状態だけではなく、河川の湾曲した箇所や高水位の場合にも生じることが知られている。   By the way, in the river flow rate monitoring system, there is a problem that the measurement accuracy at the time of low water level of the river is lowered. For example, when a low water level is reached, a river channel may be divided. In the above river flow monitoring system, only a single water level is detected by a single water level transmitter, so in such a divided state, based on the water level of one flow path detected by a single water level transmitter. If the flow rate of the other channel is obtained, an error due to a difference in water level occurs, and the measurement accuracy is significantly reduced. In addition, it is known that such a difference in the water level in the width direction of the river occurs not only in the state where the flow path is divided at the low water level but also in a curved portion of the river or a high water level.

また、水位と断面形状データとに基づいて分割断面積を求めるが、河川の断面形状によっては、水が流れているにも関わらず流速の測定部位に低水位によって川底が露出するために流速測定が不能状態となる分割領域が存在し、これによって測定精度が低下するという問題がある。   In addition, the divided cross-sectional area is obtained based on the water level and cross-sectional shape data. Depending on the cross-sectional shape of the river, the flow rate is measured because the river bottom is exposed due to the low water level even though water is flowing. However, there is a divided region where the measurement becomes impossible, and this causes a problem that the measurement accuracy is lowered.

さらには、上記河川流量監視システムでは、信号切替器を用いることにより各流速信号を順次時系列的に選択して演算処理部に取り込むために、各流速信号の演算処理部への取込タイミングにズレが生じる。この取込タイミングのズレは流速の計測時刻のズレとなるため、この結果測定精度が低下するという問題がある。   Furthermore, in the river flow monitoring system described above, in order to select each flow velocity signal in a time series in order by using a signal switching device and to load the flow velocity signal into the calculation processing portion, Deviation occurs. Since this shift in the capture timing becomes a shift in the measurement time of the flow velocity, there is a problem in that the measurement accuracy decreases as a result.

本発明は、このような事情に鑑みてなされたものであり、以下の点を目的とするものである。
(1)流量測定における測定精度の向上を図る。
(2)測定対象の水位変動に応じた測定精度の変動を抑制する。
This invention is made | formed in view of such a situation, and aims at the following points.
(1) To improve measurement accuracy in flow rate measurement.
(2) Suppress fluctuations in measurement accuracy according to fluctuations in the water level of the measurement target.

上記目的を達成するために、本発明では、測定対象の幅方向に複数設定された各分割領域の流速を測定する流速計と、各分割領域の水位を測定する水位計と、測定対象の断面形状を示す断面形状データを記憶し、水位計から得られた水位と断面形状データとに基づいて各分割領域の断面積を求め、各分割領域の断面積と流速計から得られた各分割領域の流速とに基づいて各分割領域の区分流量を求め、該各区分流量を合算することにより測定対象の総流量を求める演算手段とを具備する、という解決手段を採用する。   In order to achieve the above object, in the present invention, an anemometer that measures the flow velocity of each divided region set in the width direction of the measurement object, a water level meter that measures the water level of each divided region, and a cross section of the measurement object Stores cross-sectional shape data indicating the shape, calculates the cross-sectional area of each divided region based on the water level and cross-sectional shape data obtained from the water level meter, and obtains the cross-sectional area of each divided region and each divided region obtained from the anemometer A solution means is provided that includes a calculation means for obtaining a divided flow rate of each divided region based on the flow velocity of the divided areas and adding up the divided flow rates to obtain a total flow rate of the measurement object.

本発明によれば、水位計によって各分割領域毎に水位を測定するので、例えば流路が分断されたような場合において従来の1箇所の水位を測定する場合に比較して精度良く流量を測定することができる。   According to the present invention, since the water level is measured for each divided region by the water level meter, for example, when the flow path is divided, the flow rate is measured with higher accuracy than when measuring the water level at one conventional location. can do.

以下、図面を参照して、本発明の一実施形態について説明する。なお、本実施形態は、測定対象を河川としたものである。
図1は、本実施形態に係る流量測定装置を用いた流量計測システムのシステム構成図である。この図1において、符号Cは流量計、Mは処理装置(通信手段)、KはWebカメラ、Nはインターネット、Aは管理端末、T1,T2,……はユーザ端末である。本流量測定装置は、流量計C及び処理装置Mから構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the measurement target is a river.
FIG. 1 is a system configuration diagram of a flow rate measuring system using the flow rate measuring device according to the present embodiment. In FIG. 1, C is a flow meter, M is a processing device (communication means), K is a Web camera, N is the Internet, A is a management terminal, T1, T2,. This flow measuring device is composed of a flow meter C and a processing device M.

処理装置Mは、流量計CとインターネットNとの間に設けられると共に、WebカメラKが接続されている。この処理装置Mは、RS−485に準拠した通信方式で流量計Cと交信すると共に、イーサネット(登録商標)に準拠した通信方式でWebカメラKと交信し、またTCP/IPプロトコルに準拠した通信方式でインターネットNを介して管理端末Aやユーザ端末T1,T2,……と交信する。また、処理装置Mは、上記通信機能の他に、流量計Cから流速データを取得して各種処理を施すデータ処理機能をも併せ持つ。   The processing device M is provided between the flow meter C and the Internet N, and a Web camera K is connected thereto. The processing device M communicates with the flow meter C by a communication method compliant with RS-485, communicates with the Web camera K by a communication method compliant with Ethernet (registered trademark), and communicates with the TCP / IP protocol. Communicate with the management terminal A and user terminals T1, T2,... In addition to the communication function, the processing device M also has a data processing function for acquiring flow velocity data from the flow meter C and performing various processes.

