JP2005188429A - Rotating speed control mechanism of horizontal shaft type windmill for power generation - Google Patents

Rotating speed control mechanism of horizontal shaft type windmill for power generation Download PDF

Info

Publication number
JP2005188429A
JP2005188429A JP2003432452A JP2003432452A JP2005188429A JP 2005188429 A JP2005188429 A JP 2005188429A JP 2003432452 A JP2003432452 A JP 2003432452A JP 2003432452 A JP2003432452 A JP 2003432452A JP 2005188429 A JP2005188429 A JP 2005188429A
Authority
JP
Japan
Prior art keywords
blade
blade part
windmill
power generation
side blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003432452A
Other languages
Japanese (ja)
Inventor
Jiro Tsukahara
次郎 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2003432452A priority Critical patent/JP2005188429A/en
Publication of JP2005188429A publication Critical patent/JP2005188429A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating speed control mechanism of a horizontal shaft type windmill for power generation, capable of restraining an increase in a rotating speed, while continuing power generation, without using electricity in a strong wind. <P>SOLUTION: A blade 3 is divided into a tip side blade part 4 and a base end side blade part 5. The base end side blade part 5 is rotatably equipped to the tip side blade part 4 so as to reduce the wind receiving area of the blade around the axis turning in the radial line direction from the rotational center of the windmill, and a switching operation body 10 is also equipped. The switching operation body 10 checks rotation of the base end side blade part 5 by always engaging the base end side blade part 5 with the tip side blade part 4, and allows the rotation of the base end side blade part 5 by releasing engagement of the base end side blade part 5 with the tip side blade part 4, by being displaced outward in the radial line direction by centrifugal force, when the rotating speed of the windmill exceeds a predetermined rotating speed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発電用水平軸型風車の回転数制御機構に関する。   The present invention relates to a rotational speed control mechanism for a horizontal axis wind turbine for power generation.

例えば、プロペラ型風車を用いた小型の風力発電機では、強風でプロペラの回転数が必要以上に高くなってしまうと、発電量が過大となって、発電部への負荷が大きくなりすぎることから、それを抑制する目的で、電気的制御や、風車の向きを変えるなどの方法により、強風時に風車の回転数が一定以上に上昇しないように制御することが行われている。   For example, in a small wind power generator using a propeller type windmill, if the wind speed of the propeller becomes higher than necessary due to strong winds, the amount of power generation becomes excessive and the load on the power generation unit becomes too large. In order to suppress this, control is performed such that the rotational speed of the windmill does not rise above a certain level during strong winds by means of electrical control or changing the direction of the windmill.

しかしながら、電気的制御は停電やバッテリー切れなどによって動作しなくなることがあるし、風車の向きを変えてしまうのでは、発電の継続が妨げられるという問題がある。   However, electrical control may not work due to a power failure or battery exhaustion, and there is a problem that the continuation of power generation is hindered if the direction of the windmill is changed.

本発明は、上記のような問題点に鑑み、強風時に、電気を使わず、しかも、発電を継続しつつ、回転数の上昇を抑えることができる、発電用水平軸型風車の回転数制御機構を提供することを課題とする。   In view of the above-described problems, the present invention provides a rotational speed control mechanism for a horizontal axis wind turbine for power generation that can suppress an increase in the rotational speed without using electricity in a strong wind and continuing power generation. It is an issue to provide.

上記の課題は、ブレードが半径線方向において複数のブレード部に分割されると共に、分割された一部のブレード部が、風車の回転中心から半径線方向を向く軸線回りで、ブレードの受風面積を減少させるように、残るブレード部に対して回転可能に備えられ、かつ、
常時は前記回転可能ブレード部と非回転部とを係合させて回転可能ブレード部の回転を阻止し、風車の回転数が所定の回転数を越えたとき、遠心力で半径線方外方に変位し、前記回転可能ブレード部と非回転部との係合を解除して回転可能ブレード部の回転を許容する切換え作動体が備えられていることを特徴とする発電用水平軸型風車の回転数制御機構によって解決される。
The above problem is that the blade is divided into a plurality of blade portions in the radial direction, and a part of the divided blade portions is around the axis line facing the radial direction from the center of rotation of the windmill, and the wind receiving area of the blade So as to be able to rotate with respect to the remaining blade part, and
Normally, the rotatable blade part is engaged with the non-rotating part to prevent the rotatable blade part from rotating, and when the rotational speed of the windmill exceeds the predetermined rotational speed, the centrifugal force causes the radial line outward. Rotation of a horizontal axis wind turbine for power generation, characterized in that it is provided with a switching operation body that displaces and disengages the rotatable blade portion and the non-rotating portion to allow rotation of the rotatable blade portion. Solved by a number control mechanism.

