JP2005188339A - Displacement-on-demand internal combustion engine - Google Patents

Displacement-on-demand internal combustion engine Download PDF

Info

Publication number
JP2005188339A
JP2005188339A JP2003428643A JP2003428643A JP2005188339A JP 2005188339 A JP2005188339 A JP 2005188339A JP 2003428643 A JP2003428643 A JP 2003428643A JP 2003428643 A JP2003428643 A JP 2003428643A JP 2005188339 A JP2005188339 A JP 2005188339A
Authority
JP
Japan
Prior art keywords
cylinder
internal combustion
combustion engine
fuel
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003428643A
Other languages
Japanese (ja)
Other versions
JP4036375B2 (en
Inventor
Mikio Fujiwara
幹夫 藤原
Yasuaki Asaki
泰昭 浅木
Jiro Takagi
治郎 高木
Makoto Segawa
誠 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003428643A priority Critical patent/JP4036375B2/en
Publication of JP2005188339A publication Critical patent/JP2005188339A/en
Application granted granted Critical
Publication of JP4036375B2 publication Critical patent/JP4036375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce vibration and noise at the time of resuming fuel supply in a displacement-on-demand internal combustion engine. <P>SOLUTION: The displacement-on-demand internal combustion engine comprises a displacement-on-demand region setting means for setting a displacement-on-demand region in which partial cylinder operation is performed, and a fuel controlling means for performing fuel supply resumption after a fuel cut. Lower limit rotation speeds Na, Nb in the displacement-on-demand region are set larger by predetermined values ΔNa, ΔNb than resumption rotation speeds Nra, Nrb which are engine rotation speeds at the time of resuming the fuel supply and the fuel supply resumption is carried out in condition of the all cylinder operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料カットが行われる内燃機関の運転形態を、機関回転数を含む車両運転状態に応じて全気筒が稼働する全気筒運転と一部の気筒が休止する部分気筒運転とに切り換える気筒数制御手段を備える可変気筒内燃機関に関する。   The present invention relates to a cylinder that switches the operation mode of an internal combustion engine in which fuel cut is performed between an all-cylinder operation in which all cylinders are operated and a partial cylinder operation in which some cylinders are deactivated in accordance with a vehicle operation state including the engine speed. The present invention relates to a variable cylinder internal combustion engine having number control means.

可変気筒内燃機関では、部分気筒運転でのポンピングロスの低減などにより燃費性能が向上する一方で、全気筒運転が行われる場合に比べて、稼働している気筒で発生する機関トルクが大きくなるうえ、機関トルクの発生間隔(クランク角)が大きくなって、内燃機関の振動が大きくなる。そこで、この振動を抑制しつつ、燃費性能を向上させるための技術として、例えば特許文献1に開示された自動車用エンジンがある。このエンジンでは、エンジンの低速回転時の振動・騒音を抑制するために、アイドルスイッチのオン/オフに応じて休筒状態の設定条件を変えたマップが備えられ、エンジン回転数がアイドルスイッチのオン/オフに応じて設定される所定回転数以上である場合に休筒状態が設定される。そして、アイドルスイッチがオンのときの所定回転数は、アイドルスイッチがオフのときの所定回転数よりも低く設定される。
特開平5−180016号公報
In the variable cylinder internal combustion engine, the fuel efficiency is improved by reducing the pumping loss in the partial cylinder operation, but the engine torque generated in the operating cylinder is larger than in the case of the full cylinder operation. The engine torque generation interval (crank angle) increases, and the vibration of the internal combustion engine increases. Therefore, for example, there is an automobile engine disclosed in Patent Document 1 as a technique for improving fuel efficiency while suppressing this vibration. In order to suppress vibration and noise during low-speed rotation of the engine, this engine is provided with a map in which the setting condition of the cylinder rest state is changed according to ON / OFF of the idle switch, and the engine speed is set to ON of the idle switch. / When the rotation speed is equal to or higher than a predetermined rotational speed set according to OFF, the cylinder resting state is set. The predetermined rotational speed when the idle switch is on is set lower than the predetermined rotational speed when the idle switch is off.
JP-A-5-180016

燃費性能を向上させるために減速時に燃料カットが行われる内燃機関では、燃料カットの終了後に燃料復帰が行われて、燃料供給が再開されことにより、内燃機関の振動・騒音が発生する。そして、燃料復帰時のこの振動・騒音は、部分気筒運転で燃料復帰が行われる場合に、前述の理由により、全気筒運転での燃料復帰の場合に比べて大きくなる。   In an internal combustion engine in which fuel cut is performed at the time of deceleration in order to improve fuel consumption performance, fuel return is performed after the fuel cut ends, and fuel supply is resumed, thereby generating vibration and noise of the internal combustion engine. The vibration and noise at the time of fuel return are larger when the fuel is returned in the partial cylinder operation than the case of the fuel return in the all cylinder operation due to the above-described reason.

本発明は、このような事情に鑑みてなされたものであり、請求項1−3記載の発明は、可変気筒内燃機関において、燃料復帰時の振動・騒音の低減を図ることを目的とする。さらに、請求項2,3記載の発明は、休筒領域の拡大を図ることを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to reduce vibration and noise when returning fuel in a variable cylinder internal combustion engine. Furthermore, the present invention has the object of enlarging the cylinder resting region.

請求項1記載の発明は、吸入空気を計量するスロットル弁と、機関回転速度を検出する回転速度センサと、一部の気筒が休止する部分気筒運転が行われる休筒領域を設定する休筒領域設定手段と、前記回転速度センサの検出結果に基づいて機関回転速度が前記休筒領域にあるか否かを判定する判定手段と、前記判定手段の判定結果に基づいて稼働気筒数を設定する気筒数制御手段と、前記一部の気筒に設けられる気筒休止機構と、燃料カット後に燃料復帰を実行する燃料制御手段とを備え、前記気筒数制御手段が前記気筒休止機構を制御することにより、前記休筒領域以外で全気筒が稼働する全気筒運転と前記休筒領域での前記部分気筒運転とに運転形態が切り換えられる可変気筒内燃機関において、前記休筒領域の下限回転速度は、前記燃料復帰時の機関回転速度である復帰回転速度よりも所定値だけ大きい可変気筒内燃機関である。   According to the first aspect of the present invention, a throttle valve that measures intake air, a rotation speed sensor that detects engine rotation speed, and a cylinder recovery region that sets a cylinder recovery region in which partial cylinder operation in which some cylinders are stopped is performed. A setting unit; a determination unit that determines whether or not the engine rotational speed is in the cylinder deactivation region based on a detection result of the rotation speed sensor; and a cylinder that sets the number of operating cylinders based on the determination result of the determination unit A number control unit, a cylinder deactivation mechanism provided in some of the cylinders, and a fuel control unit that executes fuel return after a fuel cut, and the cylinder number control unit controls the cylinder deactivation mechanism, thereby In a variable cylinder internal combustion engine in which the operation mode is switched between full-cylinder operation in which all cylinders operate in a region other than the idle cylinder region and partial cylinder operation in the idle cylinder region, the lower limit rotational speed of the idle cylinder region A engine speed when returning than the return rotation speed is larger variable cylinder internal combustion engine by a predetermined value.