WebカメラKは、流量計Cが測定対象としている河川の映像(測定現場映像)を撮影すると共に、当該測定現場映像をイーサネット(登録商標)に準拠した通信方式で処理装置Mに送信する。ここで、上記処理装置Mは、通信機能の一環としてのWebサーバ機能及びFTP(File Transfer Protocol)サーバ機能を備えており、流量計Cから取得した流量データやWebカメラKから取得した現場画像データをWebページやFTPに準拠したファイルの形態で管理端末Aやユーザ端末T1,T2,……に情報提供する。   The Web camera K captures an image of a river (measurement site image) that is measured by the flow meter C, and transmits the measurement site image to the processing device M by a communication method compliant with Ethernet (registered trademark). Here, the processing device M has a Web server function and an FTP (File Transfer Protocol) server function as part of the communication function, and the flow rate data acquired from the flow meter C and the on-site image data acquired from the Web camera K. Are provided to the management terminal A and the user terminals T1, T2,... In the form of a Web page or FTP-compliant file.

インターネットNは、周知のようにTCP/IPプロトコルに準拠した広域通信網である。管理端末Aは、このインターネットNを介して流量計Cや処理装置Mの動作状態の監視するコンピュータである。この管理端末Aは、例えば処理装置Mにアクセスすることによって、上述した制御データの処理装置Mへの提供、流量データの取得及び流量計Cや処理装置Mの動作状態を示す動作データの取得等を行う。ユーザ端末T1,T2,……は、流量データを必要とする一般ユーザが操作するコンピュータであり,インターネットNを介して処理装置Mにアクセスすることによって流量データを取得する。   As is well known, the Internet N is a wide area communication network conforming to the TCP / IP protocol. The management terminal A is a computer that monitors the operation state of the flow meter C and the processing device M via the Internet N. The management terminal A accesses the processing device M, for example, provides the control data to the processing device M, acquires flow data, and acquires operation data indicating the operation state of the flow meter C and the processing device M, etc. I do. User terminals T1, T2,... Are computers operated by general users who need flow rate data, and obtain flow rate data by accessing the processing device M via the Internet N.

図2は、上記流量計Cの機能構成を示すブロック図である。この図に示すように、流量計Cは、電波流速計F1〜F5、水位計L1〜L5、RS−485I/F1A〜1C、CPU(Central Processing Unit)2(演算手段)、フラッシュメモリ3及び共有メモリ4等から構成されてている。これら各構成要素のうち、RS−485I/F1A〜1C、CPU2、フラッシュメモリ3及び共有メモリ4は、装置本体H内に収容されている。すなわち、本流量計Cは、合計5台の電波流速計F1〜F5(流速計群)、同じく合計5台の水位計L1〜L5(水位計群)及び装置本体Hから構成されている。   FIG. 2 is a block diagram showing a functional configuration of the flow meter C. As shown in FIG. As shown in this figure, the flow meter C includes radio wave velocity meters F1 to F5, water level meters L1 to L5, RS-485 I / F1A to 1C, a CPU (Central Processing Unit) 2 (calculation means), a flash memory 3 and a shared memory. It consists of a memory 4 and the like. Among these components, the RS-485 I / F 1A to 1C, the CPU 2, the flash memory 3, and the shared memory 4 are accommodated in the apparatus main body H. That is, this flow meter C is composed of a total of five radio wave velocity meters F1 to F5 (velocity meter group), a total of five water level meters L1 to L5 (water level meter group), and an apparatus main body H.

電波流速計F1〜F5は、河川の水面に照射した電波(測定波)の周波数が流速によってドップラシフトする現象つまりドップラ効果を利用したものであり、水面からの反射波の周波数偏移量(ドップラ周波数)を検出することによって水面の流速を計測する。このような電波流速計F1〜F5は、河川に設けられた橋梁に取り付けられており、河川の幅方向に所定間隔で複数設定された地点の流速を各々測定し、その測定値を示す流速信号をRS−485に準拠する信号形態で装置本体Hに送信する。   The radio wave velocimeters F1 to F5 utilize the phenomenon that the frequency of radio waves (measurement waves) irradiated to the water surface of the river is Doppler shifted by the flow velocity, that is, the Doppler effect. The flow velocity on the water surface is measured by detecting the frequency. Such radio wave anemometers F1 to F5 are attached to a bridge provided in a river, measure the flow velocities at a plurality of points set at predetermined intervals in the width direction of the river, and flow velocity signals indicating the measured values. Is transmitted to the apparatus main body H in a signal format conforming to RS-485.