この制御機構では、強風で風車の回転数が所定の回転数を越えたとき、切換え作動体が遠心力で半径線方外方に変位し、回転可能ブレード部と非回転部との係合が解除され、回転可能ブレード部が風圧で回転することによって、ブレードの受風面積が減少し、それによって、強風による風車の回転数の上昇が抑えられる。しかも、その動作は、遠心力による切換え作動体の移動によって行われるようになされているから、回転数の制御は自動で行われ、しかも、電気を必要としない。加えて、強風で回転可能ブレード部が回転した後も、残る非回転ブレード部が風を受けるから、風車は回転を続けることができ、発電を継続することができる。   In this control mechanism, when the rotational speed of the windmill exceeds a predetermined rotational speed due to strong wind, the switching operation body is displaced radially outward by centrifugal force, and the engagement between the rotatable blade portion and the non-rotating portion is performed. When the rotatable blade portion is released and rotated by the wind pressure, the wind receiving area of the blade is reduced, thereby suppressing an increase in the rotational speed of the windmill due to the strong wind. Moreover, since the operation is performed by the movement of the switching operation body by the centrifugal force, the rotation speed is controlled automatically, and no electricity is required. In addition, even after the rotatable blade portion is rotated by the strong wind, the remaining non-rotating blade portion receives wind, so the windmill can continue to rotate and can continue to generate power.

上記の回転数制御機構において、風車の回転数が前記所定の回転数以下となったとき、回転可能ブレード部を風圧に抗して復帰回転させる付勢手段が備えられているのもよい。   In the above-described rotation speed control mechanism, an urging means may be provided for rotating the rotatable blade portion back against the wind pressure when the rotation speed of the windmill becomes equal to or less than the predetermined rotation speed.

この場合は、風速が低下して風車の回転数が落ちると、付勢手段による付勢力が風圧に勝って回転可能ブレード部を原位置に復帰させ、ブレードの受風面積が増加し、効率の良い発電が再開される。しかも、この復帰動作は、付勢手段による付勢力と風圧のつり合い関係によって自動で行われるようになされているので、復帰動作に電気を必要としない。   In this case, when the wind speed decreases and the rotation speed of the windmill decreases, the urging force of the urging means overcomes the wind pressure and returns the rotatable blade part to the original position, increasing the wind receiving area of the blade and improving the efficiency. Good power generation is resumed. In addition, since the return operation is automatically performed according to the balance between the urging force by the urging means and the wind pressure, no electricity is required for the return operation.

また、上記の課題は、ブレードが半径線方向において複数のブレード部に分割されると共に、分割された一部のブレード部が、風車の回転中心から半径線方向を向く軸線回りで、ブレードの受風面積を減少させるように、残るブレード部に対して回転可能に備えられ、かつ、
常時は、付勢力で回転可能ブレード部を非回転ブレード部と同じ向きとなるように位置保持し、風車の回転数が所定の回転数を越えたとき付勢力が風圧に負けて回転可能ブレード部の回転変位を許容する付勢手段が備えられていることを特徴とする発電用水平軸型風車の回転数制御機構によっても同様に解決される。
In addition, the above problem is that the blade is divided into a plurality of blade portions in the radial direction, and a part of the divided blade portions are received around the axis line in the radial direction from the center of rotation of the windmill. So as to be able to rotate with respect to the remaining blade part so as to reduce the wind area, and
At all times, the rotatable blade portion is held in the same direction as the non-rotating blade portion by the urging force, and when the rotational speed of the windmill exceeds the predetermined rotational speed, the urging force loses the wind pressure and can rotate. This is similarly solved by a rotational speed control mechanism for a horizontal axis wind turbine for power generation, which is provided with an urging means that allows the rotational displacement of the power generation.

本発明は、以上のとおりのものであるから、強風時に、電気を使わず、しかも、発電を継続しつつ、回転数の上昇を抑えることができる。また、風速が低下すると、電気を使わずに自動で効率の良い発電を再開することができる。   Since the present invention is as described above, it is possible to suppress an increase in the number of revolutions without using electricity at the time of a strong wind and continuing power generation. Moreover, when the wind speed decreases, efficient and efficient power generation can be resumed without using electricity.