これによれば、部分気筒運転が行われる休筒領域の下限回転速度は、燃料カット後に燃料復帰が行われる復帰回転速度よりも大きいことから、燃料復帰は、下限回転速度よりも低い機関回転速度領域である休筒領域以外の領域において、全気筒運転の状態で行われるので、部分気筒運転の状態で燃料復帰が行われる場合に比べて燃料復帰時の振動・騒音の発生が抑制される。   According to this, since the lower limit rotational speed of the non-cylinder region where the partial cylinder operation is performed is larger than the return rotational speed at which the fuel return is performed after the fuel cut, the engine return speed is lower than the lower limit rotational speed. Since the operation is performed in an all-cylinder operation state in a region other than the cylinder deactivation region, which is the region, the generation of vibration and noise at the time of fuel return is suppressed compared to the case where fuel return is performed in the state of partial cylinder operation.

請求項2記載の発明は、請求項1記載の可変気筒内燃機関において、前記気筒休止機構は作動油により駆動される油圧式機構であり、前記所定値は前記作動油の温度または圧力に応じて異なる値に設定されるものである。   According to a second aspect of the present invention, in the variable cylinder internal combustion engine according to the first aspect, the cylinder deactivation mechanism is a hydraulic mechanism driven by hydraulic oil, and the predetermined value depends on a temperature or pressure of the hydraulic oil. It is set to a different value.

これによれば、燃料復帰時には休筒休止機構が確実に全気筒運転が可能な状態にあり、しかも所定値を作動油の温度または圧力に応じて極力小さい値に設定することができて、休筒領域が拡大される。   According to this, when the fuel is restored, the cylinder deactivation stop mechanism is in a state in which all cylinders can be operated reliably, and the predetermined value can be set as small as possible according to the temperature or pressure of the hydraulic oil. The cylinder area is enlarged.

請求項3記載の発明は、請求項1または請求項2記載の可変気筒内燃機関において、前記気筒休止機構は、複数の前記一部の気筒のそれぞれに設けられると共に、それぞれクランク軸の回転位置に応じて非作動状態および作動状態の切換が順次行われ、前記所定値は前記復帰回転速度に応じて異なる値に設定されることものである。   According to a third aspect of the present invention, in the variable cylinder internal combustion engine according to the first or second aspect, the cylinder deactivation mechanism is provided in each of the plurality of the partial cylinders, and is disposed at a rotational position of the crankshaft. Accordingly, switching between the non-operating state and the operating state is sequentially performed, and the predetermined value is set to a different value according to the return rotational speed.

これによれば、燃料復帰時には休筒休止機構が確実に全気筒運転が可能な状態にあり、しかも所定値を復帰回転速度に応じて極力小さい値に設定することができる。   According to this, at the time of fuel return, the cylinder deactivation stop mechanism is in a state in which all cylinders can be operated reliably, and the predetermined value can be set to a value as small as possible according to the return rotation speed.

請求項1記載の発明によれば、次の効果が奏される。すなわち、全気筒運転の状態で燃料復帰が行われるので、燃料復帰時の振動・騒音の発生が抑制されて、内燃機関の振動・騒音が低減する。   According to invention of Claim 1, the following effect is show | played. That is, since fuel return is performed in the state of all cylinder operation, generation of vibration and noise at the time of fuel return is suppressed, and vibration and noise of the internal combustion engine are reduced.

請求項2記載の発明によれば、引用された請求項記載の発明の効果に加えて、次の効果が奏される。すなわち、燃料復帰時における全気筒運転が確保され、しかも油圧式機構からなる気筒休止機構を備える可変気筒内燃機関における休筒領域が拡大されるので、部分気筒運転の運転域が拡大されて、燃費性能が一層向上する。   According to invention of Claim 2, in addition to the effect of the invention of the cited claim, there exists the following effect. That is, all cylinder operation at the time of fuel return is ensured, and the cylinder deactivation region in the variable cylinder internal combustion engine having a cylinder deactivation mechanism comprising a hydraulic mechanism is expanded, so that the operation region of partial cylinder operation is expanded and fuel consumption is increased. The performance is further improved.

請求項3記載の発明によれば、引用された請求項記載の発明の効果に加えて、次の効果が奏される。すなわち、燃料復帰時における全気筒運転が確保され、しかもクランク軸の回転位置に対応して順次切り換えられる気筒休止機構を備える可変気筒内燃機関における休筒領域が拡大されるので、部分気筒運転の運転域が拡大されて、燃費性能が一層向上する。   According to invention of Claim 3, in addition to the effect of the invention of the cited claim, there exist the following effects. That is, all cylinder operation at the time of fuel return is ensured, and the cylinder deactivation region in the variable cylinder internal combustion engine having a cylinder deactivation mechanism that is sequentially switched according to the rotational position of the crankshaft is expanded, so that operation of partial cylinder operation is performed. The range will be expanded and fuel efficiency will be further improved.

以下、本発明の実施形態を図1ないし図7を参照して説明する。
図1を参照すると、本発明が適用された可変気筒内燃機関Eは、V型6気筒の4ストローク内燃機関であり、クランク軸Dの回転中心線が車幅方向を指向する横置き配置で車両に搭載される。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
Referring to FIG. 1, a variable cylinder internal combustion engine E to which the present invention is applied is a V-type 6-cylinder 4-stroke internal combustion engine, and is installed in a horizontal arrangement in which the rotation center line of a crankshaft D is directed in the vehicle width direction. Mounted on.

内燃機関Eは、第1気筒群を構成する前方の3つの気筒C1〜C3を有する第1バンクBaと、第2気筒群を構成する後方の3つの気筒C4〜C6を有する第2バンクBbとを備える。内燃機関Eの一部の気筒であって休止可能気筒である複数の気筒C4〜C6には、それぞれ、気筒C4〜C6の稼働および休止を切り換える気筒休止手段としてのバルブ休止機構1が設けられ、バルブ休止機構1は、気筒数制御手段23(図2参照)によりその作動が制御される。   The internal combustion engine E includes a first bank Ba having three front cylinders C1 to C3 constituting the first cylinder group, and a second bank Bb having three rear cylinders C4 to C6 constituting the second cylinder group. Is provided. A plurality of cylinders C4 to C6, which are some cylinders of the internal combustion engine E and are cylinders that can be deactivated, are each provided with a valve deactivation mechanism 1 as cylinder deactivation means for switching operation and deactivation of the cylinders C4 to C6. The operation of the valve deactivation mechanism 1 is controlled by cylinder number control means 23 (see FIG. 2).