図3は、上記電波流速計F1〜F5が測定する各地点(流速測定点P1〜P5)及び当該流速測定点P1〜P5に対応する各分割領域を示す模式図である。この図3に示すように、各電波流速計F1〜F5は、河川の幅方向に予め設定された流速測定点P1〜P5に測定波を照射することにより当該流速測定点P1〜P5からの反射波を取得し、該反射波のドップラ周波数に基づいて水面の流速を測定する。河川の断面は、このような流速測定点P1〜P5に対応して、垂直線によって河川の幅方向に5つの領域(分割領域)に区分されている。水位計L1〜L5は、上記電波流速計F1〜F5に対応して5台設けられており、各分割領域の水位を測定し、その測定値を示す水位信号をRS−485に準拠する信号形態で装置本体Hに送信する。   FIG. 3 is a schematic diagram showing each point (flow velocity measurement points P1 to P5) measured by the radio wave velocity meters F1 to F5 and each divided region corresponding to the flow velocity measurement points P1 to P5. As shown in FIG. 3, the radio wave velocimeters F1 to F5 are reflected from the flow velocity measurement points P1 to P5 by irradiating measurement waves to the flow velocity measurement points P1 to P5 preset in the width direction of the river. A wave is acquired, and the flow velocity on the water surface is measured based on the Doppler frequency of the reflected wave. The cross section of the river is divided into five regions (divided regions) in the width direction of the river by vertical lines corresponding to the flow velocity measurement points P1 to P5. Five water level meters L1 to L5 are provided corresponding to the radio wave velocity meters F1 to F5, measure the water level in each divided region, and form a water level signal indicating the measured value in accordance with RS-485. To the apparatus main body H.

続いて装置本体Hにおいて、RS−485I/F1Aは、CPU2による制御の下に上記電波流速計F1〜F5とRS−485に準拠した通信を行うインタフェースであり、各電波流速計F1〜F5から受信した流速信号をCPU2に出力する。また、RS−485I/F1Bは、CPU2による制御の下に上記水位計L1〜L5とRS−485に準拠した通信を行うインタフェースであり、各水位計L1〜L5から受信した水位信号をCPU2に出力する。   Subsequently, in the apparatus main body H, RS-485 I / F1A is an interface for performing communication based on the radio wave velocity meters F1 to F5 and RS-485 under the control of the CPU 2, and received from each of the radio wave velocity meters F1 to F5. The obtained flow velocity signal is output to the CPU 2. RS-485I / F1B is an interface that performs communication based on the above water level gauges L1 to L5 and RS-485 under the control of CPU2, and outputs the water level signal received from each water level gauge L1 to L5 to CPU2. To do.

CPU2は、所定の演算プログラムに基づいて流速信号及び水位信号を演算処理することにより河川の流量を算出し、その流量値をRS−485I/F1Cを介して処理装置Mに出力する。このCPU2による演算処理については、後述する動作説明の中で詳しく説明する。フラッシュメモリ3は、周知のように電気的に書換え可能なメモリであり、水位−流積テーブルやCPU2が実行する演算プログラム等を記憶するものであり、CPU2からの検索要求に対して水位−流積テーブルに登録された特定の流積データ(断面積データ)をCPU2に出力する。   The CPU 2 calculates the flow rate of the river by calculating the flow velocity signal and the water level signal based on a predetermined calculation program, and outputs the flow rate value to the processing device M via the RS-485 I / F1C. The arithmetic processing by the CPU 2 will be described in detail in the operation description to be described later. As is well known, the flash memory 3 is an electrically rewritable memory, stores a water level-flow product table, an arithmetic program executed by the CPU 2, and the like. In response to a search request from the CPU 2, the water level-flow Specific flow data (cross-sectional area data) registered in the product table is output to the CPU 2.

上記水位−流積テーブルは本実施形態における断面形状データであり、図3及び図4を参照して詳しく説明する。上述したように河川の断面は、垂直線によって河川の幅方向に5つの分割領域に区分されており、各分割領域の面積(断面積)S1〜S5は水が流れる面積であり流積という。この流積S1〜S5は、図3に示するように河川の断面形状と水位によって規定されるものである。   The water level-flow product table is cross-sectional shape data in this embodiment, and will be described in detail with reference to FIGS. As described above, the cross section of the river is divided into five divided areas in the width direction of the river by vertical lines, and the areas (cross-sectional areas) S1 to S5 of each divided area are areas through which water flows and are referred to as “flow products”. The flow products S1 to S5 are defined by the cross-sectional shape of the river and the water level as shown in FIG.

ここで、河川の断面形状は、電波流速計F1〜F5による流速の測定位置における断面として予め測定によって求めることができるので、よって各分割領域の流積S1〜S5は、各分割領域の水位によって一義的に求めることができる。上記水位−流積テーブルは、図4の概念図に示すように、各分割領域#1〜#5の水位に応じた流積S1〜S5を示す流積データを登録したものである。   Here, the cross-sectional shape of the river can be obtained by measurement in advance as a cross-section at the position where the flow velocity is measured by the radio wave velocimeters F1 to F5, so that the flow products S1 to S5 of each divided region depend on the water level of each divided region. Can be uniquely determined. As shown in the conceptual diagram of FIG. 4, the water level-flow product table is obtained by registering the product data indicating the products S1 to S5 corresponding to the water levels of the divided regions # 1 to # 5.

共有メモリ4は、CPU2の演算結果である流量データ及びCPU2の演算処理に必要な各種の設定データ等を記憶するメモリである。RS−485I/F1Cは、CPU2と処理装置Mとの通信を仲介するインタフェースであり、CPU2による制御の下にRS−485に準拠した通信を処理装置Mとの間で行う。   The shared memory 4 is a memory that stores flow rate data that is a calculation result of the CPU 2 and various setting data necessary for the calculation process of the CPU 2. The RS-485 I / F 1C is an interface that mediates communication between the CPU 2 and the processing device M, and performs communication based on the RS-485 with the processing device M under the control of the CPU 2.