次に、本発明の実施最良形態を図面に基づいて説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

図1〜図5に示す第1実施形態の発電用水平軸型風車1は、図3(イ)に示すように、プロペラ型風車からなり、プロペラ2は、半径線方向に延ばされた複数本のブレード3…を備え、各ブレード3は、半径線方向において先端側ブレード部4と基端側ブレード部5との二つのブレード部に分割されている。そして、図3(ロ)及び図1(イ)(ロ)に示すように、先端側ブレード部4は、非回転部ないしは非回転ブレード部として、ローターヘッドの側6と軸部7で一体的に連結されると共に、基端側ブレード部5は、回転可能ブレード部として、軸部7に回転可能に保持されており、図2(イ)(ロ)に示すように、該基端側ブレード部5が回転変位をすることで、各ブレード3の受風面積が増減するようになされている。   The horizontal shaft type wind turbine 1 for power generation according to the first embodiment shown in FIGS. 1 to 5 includes a propeller type wind turbine as shown in FIG. 3 (a), and the propeller 2 includes a plurality of propellers 2 extending in the radial direction. The blades 3 are each divided into two blade portions of a distal end blade portion 4 and a proximal end blade portion 5 in the radial direction. As shown in FIGS. 3 (b) and 1 (b) and 1 (b), the tip side blade portion 4 is integrated with the rotor head side 6 and the shaft portion 7 as a non-rotating portion or a non-rotating blade portion. The base end side blade portion 5 is rotatably held by the shaft portion 7 as a rotatable blade portion. As shown in FIGS. 2 (A) and 2 (B), the base end side blade portion 5 When the part 5 is rotationally displaced, the wind receiving area of each blade 3 is increased or decreased.

そして、図3(ロ)に示すように、先端側ブレード部4と基端側ブレード部5との対面部において、先端側ブレード部4の基端面部には、軸部7を挟む両側に位置して、深さ方向をプロペラ2の半径線方向に延ばした有底穴8,8が明けられ、該穴8,8に切換え作動体10,10が出没可能に備えられると共に、基端側ブレード部5の先端面部には、切換え作動体10,10を係合させる凹所11,11が備えられ、前記切換え作動体10が有底穴8から凹所11内に進出することにより、基端側ブレード部5が先端側ブレード部4に拘束されて回転を阻止され、切換え作動体10が凹所11内から退出することにより、基端側ブレード部5が先端側ブレード部4との拘束を解除されて自由に回転できるようになされている。   Then, as shown in FIG. 3 (b), in the facing portion between the distal end side blade portion 4 and the proximal end side blade portion 5, the proximal end surface portion of the distal end side blade portion 4 is positioned on both sides sandwiching the shaft portion 7. Then, the bottomed holes 8 and 8 whose depth direction extends in the radial direction of the propeller 2 are opened, and the switching actuators 10 and 10 are provided in the holes 8 and 8 so as to be able to protrude and retract, and the proximal blade The front end surface of the portion 5 is provided with recesses 11, 11 for engaging the switching actuators 10, 10, and the proximal end of the switching actuator 10 is advanced from the bottomed hole 8 into the recess 11. The side blade portion 5 is restrained by the distal end side blade portion 4 and is prevented from rotating, and the switching operation body 10 retreats from the inside of the recess 11, whereby the proximal end side blade portion 5 restrains the distal end side blade portion 4 from being restrained. It is released so that it can rotate freely.

そして、各切換え作動体10に上記の進退動作を行わせるため、切換え作動体10と有底穴8の奥底部との間に、切換え作動体10を進出方向に付勢する付勢手段としてのバネ9が介設され、常時は、即ちプロペラ2の回転数が許容範囲内にあるときは、図4(イ)に示すように、バネ9の付勢力で切換え作動体10が凹所11内に進出した状態を維持して基端側ブレード部5の回転が阻止され、プロペラ2の回転数が許容限度の所定の回転数を越えたときは、図4(ロ)(ハ)に示すように、切換え作動体10は、プロペラ2の回転による遠心力がバネ9の付勢力に勝って凹所11内から退出し、基端側ブレード部5の回転が許容されるようになされている。   And in order to make each switching operation body 10 perform said advance / retreat operation | movement, as an urging means which urges the switching operation body 10 to an advancing direction between the switching operation body 10 and the deep bottom part of the bottomed hole 8. FIG. A spring 9 is interposed, and normally, that is, when the rotation speed of the propeller 2 is within an allowable range, the switching actuator 10 is moved into the recess 11 by the urging force of the spring 9 as shown in FIG. As shown in FIGS. 4 (b) and 4 (c), when the rotation of the base end blade portion 5 is prevented while maintaining the state where the propeller 2 has been advanced and the rotation speed of the propeller 2 exceeds the allowable rotation speed limit, In addition, the switching operation body 10 is configured such that the centrifugal force due to the rotation of the propeller 2 overcomes the biasing force of the spring 9 and retreats from the inside of the recess 11 so that the rotation of the proximal end blade portion 5 is allowed.