内燃機関Eの動弁装置は、クランク軸Dの動力により回転駆動されるカム軸に設けられた動弁カムを備え、該動弁カムにより気筒C1〜C6毎に各バンクBa,Bbのシリンダヘッドに配置された吸気弁および排気弁を開閉する。そして、それ自体周知のバルブ休止機構1は、作動油により非作動状態および作動状態に切り換えられる油圧式機構により構成され、第2バンクBbに配置される前記動弁装置に設けられる。そして、バルブ休止機構1には、電子制御ユニット(以下、「ECU」という。)20により後記車両運転状態に応じて制御される油圧制御弁2が設けられた油路3が接続される。油路3は内燃機関Eにより駆動される油圧源としてのオイルポンプPに接続され、油圧制御弁2がバルブ休止機構1に対する作動油の給排を制御することにより、バルブ休止機構1は、クランク軸Dの回転位置に対応してそれら複数の気筒C4〜C6において、非作動状態または作動状態に順次切り換えられる。   The valve operating device of the internal combustion engine E includes a valve operating cam provided on a cam shaft that is rotationally driven by the power of the crankshaft D, and the cylinder head of each bank Ba, Bb is provided for each of the cylinders C1 to C6 by the valve operating cam. Opens and closes the intake and exhaust valves located in The well-known valve pause mechanism 1 is constituted by a hydraulic mechanism that is switched between a non-actuated state and an actuated state by hydraulic oil, and is provided in the valve operating device disposed in the second bank Bb. The valve suspension mechanism 1 is connected to an oil passage 3 provided with a hydraulic control valve 2 that is controlled by an electronic control unit (hereinafter referred to as “ECU”) 20 according to the vehicle operating state described later. The oil passage 3 is connected to an oil pump P as a hydraulic source driven by the internal combustion engine E, and the hydraulic control valve 2 controls the supply and discharge of the hydraulic oil to and from the valve pause mechanism 1, whereby the valve pause mechanism 1 Corresponding to the rotational position of the shaft D, the cylinders C4 to C6 are sequentially switched to the non-operating state or the operating state.

バルブ休止機構1が非作動状態にあるとき、第2バンクBbの各気筒C4〜C6の吸気弁および排気弁は前記動弁カムにより所定の開閉時期で開閉作動されて、該気筒C4〜C6が稼働状態になり、バルブ休止機構1が作動状態にあるとき、各気筒C4〜C6の吸気弁および排気弁は休止状態になって閉弁状態に保たれ、該気筒C4〜C6が休止する。   When the valve deactivation mechanism 1 is in the non-operating state, the intake valves and exhaust valves of the respective cylinders C4 to C6 of the second bank Bb are opened and closed at a predetermined opening and closing timing by the valve cams, and the cylinders C4 to C6 are opened and closed. When the valve is deactivated and the valve deactivation mechanism 1 is in the activated state, the intake valves and exhaust valves of the cylinders C4 to C6 are deactivated and kept closed, and the cylinders C4 to C6 are deactivated.

それゆえ、内燃機関Eの運転形態は、稼働気筒数を制御する気筒数制御手段23(図2参照)により、バルブ休止機構1が非作動状態になって第2バンクBbの3気筒C4〜C6が稼働して、第1バンクBaの3気筒C1〜C3と共に全気筒C1〜C6が稼働する全気筒運転と、バルブ休止機構1が作動状態になって第2バンクBbの3気筒C4〜C6が休止し、第1バンクBaの3気筒C1〜C3が稼働する部分気筒運転とに切り換えられる。   Therefore, the operation mode of the internal combustion engine E is such that the valve deactivation mechanism 1 is deactivated by the cylinder number control means 23 (see FIG. 2) for controlling the number of operating cylinders, and the three cylinders C4 to C6 in the second bank Bb. Is activated, all cylinders C1 to C6 are operated together with the three cylinders C1 to C3 of the first bank Ba, and the valve deactivation mechanism 1 is activated, and the three cylinders C4 to C6 of the second bank Bb are activated. The operation is stopped and the operation is switched to the partial cylinder operation in which the three cylinders C1 to C3 of the first bank Ba are operated.

内燃機関Eは、エアクリーナ5を通って各気筒C1〜C6に吸入される空気を計量するスロットル弁6と吸気を各気筒C1〜C6に分配する吸気マニホルド7とを有する吸気装置4と、吸入された空気に燃料を供給して混合気を形成する燃料供給手段としての燃料噴射弁8と、各気筒C1〜C6に属する燃焼室で混合気が点火栓9(図2参照)により点火されて燃焼して発生した燃焼ガスを排気ガスとして外部に排出するための排気マニホルド11を有する排気装置10とを備える。スロットル弁6は、ECU20により制御されるアクチュエータである電動モータ12により駆動され、アクセル操作量および後記車両運転状態に応じて開度が制御される。   The internal combustion engine E includes an intake device 4 having a throttle valve 6 that measures air taken into the cylinders C1 to C6 through the air cleaner 5, and an intake manifold 7 that distributes intake air to the cylinders C1 to C6. The fuel mixture is ignited by the spark plug 9 (see FIG. 2) in the combustion chambers belonging to the cylinders C1 to C6 and the fuel injection valve 8 as fuel supply means for supplying fuel to the air to form the mixture. And an exhaust device 10 having an exhaust manifold 11 for discharging the generated combustion gas to the outside as exhaust gas. The throttle valve 6 is driven by an electric motor 12, which is an actuator controlled by the ECU 20, and the opening degree is controlled according to the accelerator operation amount and the vehicle driving state described later.

図2を併せて参照すると、バルブ休止機構1、燃料噴射弁8、点火栓9および電動モータ12は、ECU20により制御される。ECU20は、入出力インターフェース、中央演算処理装置(CPU)、各種の制御プログラムや各種のマップが記憶されたROMおよび各種のデータが一時的に記憶されるRAMなどの記憶装置を備えるマイクロコンピュータで構成される。   Referring also to FIG. 2, the valve pause mechanism 1, the fuel injection valve 8, the spark plug 9 and the electric motor 12 are controlled by the ECU 20. The ECU 20 is composed of a microcomputer including a storage device such as an input / output interface, a central processing unit (CPU), a ROM storing various control programs and various maps, and a RAM storing various data temporarily. Is done.

機関回転速度などの内燃機関Eの機関運転状態と、車速などの機関運転状態以外の状態と、からなる車両運転状態を検出する運転状態検出手段30は、ECU20に接続されるか、またはECU20により構成される。
それゆえ、内燃機関Eの運転形態を切り換えるための制御装置は、運転状態検出手段30およびECU20を備える。
The driving state detection means 30 for detecting the vehicle driving state consisting of the engine operating state of the internal combustion engine E such as the engine speed and the state other than the engine operating state such as the vehicle speed is connected to the ECU 20 or by the ECU 20. Composed.
Therefore, the control device for switching the operation mode of the internal combustion engine E includes the operation state detection means 30 and the ECU 20.