次に、このように構成された流量測定装置の動作について説明する。
最初に、図5に示すフローチャートに沿って流量計Cの動作を説明する。なお、このフローチャートは、上記CPU2の要部処理手順を示すものである。
Next, the operation of the flow rate measuring apparatus configured as described above will be described.
First, the operation of the flow meter C will be described along the flowchart shown in FIG. This flowchart shows the main part processing procedure of the CPU 2.

CPU2は、最初に初期化され(ステップSa)、続いてRS−485I/F1Aを介して各電波流速計F1〜F5から流速データを取得し(ステップSb)、さらにRS−485I/F1Bを介して各水位計L1〜L5から流速データを取得する(ステップSc)。ステップSaの初期化処理では共有メモリ4から設定データがCPU2に読み込まれる。   The CPU 2 is initialized first (step Sa), then acquires flow velocity data from each of the radio wave velocity meters F1 to F5 via the RS-485 I / F 1A (step Sb), and further via the RS-485 I / F 1B. Flow velocity data is acquired from each of the water level gauges L1 to L5 (step Sc). In the initialization process of step Sa, setting data is read from the shared memory 4 to the CPU 2.

また、ステップSbの処理では、所定の順番で各電波流速計F1〜F5の機器番号が順次指定されることにより、例えば電波流速計F1→電波流速計F2→電波流速計F3→電波流速計F4→電波流速計F5の順で各分割領域#1〜#5に対応した流速データがCPU2に順次取得され、以って各分割領域#1〜#5に対応する流速V1〜V5がCPU2に特定される。また、ステップScの処理では、所定の順番で各水位計L1〜L5の機器番号が順次指定されることにより、例えば水位計L1→水位計L2→水位計L3→水位計L4→水位計L5の順で各分割領域#1〜#5に対応した水位データがCPU2に順次取得される。   In the process of step Sb, the device numbers of the radio wave velocity meters F1 to F5 are sequentially specified in a predetermined order. For example, the radio wave velocity meter F1 → the radio wave velocity meter F2 → the radio wave velocity meter F3 → the radio wave velocity meter F4. → The flow velocity data corresponding to each of the divided areas # 1 to # 5 is sequentially acquired by the CPU 2 in the order of the radio wave velocity meter F5, and thus the flow velocity V1 to V5 corresponding to each of the divided areas # 1 to # 5 is specified to the CPU 2. Is done. Further, in the process of step Sc, the device numbers of the water level gauges L1 to L5 are sequentially specified in a predetermined order. For example, the water level gauge L1 → the water level gauge L2 → the water level gauge L3 → the water level gauge L4 → the water level gauge L5. The water level data corresponding to each of the divided areas # 1 to # 5 is sequentially acquired by the CPU 2 in order.

続いて、CPU2は、上記ステップScで取得した各分割領域#1〜#5の水位データRiに基づいて図4に示す水位−流積テーブルを検索することにより各分割領域#1〜#5の流積S1i〜S5iを特定する。ここで、CPU2は、各分割領域#1〜#5の流速データの中に流速V1〜V5が「0」を示しているものがあるか否かを判断し(ステップSd)、この判断が「YES」の場合は、流速V1〜V5が「0」を示している流速データの分割領域の隣に位置している分割領域の水位データを流速V1〜V5が「0」を示している流速データの分割領域の水位データに適用し(ステップSe)、この判断が「NO」の場合には、ステップSeの処理を割愛してステップSfの検索処理を実行する。   Subsequently, the CPU 2 searches the water level-flow product table shown in FIG. 4 on the basis of the water level data Ri of the divided areas # 1 to # 5 acquired in the above step Sc, so that the divided areas # 1 to # 5 The flows S1i to S5i are specified. Here, the CPU 2 determines whether or not any of the flow velocity data of the divided areas # 1 to # 5 indicates that the flow velocity V1 to V5 indicates “0” (step Sd). In the case of “YES”, the water level data of the divided area located next to the divided area of the flow velocity data in which the flow velocities V1 to V5 indicate “0” are the flow velocity data in which the flow velocities V1 to V5 indicate “0”. Is applied to the water level data of the divided region (step Se), and if this determination is “NO”, the processing of step Se is omitted and the search processing of step Sf is executed.

図6は、このような流速V1〜V5が「0」を示す流速データが存在する場合に一例を示す図である。すなわち、電波流速計F1〜F5は、河川の水面に測定波を照射し、当該測定波の反射波のドップラ周波数に基づいて水面の流速V1〜V5を計測するものなので、図6に示すように河川の水位が低水位となり測定波の照射領域が川底になる場合、分割領域#1に該当する流速測定点P1及び分割領域#5に該当する流速測定点P5には流水が存在しないので、当該分割領域#1及び#5について測定される流速V1,V5は「0」となる。   FIG. 6 is a diagram showing an example when there is flow rate data in which such flow rates V1 to V5 indicate “0”. That is, the radio wave velocity meters F1 to F5 irradiate the water surface of the river with the measurement wave and measure the water surface flow velocity V1 to V5 based on the Doppler frequency of the reflected wave of the measurement wave, as shown in FIG. When the water level of the river is low and the irradiation area of the measurement wave is the bottom of the river, there is no running water at the flow velocity measurement point P1 corresponding to the divided region # 1 and the flow velocity measurement point P5 corresponding to the divided region # 5. The flow velocities V1 and V5 measured for the divided areas # 1 and # 5 are “0”.