上記の回転数制御機構では、風速が許容範囲内のものであるときは、図2(イ)及び図4(イ)に示すように、バネ9の付勢力で切換え作動体10が凹所11内に進出した状態に保持されることで、基端側ブレード部5は先端側ブレード部4と同じ方向を向き、通常の効率の良い発電が行われる。   In the above-described rotation speed control mechanism, when the wind speed is within the allowable range, the switching operating body 10 is moved into the recess 11 by the urging force of the spring 9 as shown in FIGS. By being held in the state where it has advanced to the inside, the proximal end blade portion 5 faces the same direction as the distal end side blade portion 4, and normal and efficient power generation is performed.

そして、図2(ロ)及び図4(ロ)(ハ)に示すように、強風でプロペラ2の回転数が許容限度の所定の回転数を越えたとき、切換え作動体10がバネ9の付勢力に抗して遠心力で凹所11内から退出し、基端側ブレード部5が風圧で回転することで、ブレード3の受風面積が減少し、それによって、強風による風車1の回転数の過度の上昇が抑えられる。その場合に、各ブレード3は、受風面積を減少させるだけであって、先端側ブレード部4は風を十分に受けることができるので、プロペラ2の回転が停止してしまうことはなく、強風下においても、無理のない範囲で効率の良い発電が継続される。もちろん、この切換えは、プロペラ2の回転による切換え作動体10の遠心力を利用して行われるものであるから、切換えのタイミングや動作に電気を必要としない。   As shown in FIGS. 2 (b) and 4 (b) (c), when the rotation speed of the propeller 2 exceeds a predetermined allowable rotation speed due to a strong wind, the switching actuator 10 is attached to the spring 9. Retreating from the inside of the recess 11 by centrifugal force against the force and rotating the proximal blade portion 5 by wind pressure reduces the wind receiving area of the blade 3, thereby rotating the rotational speed of the windmill 1 due to strong wind. An excessive rise in the amount is suppressed. In that case, each blade 3 only reduces the wind receiving area, and the tip side blade portion 4 can sufficiently receive the wind, so that the rotation of the propeller 2 does not stop, and the strong wind Even below, efficient power generation is continued within a reasonable range. Of course, since this switching is performed by using the centrifugal force of the switching operation body 10 by the rotation of the propeller 2, no electricity is required for the switching timing and operation.

なお、基端側ブレード部5の回転はフリーであってもよいが、本実施形態では、図1(ロ)及び図5(イ)(ロ)に示すように、基端側ブレード部5とローターヘッドの側6との対面部において、ローターヘッドの側6に突起12が設けられ、基端側ブレード部5が受風面積を減少させる所定の位置まで回転したとき突起12に当接し、基端側ブレード部5のフリーな回転が規制されるようになされており、それにより、強風下で基端側ブレード部5が自由な回転によってふらついてしまうのを抑制ないしは防止することができるようになされている。   Although the rotation of the base end side blade portion 5 may be free, in the present embodiment, as shown in FIGS. 1 (B) and 5 (A) (B), A protrusion 12 is provided on the rotor head side 6 at the part facing the rotor head side 6, and comes into contact with the protrusion 12 when the proximal blade part 5 rotates to a predetermined position to reduce the wind receiving area. The free rotation of the end side blade part 5 is restricted, so that it is possible to suppress or prevent the base end side blade part 5 from wobbling due to free rotation under strong wind. Has been made.