運転状態検出手段30は、車速を検出する車速センサ31と、アクセル操作量としてアクセルペダルの踏込量を検出するアクセル操作量検出手段を構成すると共に機関負荷検出手段でもあるアクセルセンサ32と、スロットル弁6の開度を検出するスロットル開度センサ33と、内燃機関Eの機関回転速度を検出する回転速度センサ34と、機関回転速度の減少率および車速の減少率に基づいて内燃機関Eの減速を検出する減速検出手段35と、アクセルセンサ32の検出結果に基づいてスロットル弁6の全閉を検出する全閉センサ36と、バルブ休止機構1の作動油の温度および圧力をそれぞれ検出する温度センサ37および圧力センサ38とを備える。   The driving state detection means 30 comprises a vehicle speed sensor 31 for detecting the vehicle speed, an accelerator operation amount detection means for detecting the depression amount of the accelerator pedal as an accelerator operation amount, and an accelerator sensor 32 that is also an engine load detection means, a throttle valve A throttle opening sensor 33 for detecting the opening degree of the engine 6, a rotation speed sensor 34 for detecting the engine rotation speed of the internal combustion engine E, and the deceleration of the internal combustion engine E based on the reduction rate of the engine rotation speed and the reduction rate of the vehicle speed. Deceleration detecting means 35 for detecting, a fully closed sensor 36 for detecting the fully closed state of the throttle valve 6 based on the detection result of the accelerator sensor 32, and a temperature sensor 37 for detecting the temperature and pressure of the hydraulic oil of the valve deactivation mechanism 1 respectively. And a pressure sensor 38.

ECU20は、部分気筒運転が行われる運転領域である休筒領域F(図3参照)を設定する休筒領域設定手段21と、運転状態検出手段30の検出結果に基づいて前記車両運転状態が休筒領域Fにあるか否かを判定する判定手段22と、判定手段22の判定結果に基づいて稼働気筒数を設定する気筒数制御手段23と、運転状態検出手段30の検出結果に基づいて各燃料噴射弁8から供給される燃料量および供給時期を制御する燃料制御手段24と、運転状態検出手段30の検出結果に基づいて各点火栓9の点火時期および作動を制御する点火栓制御手段25とを備える。   The ECU 20 is based on the detection result of the idle state setting means 21 for setting the idle cylinder region F (see FIG. 3), which is the operation region in which the partial cylinder operation is performed, and the detection result of the operating state detection unit 30. The determination means 22 for determining whether or not the cylinder region F is present, the cylinder number control means 23 for setting the number of operating cylinders based on the determination result of the determination means 22, and the detection results of the operating state detection means 30 Fuel control means 24 for controlling the amount and timing of fuel supplied from the fuel injection valve 8 and spark plug control means 25 for controlling the ignition timing and operation of each spark plug 9 based on the detection result of the operating state detection means 30. With.

図3を併せて参照すると、休筒領域設定手段21はECU20の記憶装置に記憶された休筒領域マップに基づいて休筒領域Fを設定する。該休筒領域マップにより設定される基本休筒領域Foは、内燃機関Eの機関負荷と機関回転速度とをパラメータとして機関負荷領域および機関回転速度領域の各所定範囲に渡って、例えば内燃機関Eが、低負荷領域で、所定の低速回転領域または中速回転領域にある運転領域として設定される。   Referring also to FIG. 3, the idle cylinder region setting means 21 sets the idle cylinder region F based on the idle cylinder region map stored in the storage device of the ECU 20. The basic idle cylinder area Fo set by the idle cylinder area map is, for example, the internal combustion engine E over a predetermined range of the engine load area and the engine rotation speed area with the engine load and the engine rotation speed of the internal combustion engine E as parameters. Is set as an operation region in a low load region and in a predetermined low speed rotation region or medium speed rotation region.

そして、基本気筒領域Foにおける、機関回転速度領域の低回転速度側での境界値となる下限回転速度Noは、エンジンストール防止の観点から設定される復帰回転速度Nra,Nrb(図4参照)を考慮して、車室内での静穏性および乗員の快適性を向上させる観点から、内燃機関Eが部分気筒運転で運転されるときに発生する振動・騒音が、乗員に著しい不快感を与えることがない目安となる振動・騒音レベル以上にならない機関回転速度として設定される。   The lower limit rotational speed No, which is a boundary value on the low rotational speed side of the engine rotational speed region in the basic cylinder region Fo, is a return rotational speed Nra, Nrb (see FIG. 4) set from the viewpoint of preventing engine stall. In view of improving quietness in the passenger compartment and passenger comfort, vibration and noise generated when the internal combustion engine E is operated in partial cylinder operation may cause the passengers to be extremely uncomfortable. It is set as the engine speed that does not exceed the vibration / noise level that is not a guideline.

気筒数制御手段23は、判定手段22により機関回転速度を含む前記車両運転状態が休筒領域Fにあると判定されると、部分気筒運転が行われるようにバルブ休止機構1を制御して、稼働気筒数を全気筒数未満の気筒数、ここでは全気筒数の半数である3気筒に設定し、前記車両運転状態が休筒領域F以外の運転領域あると判定されると、全気筒運転が行われるようにバルブ休止機構1を制御して、稼働気筒数を全気筒数に設定する。   The cylinder number control means 23 controls the valve deactivation mechanism 1 so that the partial cylinder operation is performed when the determination means 22 determines that the vehicle operating state including the engine rotation speed is in the idle cylinder region F. When the number of operating cylinders is set to be less than the total number of cylinders, in this case, three cylinders, which is half of the total number of cylinders, and it is determined that the vehicle operating state is an operating region other than the idle cylinder region F, The valve deactivation mechanism 1 is controlled so that the number of operating cylinders is set to the total number of cylinders.