CPU2は、このような場合、分割領域#1については隣り合う分割領域#2の水位データと流速データを分割領域#1の水位データと流速データに適用し、また分割領域#5については隣り合う分割領域#4の水位データと流速データを分割領域#5の水位データと流速データに適用する。なお、流速V1〜V5が「0」を示す流速データが存在する場合は、上述した低水位の場合の他に、例えば任意の電波流速計F1〜F5が故障した場合等にも生じ得る。   In such a case, the CPU 2 applies the water level data and flow velocity data of the adjacent divided region # 2 to the water level data and flow velocity data of the divided region # 1 for the divided region # 1, and is adjacent to the divided region # 5. The water level data and flow velocity data of division area # 4 are applied to the water level data and flow velocity data of division area # 5. In addition, when the flow velocity data in which the flow velocity V1 to V5 indicates “0” exists, it may occur, for example, when any of the radio wave velocity meters F1 to F5 breaks down in addition to the low water level described above.

そして、CPU2は、各分割領域#1〜#5に適用された水位データに基づいて水位−流積テーブルを検索することにより、各分割領域#1〜#5の水位に応じた流積データを取得する(ステップSf)。すなわち、CPU2は、演算処理によって各分割領域#1〜#5の流積を算出するのではなく、水位−流積テーブルを検索することにより各分割領域#1〜#5の流積を特定する。   Then, the CPU 2 searches the water level-flow product table based on the water level data applied to each of the divided regions # 1 to # 5, thereby obtaining the flow data corresponding to the water level of each of the divided regions # 1 to # 5. Obtain (step Sf). That is, the CPU 2 does not calculate the flow product of the divided regions # 1 to # 5 by calculation processing, but specifies the flow product of the divided regions # 1 to # 5 by searching the water level-flow product table. .

ここで、図6を例として、分割領域#2及び分割領域#3の各水位データが図4における水位R2を示していた場合、分割領域#1には隣接する分割領域#2の水位R2を適用する。同様に分割領域#4が水位R1を示していた場合、分割領域#5には隣接する分割領域#4の水位R1を適用する。そして、CPU2は、水位−流積テーブルを検索することにより、分割領域#1〜#3については水位R2に対応する流積S12,S22,S32を取得し、分割領域#4,#5については水位R1に対応する流積S41,S51を取得する。   Here, taking FIG. 6 as an example, if each water level data of the divided area # 2 and the divided area # 3 indicates the water level R2 in FIG. 4, the divided area # 1 includes the water level R2 of the adjacent divided area # 2. Apply. Similarly, when the divided area # 4 indicates the water level R1, the water level R1 of the adjacent divided area # 4 is applied to the divided area # 5. Then, the CPU 2 obtains the flow products S12, S22, S32 corresponding to the water level R2 for the divided areas # 1 to # 3 by searching the water level-flow product table, and for the divided areas # 4, # 5. The flow products S41 and S51 corresponding to the water level R1 are acquired.

このようにして各分割領域#1〜#5の流積S12,S22,S32,S41,S51を特定すると、CPU2は、当該流積S12,S22,S32,S41,S51に各々の分割領域#1〜#5の流速流速V1〜V5を掛け合わせることにより各分割領域#1〜#5の流量A1〜A5(区分流量)を算出し(ステップSg)、さらにこれら区分流量A1〜A5を合算することにより総流量Asを算出する(ステップSh)。そして、このようにして総流量Asの算出が終了すると、CPU2は、処理をステップSbに戻して次のサイクルの総流量Asの算出処理を開始する。   When the products S12, S22, S32, S41, and S51 of the divided regions # 1 to # 5 are identified in this way, the CPU 2 assigns each divided region # 1 to the products S12, S22, S32, S41, and S51. The flow rates A1 to A5 (segmented flow rates) of the divided areas # 1 to # 5 are calculated by multiplying the flow velocity V1 to V5 of # 5 (step Sg), and these segmented flow rates A1 to A5 are added together. To calculate the total flow rate As (step Sh). When the calculation of the total flow rate As is completed in this way, the CPU 2 returns the process to step Sb and starts the calculation process of the total flow rate As of the next cycle.

このような流量計Cによれば、各分割領域#1〜#5の流速データの中に流速V1〜V5が「0」を示しているものがある場合には、それを代替する分割領域として、例えば隣に位置する分割領域の水位データと流速データを流速が「0」を示している流速データの分割領域の水位データと流速データに適用することにより流積を特定するので、低水位の場合や電波流速計F1〜F5が故障した場合等、電波流速計F1〜F5が測定不能状態の場合においても総流量Asを正確に算出することができる。   According to such a flow meter C, when there is a flow velocity data in each of the divided areas # 1 to # 5 in which the flow velocities V1 to V5 indicate “0”, the divided areas are substituted. For example, by applying the water level data and flow velocity data of the adjacent divided area to the water level data and flow velocity data of the divided area of the flow velocity data indicating the flow velocity of “0”, the flooding is specified. The total flow rate As can be accurately calculated even when the radio wave velocimeters F1 to F5 are in a state incapable of measurement, such as when the radio wave velocimeters F1 to F5 fail.