図6に示す第2実施形態の発電用水平軸型風車1は、回転数が許容限度の所定の回転数を越えた状態から、その回転数以下となったとき、基端側ブレード部5を風圧に抗して復帰回転させる第2付勢手段として第2バネ13を備えさせたものである。該第2バネ13は、図示するように、基端側ブレード部5の軸穴内に備えさせてもよいし、図示しないが、ローターヘッドの側6と基端側ブレード部5との対面部において、そのいずれか一方あるいは両方に設けた凹所空間部を利用して設置するようにしてもよい。その他は、第1実施形態の風車1と同様である。なお、第1実施形態の風車1におけるふらつき防止突起12は、備えられていてもよいし、省略されてもよい。   The horizontal shaft type wind turbine 1 for power generation according to the second embodiment shown in FIG. 6 is configured such that when the rotational speed is less than the predetermined rotational speed from a state where the rotational speed exceeds the allowable limit, the proximal blade section 5 is moved. A second spring 13 is provided as a second urging means for returning and rotating against the wind pressure. As shown in the figure, the second spring 13 may be provided in the shaft hole of the base end side blade part 5, and although not shown, at the facing part of the rotor head side 6 and the base end side blade part 5. The recess space provided in either one or both may be installed. Others are the same as the windmill 1 of 1st Embodiment. Note that the wobbling prevention protrusion 12 in the wind turbine 1 of the first embodiment may be provided or omitted.

本実施形態の風車1では、強風でプロペラ2の回転数が許容限度の所定の回転数を越え、切換え作動体10が遠心力で凹所11内から退出すると、基端側ブレード部5は第2バネ13の付勢力に抗して風圧で回転することにより、ブレード3の受風面積が減少し、それによって、強風による風車1の回転数の過度の上昇が抑えられる。   In the windmill 1 of the present embodiment, when the rotational speed of the propeller 2 exceeds a predetermined allowable rotational speed due to a strong wind, and the switching operation body 10 is retracted from the recess 11 by centrifugal force, the proximal blade section 5 is By rotating with the wind pressure against the urging force of the two springs 13, the wind receiving area of the blade 3 is reduced, thereby suppressing an excessive increase in the rotational speed of the wind turbine 1 due to the strong wind.

そして、強風がおさまり風速が低下してくると、第2バネ13の付勢力が風圧に勝って基端側ブレード部5が復帰し、また、切換え作動体10が第1バネ9の付勢力で進出復帰し、該切換え作動体10が基端側ブレード部5の凹所11内に突出して、基端側ブレード部5は先端側ブレード部4同様に風上に向いた状態で回転を規制され、ブレード3の受風面積が増加して、もとの効率の良い発電が再開される。この復帰動作への切換えも、プロペラ2の回転による切換え作動体10の遠心力と、風圧と、第1,第2のバネ9,13の付勢力とのつり合い関係を利用して自動で行われるものであるから、切換えのタイミングや動作に電気を必要としない。なお、切換え作動体10が基端側ブレード部5の戻りに先行して復帰した場合でも、該切換え作動体10が基端側ブレード部5の凹所11内に入り込むことができるよう、図示するように、切換え作動体10の先端部は球面状などの形態に形成しておくとよい。   When the strong wind subsides and the wind speed decreases, the urging force of the second spring 13 overcomes the wind pressure and the proximal blade portion 5 returns, and the switching operating body 10 is urged by the urging force of the first spring 9. When the advancing and returning operation is performed, the switching operation body 10 protrudes into the recess 11 of the proximal end blade portion 5, and the proximal end blade portion 5 is restricted to rotate in the state of facing the windward like the distal end side blade portion 4. The wind receiving area of the blade 3 is increased, and the original efficient power generation is resumed. The switching to the returning operation is also automatically performed using a balance relationship between the centrifugal force of the switching operating body 10 due to the rotation of the propeller 2, the wind pressure, and the urging forces of the first and second springs 9 and 13. Therefore, electricity is not required for switching timing and operation. In addition, even when the switching operation body 10 returns prior to the return of the proximal end blade portion 5, the switching operation body 10 is illustrated so that it can enter the recess 11 of the proximal end blade portion 5. As described above, the tip of the switching operation body 10 may be formed in a spherical shape or the like.

また、本実施形態では、上記のような第2バネ13の採用により、許容限度の所定の回転数を越えた場合に、第2バネ13の付勢力と風圧とのつり合い関係により、その回転数の大きさによって基端側ブレード部5の回転角度が自動で調節される。即ち、許容回転数を僅かに越える程度では、基端側ブレード部5の回転角度も僅かであり、許容回転数を大きく越えると、基端側ブレード部5の回転角度も大きくなる。これにより、強風下において、その風の強さに応じて基端側ブレード部5の角度が調節され、効率の良い発電を実現することができる。   Further, in the present embodiment, when the second spring 13 as described above is employed, when the predetermined rotational speed exceeding the allowable limit is exceeded, the rotational speed is determined by the balance between the biasing force of the second spring 13 and the wind pressure. The rotation angle of the base end side blade portion 5 is automatically adjusted according to the size of. That is, when the allowable rotational speed is slightly exceeded, the rotational angle of the base end side blade portion 5 is also slight, and when the allowable rotational speed is greatly exceeded, the rotational angle of the base end side blade portion 5 is also large. Thereby, the angle of the base end side blade part 5 is adjusted according to the strength of the wind under strong wind, and efficient power generation can be realized.