燃料制御手段24により、気筒数制御手段23からの出力信号に応じて部分気筒運転時に気筒C4〜C6に属する燃料噴射弁8から燃料の供給が停止される。さらに、燃料制御手段24により、減速検出手段35により機関回転速度の減少率および車速の減少率少なくとも一方が所定値以上となる急減速が検出されると、各気筒C1〜C6の燃料噴射弁8からの燃料供給を停止する燃料カットを実行する。なお、この実施形態では、部分気筒運転時に燃料カットが行われるため、実質的には、気筒C4〜C6に属する燃料噴射弁8に対して燃料カットが実施される。そして、燃料カット後に、回転速度センサ34により検出される機関回転速度が燃料復帰を実行する復帰回転速度Nra,Nrb(図4参照)まで低下した時点で、後述するように各気筒C1〜C6の燃料噴射弁8からの燃料供給が再開される。また、点火栓制御手段25により、気筒数制御手段23からの出力信号に応じて部分気筒運転時に気筒C4〜C6に属する点火栓9の作動が停止される。   The fuel control means 24 stops the supply of fuel from the fuel injection valves 8 belonging to the cylinders C4 to C6 during the partial cylinder operation according to the output signal from the cylinder number control means 23. Further, when the fuel control means 24 detects a sudden deceleration in which at least one of the engine speed reduction rate and the vehicle speed reduction rate is greater than or equal to a predetermined value by the deceleration detection means 35, the fuel injection valves 8 of the cylinders C1 to C6. A fuel cut to stop the fuel supply from is executed. In this embodiment, since the fuel cut is performed during the partial cylinder operation, the fuel cut is substantially performed on the fuel injection valves 8 belonging to the cylinders C4 to C6. After the fuel cut, when the engine rotational speed detected by the rotational speed sensor 34 decreases to the return rotational speeds Nra and Nrb (see FIG. 4) for executing the fuel return, as described later, the cylinders C1 to C6 The fuel supply from the fuel injection valve 8 is resumed. Further, the ignition plug control means 25 stops the operation of the ignition plugs 9 belonging to the cylinders C4 to C6 during the partial cylinder operation in accordance with the output signal from the cylinder number control means 23.

図3,図4を参照すると、復帰回転速度Nraは、スロットル弁6が全閉であるとき(全閉時)の復帰回転速度であり、復帰回転速度Nrbは、スロットル弁6が全閉でないとき(非全閉時)の復帰回転速度である。そして、両復帰回転速度Nra,Nrbは、内燃機関Eの燃料復帰時における変速機のシフト位置などの前記車両運転状態に基づいて設定される。具体的には、復帰回転速度Nraは、前記シフト位置をパラメータとしたマップにより設定される復帰回転速度Nrbから所定の補正値を差し引く補正を行うことにより設定される。   3 and 4, the return rotational speed Nra is the return rotational speed when the throttle valve 6 is fully closed (when fully closed), and the return rotational speed Nrb is when the throttle valve 6 is not fully closed. This is the return rotation speed (when not fully closed). Both return rotational speeds Nra and Nrb are set based on the vehicle operating state such as the shift position of the transmission when the internal combustion engine E returns to fuel. Specifically, the return rotation speed Nra is set by performing correction by subtracting a predetermined correction value from the return rotation speed Nrb set by a map using the shift position as a parameter.

休筒領域設定手段21は、全閉センサ36により検出されるスロットル弁6の全閉および非全閉、そして両復帰回転速度Nra,Nrbに応じて下限回転速度Noを補正することにより、スロットル弁6が全閉であるときの下限回転速度Naおよびスロットル弁6が非全閉であるときの下限回転速度Nbを設定して、スロットル弁6の全閉時の全閉時休筒領域Faおよびスロットル弁6の非全閉時の非全閉時休筒領域Fbする。   The idle cylinder region setting means 21 fully throttles and non-fully closes the throttle valve 6 detected by the fully-closed sensor 36, and corrects the lower limit rotational speed No according to both return rotational speeds Nra and Nrb. The lower limit rotational speed Na when the throttle valve 6 is fully closed, and the lower limit rotational speed Nb when the throttle valve 6 is not fully closed are set, and the fully closed cylinder region Fa and the throttle when the throttle valve 6 is fully closed are set. The non-fully closed cylinder region Fb when the valve 6 is not fully closed.

具体的には、スロットル弁6の開度に基づいて定まる機関トルクが大きいときほど、部分気筒運転での振動・騒音も大きくなることから、スロットル弁6が全閉でないときに比べて機関トルクが小さい運転状態であるスロットル弁6が全閉であるときの下限回転速度Naは、スロットル弁6が全閉でないときの下限回転速度Nbよりも小さく設定される。それゆえ、下限回転速度Naにより規定される全閉時休筒領域Faは、下限回転速度Nbにより規定される非全閉時休筒領域Fbに比べて、より低い機関回転速度領域を含む休筒領域Fになる。   Specifically, as the engine torque determined based on the opening degree of the throttle valve 6 increases, the vibration and noise during partial cylinder operation also increase. Therefore, the engine torque is lower than when the throttle valve 6 is not fully closed. The lower limit rotational speed Na when the throttle valve 6 in the small operating state is fully closed is set smaller than the lower limit rotational speed Nb when the throttle valve 6 is not fully closed. Therefore, the fully closed closed cylinder region Fa defined by the lower limit rotational speed Na includes a lower engine rotational speed region than the non-fully closed closed cylinder region Fb defined by the lower limit rotational speed Nb. Region F is entered.

そのために、下限回転速度Naは、復帰回転速度Nraを基準にして、復帰回転速度Nraよりも所定値ΔNaだけ大きい値に設定され、下限回転速度Nbは、復帰回転速度Nrbを基準にして、復帰回転速度Nrbよりも所定値ΔNbだけ大きい値に設定される。   Therefore, the lower limit rotational speed Na is set to a value that is larger by a predetermined value ΔNa than the return rotational speed Nra with reference to the return rotational speed Nra, and the lower limit rotational speed Nb is returned based on the return rotational speed Nrb. The rotation speed Nrb is set to a value that is larger by a predetermined value ΔNb.

そして、所定値ΔNa,ΔNbは、機関回転速度が下限回転速度Na,Nbから復帰回転速度Nra,Nrbにそれぞれ達するまでに、休止状態にあるすべての気筒C4〜C6でバルブ休止機構1が作動状態から非作動状態への切換を完了するように、休筒領域設定手段21により設定される。したがって、切換時間が作動油の温度および圧力の影響を受けるバルブ休止機構1において、所定値ΔNa,ΔNbは、図5,図6に示される作動油の温度または圧力をパラメータとしたマップに基づいて、作動油の温度または圧力に応じて異なる値に設定される。具体的には、作動油の油路3に設けられる温度センサ37(図2参照)または圧力センサ38(図2参照)の検出結果に基づいて、図5に示されるように、作動油の温度が低くて粘度が大きいときほど作動油が切換のための部材を押す力が大きくなることから、作動油の温度が高くなるほど大きい値に設定され、また図6に示されるように、圧力が高くなるほど小さい値に設定される。   The predetermined values ΔNa and ΔNb indicate that the valve deactivation mechanism 1 is activated in all the cylinders C4 to C6 that are deactivated until the engine rotation speed reaches the return rotation speeds Nra and Nrb from the lower limit rotation speeds Na and Nb, respectively. Is set by the cylinder deactivation region setting means 21 so as to complete the switching from the non-operating state to the non-operating state. Therefore, in the valve deactivation mechanism 1 in which the switching time is affected by the temperature and pressure of the hydraulic oil, the predetermined values ΔNa and ΔNb are based on the maps with the hydraulic oil temperature or pressure shown in FIGS. 5 and 6 as parameters. It is set to a different value depending on the temperature or pressure of the hydraulic oil. Specifically, as shown in FIG. 5, based on the detection result of the temperature sensor 37 (see FIG. 2) or the pressure sensor 38 (see FIG. 2) provided in the oil passage 3 for the hydraulic oil, the temperature of the hydraulic oil The lower the pressure is and the higher the viscosity is, the greater the force that the hydraulic oil pushes on the switching member. Therefore, the higher the hydraulic oil temperature, the higher the pressure, and the higher the pressure, as shown in FIG. It is set to a smaller value.