また、各電波流速計F1〜F5に対応した複数の各水位計L1〜L5で各流速測定点P1〜P5の水位を計測するので、例えば図7に示すように、低水位の状態において川底の中央部が隆起していることによって河川が2つあるいはそれ以上の水路に分断され、かつ各水路の水位に差異rが生じている場合であっても、各々の水路の水位に応じて各分割領域#1〜#5の流積を正確に算出することが可能である。   Moreover, since the water level of each flow velocity measurement point P1 to P5 is measured by a plurality of water level meters L1 to L5 corresponding to the radio wave velocity meters F1 to F5, for example, as shown in FIG. Even if the river is divided into two or more waterways due to the raised central part and there is a difference r in the water level of each waterway, each division is made according to the water level of each waterway. It is possible to accurately calculate the product of the regions # 1 to # 5.

さらに、各電波流速計F1〜F5の流速データがRS−485I/F1Aを介して、また各水位計L1〜L5の水位データはRS−485I/F1Bを介してCPU2に高速に取得されるもので、流速データ及び水位データの取込時間のズレは極めて小さい。したがって、当該取込時間のズレに起因する測定精度の低下を抑制することができる。
すなわち、本流量計Cは、従来技術に比較して河川の流量を極めて精度良く測定することができる。
Further, the flow velocity data of each of the radio wave velocity meters F1 to F5 is acquired by the CPU 2 at high speed via the RS-485 I / F1A, and the water level data of each of the water level meters L1 to L5 is acquired via the RS-485 I / F1B. The gap between the flow rate data and the water level data is very small. Therefore, it is possible to suppress a decrease in measurement accuracy due to the shift in the capture time.
That is, this flow meter C can measure the flow rate of the river with extremely high accuracy as compared with the prior art.

次に、処理装置Mの動作について説明する。
処理装置Mは、I/F1Cを介してCPU2にアクセスすることにより共有メモリ4に格納された流量データを定期的に取得すると共にWebカメラKから測定現場映像の現場画像データを取得して、内部メモリに格納する。そして、インターネットNを介して接続された管理端末Aやユーザ端末T1,T2…から測定データの提供要求を受信すると、流速データや現場画像データを管理端末Aやユーザ端末T1,T2…に情報提供する。この情報提供の形態は、WebページやFTPに準拠したファイルの形態である。
Next, the operation of the processing apparatus M will be described.
The processing device M periodically acquires the flow rate data stored in the shared memory 4 by accessing the CPU 2 via the I / F 1C, and acquires the field image data of the measurement field video from the Web camera K, Store in memory. When a measurement data provision request is received from the management terminal A and user terminals T1, T2,... Connected via the Internet N, the flow rate data and the field image data are provided to the management terminal A and user terminals T1, T2,. To do. This form of providing information is a form of a file based on a Web page or FTP.

また、処理装置Mは、フラッシュメモリ3に記憶されたCPU2の演算プログラムや水位−流積テーブルの書換え要求を管理端末Aから受信すると、I/F1Cを介して新規の演算プログラムや水位−流積テーブルをCPU2に提供し、従来の演算プログラムや水位−流積テーブルを新規の演算プログラムや水位−流積テーブルに書換えさせる。   In addition, when the processing device M receives the calculation program of the CPU 2 and the rewrite request for the water level-flow product table stored in the flash memory 3 from the management terminal A, the processing device M receives the new calculation program, the water level-flow product via the I / F 1C. A table is provided to the CPU 2 to rewrite a conventional calculation program or water level-flow product table with a new calculation program or water level-flow product table.

このような処理装置Mによれば、インターネットNを介した通信機能を備えるので、流量計Cのメンテナンスや動作監視を遠隔地の管理端末Aから行うことができる。したがって、流量計Cのメンテナンスや動作監視の利便性が従来の人手によるメンテナンスや動作監視に比べて飛躍的に向上し、メンテナンスや動作監視に関するコストダウンを実現することができる。また、インターネット関連技術として汎用的なWebページやFTPに準拠したファイルの形式で流速情報を管理端末Aやユーザ端末T1,T2…に情報提供することができるので、管理者や一般ユーザは流速情報の取得が極めて容易である。   Since such a processing apparatus M has a communication function via the Internet N, maintenance and operation monitoring of the flow meter C can be performed from the remote management terminal A. Therefore, the convenience of maintenance and operation monitoring of the flow meter C is dramatically improved as compared with the conventional manual maintenance and operation monitoring, and the cost for maintenance and operation monitoring can be reduced. Further, since the flow rate information can be provided to the management terminal A and the user terminals T1, T2,... In the form of a file conforming to a general-purpose Web page or FTP as an Internet-related technology, the administrator or general user can obtain the flow rate information. Is very easy to obtain.

なお、本発明は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、このように各々5台の電波流速計F1〜F5及び水位計L1〜L5を装置本体Hに接続したが、装置本体Hは、最大で20台の電波流速計及び水位計を接続し得る仕様に設計されているので、電波流速計及び水位計の個数つまり分割領域の個数は、河川の規模に応じて適宜変更することができる。
(2)また、上記実施形態では、5個の電波流速計F1〜F5に対応させて同じく5個の水位計L1〜L5を設けたが、水位計L1〜L5の個数は必ずしも電波流速計F1〜F5の個数と同一にする必要はない。水位計L1〜L5の個数を電波流速計F1〜F5の個数よりも少なくしても良い。
In addition, this invention is not limited to the said embodiment, For example, the following modifications can be considered.
(1) In the above embodiment, the five radio wave velocimeters F1 to F5 and the water level gauges L1 to L5 are connected to the apparatus main body H as described above. Since the specification is such that the water level meter can be connected, the number of radio wave velocimeters and water level meters, that is, the number of divided areas, can be appropriately changed according to the scale of the river.
(2) In the above embodiment, the five water level meters L1 to L5 are also provided corresponding to the five radio wave velocity meters F1 to F5. However, the number of the water level meters L1 to L5 is not necessarily limited to the radio wave velocity meter F1. It is not necessary to have the same number as ~ F5. The number of water level meters L1 to L5 may be smaller than the number of radio wave velocity meters F1 to F5.