なお、本第2実施形態において、第1バネ9や切換え作動体10、有底穴8、凹所11を省略した構造(第3実施形態)とするのもよい。即ち、風速が許容範囲内のものであるときに、基端側ブレード部5を先端側ブレード部4と同じ向きに向くように位置保持する機能を第2バネ13にもたせた構造であり、回転数の制御を簡素な構造で実現することができる。   In the second embodiment, the first spring 9, the switching operation body 10, the bottomed hole 8, and the recess 11 may be omitted (third embodiment). In other words, when the wind speed is within an allowable range, the second spring 13 has a function to hold the proximal end blade portion 5 so that the proximal end blade portion 5 is oriented in the same direction as the distal end blade portion 4. Number control can be realized with a simple structure.

図7及び図8に示す第4実施形態の発電用水平軸型風車1は、第1実施形態あるいは第2実施形態の風車において、図7(イ)に示すように、基端側ブレード部5の先端面部に、凹所11と連続する斜面部14を設けたものである。該斜面部14は、基端側ブレード部5の回転に伴って切換え作動体10が移動していく経路に沿うように延ばされており、図7(ロ)(ハ)に示すように、凹所11よりも浅く、かつ、凹所11から離れていくにしたがって次第に浅くなっていくように形成されている。   The horizontal axis wind turbine 1 for power generation according to the fourth embodiment shown in FIGS. 7 and 8 is similar to the wind turbine of the first embodiment or the second embodiment, as shown in FIG. The slope part 14 which continues the recess 11 is provided in the front end surface part. The inclined surface portion 14 is extended along a path along which the switching operation body 10 moves in accordance with the rotation of the base end blade portion 5, as shown in FIGS. It is formed so as to be shallower than the recess 11 and gradually become shallower as the distance from the recess 11 increases.

この風車1では、強風で風車の回転数が許容限度の回転数を超えた場合に、越える程度に応じて次のような動作を行う。即ち、越える程度が小さいと、切換え作動体10の遠心力と前述した第1バネ9の付勢力とのつり合い関係によって、切換え作動体10が、図8(イ)に示すように、凹所11内から退出できるところまで移動し、基端側ブレード部5が風圧で回転変位をしても、切換え作動体10の先端部は斜面部14の深い側の位置に位置しているため、基端側ブレード部5の回転変位は僅かな変位量に抑えられる。   In the wind turbine 1, when the wind turbine rotation speed exceeds a permissible limit due to a strong wind, the following operation is performed according to the extent of the rotation. In other words, if the degree of excess is small, the switching actuator 10 has a recess 11 as shown in FIG. 8 (a) due to the balance between the centrifugal force of the switching actuator 10 and the biasing force of the first spring 9 described above. Even if the base end side blade portion 5 moves to the place where it can be withdrawn from the inside and is rotationally displaced by the wind pressure, the tip end portion of the switching operation body 10 is located at the deep side of the slope portion 14, so that the base end The rotational displacement of the side blade portion 5 is suppressed to a slight displacement amount.

そして、越える程度がもう少し大きくなると、図8(ロ)(ハ)に示すように、切換え作動体10は遠心力により更に後退していき、風圧によって基端側ブレード部5の回転変位が進行するが、切換え作動体10の先端部は、斜面部14の浅い側の位置に位置しているため、基端側ブレード部5の回転は全くの自由ではなく、斜面部14と切換え作動体10とで規制される。なお、図7(ハ)は、強風の程度が大きい場合のもので、基端側ブレード部5の回転はフリーとなる。   When the degree of excess exceeds a little, as shown in FIGS. 8B and 8C, the switching operation body 10 is further retracted by the centrifugal force, and the rotational displacement of the proximal end blade portion 5 is advanced by the wind pressure. However, since the distal end portion of the switching operation body 10 is located at a shallow position of the slope portion 14, the rotation of the base end blade portion 5 is not completely free. It is regulated by. FIG. 7 (c) shows a case where the level of strong wind is large, and the rotation of the base end blade portion 5 is free.