さらに、バルブ休止機構1が複数の気筒C4〜C6に設けられ、バルブ休止機構1の作動状態および非作動状態の切換はクランク軸Dの回転位置に対応してそれら気筒において順次行われることから、所定値ΔNa,ΔNbは、図7に示される機関回転速度をパラメータとしたマップに基づいて、復帰回転速度Nra,Nrbに応じて異なる値に設定される。具体的には、回転速度センサ34(図2参照)の検出結果に基づいて、図7に示されるように、復帰回転速度Nra,Nrbが低いときほど大きな値に設定される。   Further, the valve deactivation mechanism 1 is provided in a plurality of cylinders C4 to C6, and switching between the operation state and the non-operation state of the valve deactivation mechanism 1 is sequentially performed in those cylinders corresponding to the rotational position of the crankshaft D. The predetermined values ΔNa and ΔNb are set to different values according to the return rotational speeds Nra and Nrb based on the map with the engine rotational speed shown in FIG. 7 as a parameter. Specifically, based on the detection result of the rotational speed sensor 34 (see FIG. 2), as the return rotational speeds Nra and Nrb are lower, the larger the value is set, as shown in FIG.

なお、所定値ΔNa,ΔNbが、作動油の温度または圧力、および復帰回転速度Nra,Nrbに応じて設定される場合、それら各パラメータにより設定される最大の所定値ΔNa,ΔNbが採用される。また、下限回転速度Na,Nb、および復帰回転速度Nra,Nrbは、それぞれ、バルブ休止機構1の切換安定化、および燃料復帰時における内燃機関Eの作動安定化のために、所定幅のヒステリシス特性を持っている。   When the predetermined values ΔNa and ΔNb are set according to the temperature or pressure of the hydraulic oil and the return rotational speeds Nra and Nrb, the maximum predetermined values ΔNa and ΔNb set by these parameters are adopted. Further, the lower limit rotational speeds Na and Nb and the return rotational speeds Nra and Nrb are respectively hysteresis characteristics having a predetermined width in order to stabilize the switching of the valve deactivation mechanism 1 and stabilize the operation of the internal combustion engine E at the time of fuel return. have.

次に、前述のように構成された実施形態の作用および効果について説明する。
判定手段22は、回転速度センサ34を含む運転状態検出手段30の検出結果に基づいて機関回転速度を含む前記車両運転状態が休筒領域Fにあるか否かを判定し、気筒数制御手段23は、その判定結果に基づいて、休筒領域F以外での全気筒運転と休筒領域Fでの部分気筒運転とに内燃機関Eの運転形態を切り換える。このとき、全閉時休筒領域Faおよび非全閉時休筒領域Fbにおける下限回転速度Na,Nbは、それぞれ、スロットル弁6の全閉時およびスロットル弁6の非全閉時での燃料カット後の復帰回転速度Nra,Nrbよりも所定値ΔNa,ΔNbだけ大きいことにより、燃料復帰は、下限回転速度Na,Nbよりも低い機関回転速度領域である休筒領域Fa,Fb以外の領域において、全気筒運転の状態で行われるので、部分気筒運転の状態で燃料復帰が行われる場合に比べて燃料復帰時の振動・騒音の発生が抑制されて、内燃機関Eの振動・騒音が低減する。
Next, operations and effects of the embodiment configured as described above will be described.
The determining means 22 determines whether or not the vehicle operating state including the engine rotational speed is in the cylinder deactivation region F based on the detection result of the operating state detecting means 30 including the rotational speed sensor 34, and the cylinder number control means 23 Switches the operation mode of the internal combustion engine E between full cylinder operation outside the idle cylinder region F and partial cylinder operation in the idle cylinder region F based on the determination result. At this time, the lower limit rotational speeds Na and Nb in the fully closed cylinder region Fa and the non-fully closed cylinder region Fb are the fuel cuts when the throttle valve 6 is fully closed and when the throttle valve 6 is not fully closed, respectively. The fuel return is performed in regions other than the idle cylinder regions Fa and Fb, which are engine rotational speed regions lower than the lower limit rotational speeds Na and Nb, by being larger than the subsequent return rotational speeds Nra and Nrb by predetermined values ΔNa and ΔNb. Since the operation is performed in the full-cylinder operation state, the generation of vibration and noise at the time of fuel return is suppressed and the vibration and noise of the internal combustion engine E are reduced as compared with the case where fuel return is performed in the state of partial cylinder operation.

下限回転速度Na,Nbが、前記シフト位置などの車両運転状態に応じて変更される復帰回転速度Nra,Nrbを基準として設定されることにより、エンジンストールを防止しつつ燃料カットによる燃費性能を考慮して設定される復帰回転速度Nra,Nrbに対応して、部分気筒運転が行われる休筒領域Fを拡大することができて、この点でも燃費性能の向上に寄与できる。   The lower limit rotational speeds Na and Nb are set based on the return rotational speeds Nra and Nrb that are changed according to the vehicle operating state such as the shift position, thereby taking into consideration the fuel efficiency performance by fuel cut while preventing engine stall. In response to the return rotational speeds Nra and Nrb set in this way, the cylinder resting region F in which the partial cylinder operation is performed can be expanded, and this point can also contribute to the improvement of fuel efficiency.

スロットル弁6の全閉および非全閉に応じて休筒領域Fa,Fbが設定され、全閉時休筒領域Faの下限回転速度Naは、非全閉時休筒領域Fbの下限回転速度Nbよりも小さく設定されることにより、スロットル弁6の全閉時は、より低い機関回転速度領域まで休筒領域Fが拡大されるので、部分気筒運転での運転領域が拡大されて、燃費性能が向上する。   The cylinder resting regions Fa and Fb are set according to whether the throttle valve 6 is fully closed or not fully closed. The lower limit rotational speed Na of the fully closed cylinder closing region Fa is the lower limit rotational speed Nb of the non-fully closed cylinder closing region Fb. When the throttle valve 6 is fully closed, the idle cylinder area F is expanded to a lower engine speed area when the throttle valve 6 is fully closed, so that the operation area in the partial cylinder operation is expanded and the fuel efficiency performance is improved. improves.