本発明の一実施形態に係わる流量測定装置を用いた流速計測システムのシステム構成図である。1 is a system configuration diagram of a flow velocity measurement system using a flow rate measuring device according to an embodiment of the present invention. 本発明の一実施形態に係わる測定装置の要部機能構成を示すブロック図である。It is a block diagram which shows the principal part function structure of the measuring apparatus concerning one Embodiment of this invention. 本発明の一実施形態において電波流速計F1〜F5が測定する流速測定点P1〜P5及び各分割領域を示す模式図である。It is a schematic diagram which shows the flow velocity measurement points P1-P5 which each radio wave velocity meter F1-F5 measures in one Embodiment of this invention, and each division | segmentation area | region. 本発明の一実施形態における水位−流積テーブルの概念図である。It is a conceptual diagram of the water level-flow product table in one Embodiment of this invention. 本発明の一実施形態における流量計Cの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the flowmeter C in one Embodiment of this invention. 本発明の一実施形態において低水位時における各流速測定点P1〜P5の状態を示す模式図である。It is a schematic diagram which shows the state of each flow velocity measurement point P1-P5 at the time of the low water level in one Embodiment of this invention. 本発明の一実施形態において低水位時における流路の分断状態を示す模式図である。It is a schematic diagram which shows the division state of the flow path at the time of the low water level in one Embodiment of this invention.

符号の説明Explanation of symbols

C…流量計、M…処理装置(通信手段)、K…Webカメラ、N…インターネット、A…管理端末、T1,T2…ユーザ端末、F1〜F5…電波流速計、L1〜L5…水位計、1A〜1C…RS−485I/F、2…CPU(演算手段)、3…フラッシュメモリ、4…共有メモリ

C ... Flow meter, M ... Processing device (communication means), K ... Web camera, N ... Internet, A ... Management terminal, T1, T2 ... User terminal, F1-F5 ... Radio current meter, L1-L5 ... Water level meter, 1A to 1C RS-485 I / F, 2 CPU (calculation means), 3 Flash memory, 4 Shared memory

Claims (7)

測定対象の幅方向に複数設定された各分割領域の流速を測定する流速計と、
前記各分割領域の水位を測定する水位計と、
測定対象の断面形状を示す断面形状データを記憶し、前記水位計から得られた水位と前記断面形状データとに基づいて前記各分割領域の断面積を求め、前記各分割領域の断面積と前記流速計から得られた各分割領域の流速とに基づいて各分割領域の区分流量を求め、該各区分流量を合算することにより測定対象の総流量を求める演算手段と
を具備することを特徴とする流量測定装置。
An anemometer that measures the flow velocity of each divided area set in the width direction of the measurement target,
A water level meter for measuring the water level in each of the divided regions;
Stores cross-sectional shape data indicating the cross-sectional shape of the measurement object, obtains a cross-sectional area of each divided region based on the water level obtained from the water level gauge and the cross-sectional shape data, the cross-sectional area of each divided region and the And calculating means for obtaining a divided flow rate of each divided region based on the flow velocity of each divided region obtained from an anemometer and adding the respective divided flow rates to obtain a total flow rate of a measurement object. Flow rate measuring device.
演算手段は、任意の分割領域の水位が水位計から得られない場合には、当該任意の分割領域に隣接する分割領域の水位に基づいて断面積を求める
ことを特徴とする請求項1記載の流量測定装置。
The computing means obtains the cross-sectional area based on the water level of the divided area adjacent to the arbitrary divided area when the water level of the arbitrary divided area cannot be obtained from the water level meter. Flow measurement device.
演算手段は、水位に対応した各分割領域の断面積(流積)を示す断面積データが各分割領域毎に複数登録された水位−流積テーブルを断面形状データとして記憶し、水位計から得られた水位に基づいて水位−流積テーブルを検索することにより各分割領域の断面積を特定することを特徴とする請求項1または2記載の流量測定装置。   The calculation means stores, as cross-sectional shape data, a water level-flow product table in which a plurality of cross-sectional area data indicating the cross-sectional area (flow product) of each divided region corresponding to the water level is registered for each divided region, and is obtained from the water level meter. The flow rate measuring device according to claim 1 or 2, wherein a cross-sectional area of each divided region is specified by searching a water level-flow product table based on the obtained water level. 流速計及び水位計は、各分割領域に対応して複数設けられることを特徴とする請求項1〜3いずれかに記載の流量測定装置。   The flow rate measuring device according to any one of claims 1 to 3, wherein a plurality of anemometers and water level meters are provided corresponding to each divided region. 演算手段によって算出された総流量を通信回線を介して外部機器に送信する通信手段をさらに備えることを特徴とする請求項1〜4いずれかに記載の流量測定装置。   The flow rate measuring apparatus according to claim 1, further comprising a communication unit that transmits the total flow rate calculated by the calculation unit to an external device via a communication line. 通信手段は、水位−流積テーブルを断面形状データあるいは演算手段が実行する演算プログラムを外部から受信すると、これらを演算手段に設定させることを特徴とする請求項5記載の流量測定装置。   6. The flow rate measuring apparatus according to claim 5, wherein the communication means causes the calculation means to set the water level-flow product table when the cross-sectional shape data or the calculation program executed by the calculation means is received from the outside. 通信手段は、流量を外部機器に提供するためのWebサーバ機能あるいは/及びFTPサーバ機能を備えることを特徴とする請求項5または6記載の流量測定装置。