このように、上記のような斜面部14を設けることによっても、強風下において、その風の強さに応じて基端側ブレード部5の角度を調節することができ、効率の良い発電を実現することができる。   Thus, even by providing the slope portion 14 as described above, the angle of the proximal blade portion 5 can be adjusted according to the strength of the wind under strong wind, and efficient power generation is realized. can do.

第1実施形態を示すもので、図(イ)及び図(ロ)はそれぞれ、回転可能ブレードブレードの動きを示す斜視図である。The first embodiment is shown, and FIGS. 1A and 1B are perspective views showing the movement of the rotatable blade blade. 図(イ)及び図(ロ)はそれぞれ、風車の作動状態を示す正面図である。Drawing (a) and figure (b) are front views which show the operating state of a windmill, respectively. 図(イ)は風車の正面図、図(ロ)はブレードの断面図である。Fig. 1 (a) is a front view of the windmill, and Fig. (B) is a sectional view of the blade. 図(イ)〜図(ハ)は切換え作動体の作動状態を示す断面図である。FIGS. 1A to 1C are cross-sectional views showing the operating state of the switching operation body. 図(イ)は図3(ロ)のI−I線矢視断面図、図(ロ)は作動状態を示す同断面図である。Fig. (A) is a cross-sectional view taken along line I-I in Fig. 3 (b), and Fig. (B) is a cross-sectional view showing an operating state. 第2実施形態を示すもので、ブレードの断面図である。The 2nd Embodiment is shown and it is a sectional view of a blade. 第3実施形態を示すもので、図(イ)は回転可能ブレード部の先端面を示す平面図、図(ロ)は図(イ)のII−II線矢視断面図、図(ハ)は作動状態の一例を示す同断面図である。FIG. 3A shows a third embodiment, FIG. 1A is a plan view showing a tip surface of a rotatable blade portion, FIG. 2B is a cross-sectional view taken along line II-II in FIG. 1A, and FIG. It is the same sectional view showing an example of an operation state. 図(イ)〜図(ハ)はそれぞれ、作動状態の他の例を示す断面図である。Drawing (a)-figure (c) are sectional views showing other examples of an operating state, respectively.

符号の説明Explanation of symbols

1…プロペラ型風車(水平軸型風車)
3…ブレード
4…先端側ブレード部(非回転ブレード部)
5…基端側ブレード部(回転可能ブレード部)
10…切換え作動体
13…第2バネ(付勢手段)
1 ... Propeller type windmill (horizontal axis type windmill)
3 ... Blade 4 ... Blade on the tip (non-rotating blade)
5. Base end side blade part (rotatable blade part)
10 ... Switching body 13 ... Second spring (biasing means)

Claims (3)

ブレードが半径線方向において複数のブレード部に分割されると共に、分割された一部のブレード部が、風車の回転中心から半径線方向を向く軸線回りで、ブレードの受風面積を減少させるように、残るブレード部に対して回転可能に備えられ、かつ、
常時は前記回転可能ブレード部と非回転部とを係合させて回転可能ブレード部の回転を阻止し、風車の回転数が所定の回転数を越えたとき、遠心力で半径線方外方に変位し、前記回転可能ブレード部と非回転部との係合を解除して回転可能ブレード部の回転を許容する切換え作動体が備えられていることを特徴とする発電用水平軸型風車の回転数制御機構。
The blade is divided into a plurality of blade portions in the radial direction, and a part of the divided blade portions reduces the wind receiving area of the blade around an axis line in the radial direction from the rotation center of the windmill. , Provided rotatably with respect to the remaining blade part, and
Normally, the rotatable blade part is engaged with the non-rotating part to prevent the rotatable blade part from rotating, and when the rotational speed of the windmill exceeds the predetermined rotational speed, the centrifugal force causes the radial line outward. Rotation of a horizontal axis wind turbine for power generation, characterized in that it is provided with a switching operation body that displaces and disengages the rotatable blade portion and the non-rotating portion to allow rotation of the rotatable blade portion. Number control mechanism.
風車の回転数が前記所定の回転数以下となったとき、回転可能ブレード部を風圧に抗して復帰回転させる付勢手段が備えられている請求項1に記載の、発電用水平軸型風車の回転数制御機構。   The horizontal axis wind turbine for power generation according to claim 1, further comprising a biasing means for rotating the rotatable blade portion back against the wind pressure when the rotation speed of the wind turbine becomes equal to or less than the predetermined rotation speed. Rotational speed control mechanism. ブレードが半径線方向において複数のブレード部に分割されると共に、分割された一部のブレード部が、風車の回転中心から半径線方向を向く軸線回りで、ブレードの受風面積を減少させるように、残るブレード部に対して回転可能に備えられ、かつ、
常時は、付勢力で回転可能ブレード部を非回転ブレード部と同じ向きとなるように位置保持し、風車の回転数が所定の回転数を越えたとき付勢力が風圧に負けて回転可能ブレード部の回転変位を許容する付勢手段が備えられていることを特徴とする発電用水平軸型風車の回転数制御機構。
The blade is divided into a plurality of blade portions in the radial direction, and a part of the divided blade portions reduces the wind receiving area of the blade around an axis line in the radial direction from the rotation center of the windmill. , Provided rotatably with respect to the remaining blade part, and
At all times, the rotatable blade portion is held in the same direction as the non-rotating blade portion by the urging force, and when the rotational speed of the windmill exceeds the predetermined rotational speed, the urging force loses the wind pressure and is rotatable. An urging means for allowing the rotational displacement of the horizontal axis wind turbine for power generation is provided.
JP2003432452A 2003-12-26 2003-12-26 Rotating speed control mechanism of horizontal shaft type windmill for power generation Pending JP2005188429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003432452A JP2005188429A (en) 2003-12-26 2003-12-26 Rotating speed control mechanism of horizontal shaft type windmill for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432452A JP2005188429A (en) 2003-12-26 2003-12-26 Rotating speed control mechanism of horizontal shaft type windmill for power generation