バルブ休止機構1は作動油により駆動される油圧式機構であり、所定値ΔNa,ΔNbは作動油の温度または圧力に応じて異なる値に設定されることにより、燃料復帰時にはバルブ休止機構1が確実に全気筒運転が可能な状態にあり、しかも所定値ΔNa,ΔNbを作動油の温度または圧力に応じて極力小さい値に設定することができるため、燃料復帰時における全気筒運転が確保され、しかも油圧式機構からなるバルブ休止機構1を備える内燃機関Eにおける休筒領域Fが拡大されるので、部分気筒運転の運転域が拡大されて、燃費性能が一層向上する。   The valve deactivation mechanism 1 is a hydraulic mechanism that is driven by hydraulic oil, and the predetermined values ΔNa and ΔNb are set to different values according to the temperature or pressure of the hydraulic oil, so that the valve deactivation mechanism 1 is surely set when fuel returns. In addition, all cylinder operation is possible, and the predetermined values ΔNa and ΔNb can be set as small as possible depending on the temperature or pressure of the hydraulic oil, so that all cylinder operation at the time of fuel recovery is ensured. Since the cylinder deactivation region F in the internal combustion engine E including the valve deactivation mechanism 1 composed of a hydraulic mechanism is expanded, the operation range of the partial cylinder operation is expanded, and fuel efficiency is further improved.

バルブ休止機構1は、複数の気筒のそれぞれに設けられると共に、それぞれクランク軸Dの回転位置に応じて非作動状態および作動状態の切換が順次行われ、所定値ΔNa,ΔNbは、それぞれ復帰回転速度Nra,Nrbに応じて異なる値に設定されることにより、燃料復帰時にはバルブ休止機構1が確実に全気筒運転が可能な状態にあり、しかも所定値ΔNa,ΔNbを復帰回転速度Nra,Nrbに応じて極力小さい値に設定することができるため、燃料復帰時における全気筒運転が確保され、さらにクランク軸Dの回転位置に対応して順次切り換えられるバルブ休止機構1を備える内燃機関Eにおける休筒領域Fが拡大されるので、部分気筒運転の運転領域が拡大されて、燃費性能が一層向上する。   The valve deactivation mechanism 1 is provided in each of the plurality of cylinders, and the non-operating state and the operating state are sequentially switched according to the rotational position of the crankshaft D. The predetermined values ΔNa and ΔNb are respectively set to the return rotational speed. By setting different values according to Nra and Nrb, the valve deactivation mechanism 1 is in a state in which all cylinders can be reliably operated at the time of fuel return, and the predetermined values ΔNa and ΔNb are set according to the return rotational speeds Nra and Nrb. Therefore, all cylinder operation at the time of fuel return is ensured, and the cylinder deactivation region in the internal combustion engine E including the valve deactivation mechanism 1 that is sequentially switched according to the rotation position of the crankshaft D is ensured. Since F is expanded, the operating range of the partial cylinder operation is expanded, and the fuel efficiency is further improved.

以下、前述した実施形態の一部の構成を変更した実施形態について、変更した構成に関して説明する。
全閉センサ36は、スロットル弁6の全閉位置を検出するものであってもよい。また、内燃機関Eは、V型以外の、また6気筒以外の多気筒内燃機関であってもよい。
Hereinafter, an embodiment in which a part of the configuration of the above-described embodiment is changed will be described with respect to the changed configuration.
The fully closed sensor 36 may detect a fully closed position of the throttle valve 6. Further, the internal combustion engine E may be a multi-cylinder internal combustion engine other than the V type or other than the six cylinders.

本発明に係る可変気筒内燃機関の概略図である。1 is a schematic view of a variable cylinder internal combustion engine according to the present invention. 図1の内燃機関の運転形態を切り換えるための制御装置の主要構成部を示すブロック図である。It is a block diagram which shows the main components of the control apparatus for switching the driving | running form of the internal combustion engine of FIG. 図1の内燃機関の休筒領域を設定するマップを示す図である。It is a figure which shows the map which sets the cylinder deactivation area of the internal combustion engine of FIG. 図1の内燃機関において、休筒領域の下限回転速度と燃料復帰が実行される復帰回転速度との関係を説明する図である。FIG. 2 is a diagram for explaining a relationship between a lower limit rotational speed of a cylinder deactivation region and a return rotational speed at which fuel return is executed in the internal combustion engine of FIG. 1. 図1の内燃機関のバルブ休止機構を作動させる作動油の温度に応じて、下限回転速度と復帰回転速度との差に相当する所定値を設定するマップを示す図である。FIG. 2 is a diagram showing a map for setting a predetermined value corresponding to a difference between a lower limit rotation speed and a return rotation speed in accordance with the temperature of hydraulic oil that operates the valve deactivation mechanism of the internal combustion engine of FIG. 1. 図1の内燃機関のバルブ休止機構を作動させる作動油の圧力に応じて、下限回転速度と復帰回転速度との差に相当する所定値を設定するマップを示す図である。FIG. 2 is a diagram showing a map for setting a predetermined value corresponding to a difference between a lower limit rotational speed and a return rotational speed in accordance with the pressure of hydraulic oil that operates the valve deactivation mechanism of the internal combustion engine of FIG. 1. 図1の内燃機関の機関回転速度に応じて、下限回転速度と復帰回転速度との差に相当する所定値を設定するマップを示す図である。FIG. 2 is a diagram showing a map for setting a predetermined value corresponding to a difference between a lower limit rotational speed and a return rotational speed in accordance with the engine rotational speed of the internal combustion engine of FIG. 1.

符号の説明Explanation of symbols

1…バルブ休止機構、2…油圧制御弁、3…油路、4…吸気装置、5…エアクリーナ、6…スロットル弁、7…吸気マニホルド、8…燃料噴射弁、9…点火栓、10…排気装置、11…排気マニホルド、12…電動モータ、13…、14…、20…ECU、21…休筒領域設定手段、22…判定手段、23…気筒数制御手段、24…燃料制御手段、25…点火栓制御手段、30…運転状態検出手段、31…車速センサ、32…アクセルセンサ、33…スロットル開度センサ、34…回転速度センサ、35…減速検出手段、36…全閉センサ、37…温度センサ、38…圧力センサ、
E…可変気筒内燃機関、D…クランク軸、C1〜C6…気筒、Ba,Bb…バンク、P…オイルポンプ、F…休筒領域、Fo…基本休筒領域、Fa…全閉時休筒領域、Fb…非全閉時休筒領域、No,Na,Nb…下限回転速度、Nra,Nrb…復帰回転速度、ΔNa,ΔNb…所定値。
DESCRIPTION OF SYMBOLS 1 ... Valve deactivation mechanism, 2 ... Hydraulic control valve, 3 ... Oil passage, 4 ... Intake device, 5 ... Air cleaner, 6 ... Throttle valve, 7 ... Intake manifold, 8 ... Fuel injection valve, 9 ... Spark plug, 10 ... Exhaust 11 ... Exhaust manifold, 12 ... Electric motor, 13 ..., 14 ..., 20 ... ECU, 21 ... Cylinderless region setting means, 22 ... Determination means, 23 ... Cylinder number control means, 24 ... Fuel control means, 25 ... Spark plug control means, 30 ... operating state detection means, 31 ... vehicle speed sensor, 32 ... accelerator sensor, 33 ... throttle opening sensor, 34 ... rotation speed sensor, 35 ... deceleration detection means, 36 ... full-closed sensor, 37 ... temperature Sensor, 38… Pressure sensor,
E ... Variable cylinder internal combustion engine, D ... Crankshaft, C1-C6 ... Cylinder, Ba, Bb ... Bank, P ... Oil pump, F ... Rest cylinder area, Fo ... Basic cylinder rest area, Fa ... Full cylinder closure cylinder area , Fb: Non-fully closed cylinder region, No, Na, Nb: Lower limit rotational speed, Nra, Nrb: Return rotational speed, ΔNa, ΔNb: Predetermined values.