The flow rate measuring device according to claim 5 or 6, wherein the communication means includes a Web server function and / or an FTP server function for providing the flow rate to an external device.

JP2003433463A 2003-12-26 2003-12-26 Flow-measuring device Withdrawn JP2005189186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433463A JP2005189186A (en) 2003-12-26 2003-12-26 Flow-measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433463A JP2005189186A (en) 2003-12-26 2003-12-26 Flow-measuring device

Publications (1)

Publication Number Publication Date
JP2005189186A true JP2005189186A (en) 2005-07-14

Family

ID=34790842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433463A Withdrawn JP2005189186A (en) 2003-12-26 2003-12-26 Flow-measuring device

Country Status (1)

Country Link
JP (1) JP2005189186A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244254A (en) * 2008-02-05 2009-10-22 Codar Ocean Sensors Ltd System and method for monitoring river flow parameters using vhf/uhf radar station
JP2011112393A (en) * 2009-11-24 2011-06-09 Jfe Advantech Co Ltd Method and device for measuring river flow rate
CN104596581A (en) * 2015-01-20 2015-05-06 太原理工大学 Intelligent suspension rod flow measuring device
JP6047738B1 (en) * 2016-08-16 2016-12-21 有限会社北沢技術事務所 Open channel flow measuring device
KR101850988B1 (en) * 2017-12-22 2018-04-23 주식회사 수리이엔씨 Flow rate metering device, flow rate metering method and computer program stored in computer readable medium therefor
CN113324594A (en) * 2021-05-14 2021-08-31 湖南金龙智造科技股份有限公司 System and method for monitoring water level and flow of urban drainage pipe network

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244254A (en) * 2008-02-05 2009-10-22 Codar Ocean Sensors Ltd System and method for monitoring river flow parameters using vhf/uhf radar station
JP2011112393A (en) * 2009-11-24 2011-06-09 Jfe Advantech Co Ltd Method and device for measuring river flow rate
CN104596581A (en) * 2015-01-20 2015-05-06 太原理工大学 Intelligent suspension rod flow measuring device
JP6047738B1 (en) * 2016-08-16 2016-12-21 有限会社北沢技術事務所 Open channel flow measuring device
KR101850988B1 (en) * 2017-12-22 2018-04-23 주식회사 수리이엔씨 Flow rate metering device, flow rate metering method and computer program stored in computer readable medium therefor
CN113324594A (en) * 2021-05-14 2021-08-31 湖南金龙智造科技股份有限公司 System and method for monitoring water level and flow of urban drainage pipe network

Similar Documents

Publication Publication Date Title
US20120271568A1 (en) Ultrasonic Flow Meter
KR940701534A (en) Method and apparatus for determining mechanical zero value for a Coriolis instrument
AU2013405149B2 (en) Coriolis direct wellhead measurement devices and methods
RU2754656C1 (en) Method and system for measuring flow rates of multiphase and/or multicomponent fluid extracted from oil and gas well
Muste et al. Revisiting hysteresis of flow variables in monitoring unsteady streamflows
CN109977829A (en) Current velocity testing method and device based on image recognition analysis technology
JP2005189186A (en) Flow-measuring device
JP5035606B2 (en) River flow rate calculation device, river flow rate calculation method, and computer program
CN103376138A (en) Vertical flow measurement device and current meter in underground water monitoring well and detection method
CN204807574U (en) Novel ADCP velocity of flow measurement system
KR102512532B1 (en) Flood occurrence time prediction method using peak flow velocity and time difference
CN110005469A (en) Constructing tunnel monitoring method, apparatus and system
Riaz et al. A smart metering approach towards measuring flows in small irrigation outlets
Díaz Lozada et al. Dynamic selection of exposure time for turbulent flow measurements
Muste et al. Methodology for estimating ADCP measurement uncertainty in open-channel flows
KR20220170173A (en) A system measuring water level and flow velocity of river using a LiDAR sensor and image processing technology
Nichols et al. Remote sensing of environmental processes via low-cost 3D free-surface mapping
US20200378819A1 (en) Flow rate determination based on limited observations
JP2004184368A (en) Weir type flow meter
JP4945259B2 (en) Inflow prediction device and operation support / control device for pumping station facilities using the same
JP2021047156A (en) Surveillance system
Pugh et al. Refined protocols to mitigate user-induced uncertainty for ADCP moving-boat discharge measurement in irrigation canals
CN104736975A (en) Device and method for determining a mass flow of a fluid in a conduit
JP2006047035A (en) Intra-trunk line flowing state measuring instrument and method
US11073417B2 (en) Data driven visualization of uncertainty in flow measurements

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306