Publications (1)

Publication Number Publication Date
JP2005188429A true JP2005188429A (en) 2005-07-14

Family

ID=34790151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432452A Pending JP2005188429A (en) 2003-12-26 2003-12-26 Rotating speed control mechanism of horizontal shaft type windmill for power generation

Country Status (1)

Country Link
JP (1) JP2005188429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103061973A (en) * 2011-10-20 2013-04-24 苏州能健电气有限公司 Angular measurement device of variable pitch system of wind generating set
CN103061974A (en) * 2011-10-20 2013-04-24 苏州能健电气有限公司 Variable pitch system of wind generating set
CN110345002A (en) * 2019-06-03 2019-10-18 沈阳航空航天大学 A kind of Blades For Horizontal Axis Wind of the adaptive rotational deformation of blade tip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103061973A (en) * 2011-10-20 2013-04-24 苏州能健电气有限公司 Angular measurement device of variable pitch system of wind generating set
CN103061974A (en) * 2011-10-20 2013-04-24 苏州能健电气有限公司 Variable pitch system of wind generating set
CN110345002A (en) * 2019-06-03 2019-10-18 沈阳航空航天大学 A kind of Blades For Horizontal Axis Wind of the adaptive rotational deformation of blade tip

Similar Documents

Publication Publication Date Title
EP3034388B1 (en) Wind power generation system
JP4355635B2 (en) Single rotor type wind power generator system combining horizontal and vertical axes
US20110135471A1 (en) Wind Turbine
JP5179453B2 (en) Blade pitch control mechanism and its application
JP2011526978A (en) Apparatus for controlling turbine blade pitch angle
JP2007085182A (en) Vertical shaft type straight wing windmill having aerodynamic governor mechanism
JP6126740B2 (en) Blade angle adjusting device for wind power generator and wind power generator having the same
JP2006152922A (en) Windmill
US4257740A (en) Speed governing hub for windmill
JP2004197643A (en) Vertical shaft type wind mill device
US8920119B2 (en) Partial coarse pitch start Ram Air Turbine with enhanced spring support
JP2005188429A (en) Rotating speed control mechanism of horizontal shaft type windmill for power generation
JP2005090332A (en) Darrieus wind turbine
JP6038825B2 (en) Spur type floating structure and method of operating spar type floating structure
JP2003201951A (en) Excessive rotation avoiding mechanism of horizontal axis wind mill
JP2004011543A (en) Horizontal axis type windmill
JP5615349B2 (en) Renewable energy power generator and hydraulic pump mounting method
JP2005282540A (en) Rotation speed control mechanism in wind power generator using lift type vertical shaft wind mill
JP2007231889A (en) Power taking-out device
JP4411063B2 (en) Speed control mechanism of horizontal axis wind turbine for power generation
JP2004124771A (en) Brake system for horizontal shaft type windmill
JP5430724B2 (en) Wind turbine for wind power generation
JPH0979127A (en) Wind power generation device
CN213414203U (en) Folding propeller capable of bearing high-speed airflow blowing
JP5433808B1 (en) Wind turbine blade pitch angle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309