Claims (3)

吸入空気を計量するスロットル弁と、機関回転速度を検出する回転速度センサと、一部の気筒が休止する部分気筒運転が行われる休筒領域を設定する休筒領域設定手段と、前記回転速度センサの検出結果に基づいて機関回転速度が前記休筒領域にあるか否かを判定する判定手段と、前記判定手段の判定結果に基づいて稼働気筒数を設定する気筒数制御手段と、前記一部の気筒に設けられる気筒休止機構と、燃料カット後に燃料復帰を実行する燃料制御手段とを備え、前記気筒数制御手段が前記気筒休止機構を制御することにより、前記休筒領域以外で全気筒が稼働する全気筒運転と前記休筒領域での前記部分気筒運転とに運転形態が切り換えられる可変気筒内燃機関において、
前記休筒領域の下限回転速度は、前記燃料復帰時の機関回転速度である復帰回転速度よりも所定値だけ大きいことを特徴とする可変気筒内燃機関。
A throttle valve for measuring intake air; a rotation speed sensor for detecting engine rotation speed; a cylinder deactivation area setting means for setting a cylinder deactivation area in which a partial cylinder operation in which some cylinders are deactivated; and the rotation speed sensor Determination means for determining whether the engine speed is in the cylinder deactivation region based on the detection result of the engine, cylinder number control means for setting the number of operating cylinders based on the determination result of the determination means, and the part A cylinder deactivation mechanism provided in each cylinder and fuel control means for executing fuel return after fuel cut, and the cylinder number control means controls the cylinder deactivation mechanism so that all cylinders except for the deactivation area are In the variable cylinder internal combustion engine in which the operation mode is switched between the full cylinder operation to be operated and the partial cylinder operation in the cylinder deactivation region,
A variable cylinder internal combustion engine characterized in that a lower limit rotational speed of the idle cylinder region is larger by a predetermined value than a return rotational speed that is an engine rotational speed at the time of fuel return.
前記気筒休止機構は作動油により駆動される油圧式機構であり、前記所定値は前記作動油の温度または圧力に応じて異なる値に設定されることを特徴とする請求項1記載の可変気筒内燃機関。   2. The variable cylinder internal combustion engine according to claim 1, wherein the cylinder deactivation mechanism is a hydraulic mechanism driven by hydraulic oil, and the predetermined value is set to a different value according to a temperature or pressure of the hydraulic oil. organ. 前記気筒休止機構は、複数の前記一部の気筒のそれぞれに設けられると共に、それぞれクランク軸の回転位置に応じて非作動状態および作動状態の切換が順次行われ、前記所定値は前記復帰回転速度に応じて異なる値に設定されることを特徴とする請求項1または請求項2記載の可変気筒内燃機関。
The cylinder deactivation mechanism is provided in each of the plurality of some cylinders, and the non-operating state and the operating state are sequentially switched according to the rotational position of the crankshaft, and the predetermined value is the return rotational speed. 3. The variable cylinder internal combustion engine according to claim 1, wherein the variable cylinder internal combustion engine is set to a different value in accordance with.
JP2003428643A 2003-12-25 2003-12-25 Variable cylinder internal combustion engine Expired - Lifetime JP4036375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428643A JP4036375B2 (en) 2003-12-25 2003-12-25 Variable cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428643A JP4036375B2 (en) 2003-12-25 2003-12-25 Variable cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005188339A true JP2005188339A (en) 2005-07-14
JP4036375B2 JP4036375B2 (en) 2008-01-23

Family

ID=34787535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428643A Expired - Lifetime JP4036375B2 (en) 2003-12-25 2003-12-25 Variable cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP4036375B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231783A (en) * 2006-02-28 2007-09-13 Honda Motor Co Ltd Cylinder rest engine of motorcycle
JP2008115714A (en) * 2006-11-01 2008-05-22 Toyota Motor Corp Vehicle exhaust sound control device
KR101846706B1 (en) 2016-09-12 2018-04-06 현대자동차주식회사 Method for Multi Port Injection Refueling using Intake Stroke and Vehicle thereof
JP2018168704A (en) * 2017-03-29 2018-11-01 マツダ株式会社 Control device for engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231783A (en) * 2006-02-28 2007-09-13 Honda Motor Co Ltd Cylinder rest engine of motorcycle
JP4657948B2 (en) * 2006-02-28 2011-03-23 本田技研工業株式会社 Motorcycle cylinder deactivation engine
JP2008115714A (en) * 2006-11-01 2008-05-22 Toyota Motor Corp Vehicle exhaust sound control device
KR101846706B1 (en) 2016-09-12 2018-04-06 현대자동차주식회사 Method for Multi Port Injection Refueling using Intake Stroke and Vehicle thereof
US10330041B2 (en) 2016-09-12 2019-06-25 Hyundai Motor Company Method of resuming multi-port injection using an intake stroke and a vehicle using same
JP2018168704A (en) * 2017-03-29 2018-11-01 マツダ株式会社 Control device for engine

Also Published As

Publication number Publication date
JP4036375B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP3971474B2 (en) Ship engine operation control device
JPH07208212A (en) Intake air control system for variable displacement internal combustion engine
JP2002322934A (en) Intake air control device for internal combustion engine
WO1993013306A1 (en) Engine for automobile
US7475677B2 (en) Method and device for controlling combustion of an internal-combustion engine, and vehicle
CN110714841A (en) Deceleration cylinder cut-off system including intelligent phaser
JP6409840B2 (en) Diesel engine control device
JP4155919B2 (en) Variable cylinder internal combustion engine for vehicles
JP2004225561A (en) Variable cylinder system of internal combustion engine
JP4036375B2 (en) Variable cylinder internal combustion engine
JPH09264148A (en) Intake flow control device for internal combustion engine
JP4131197B2 (en) In-cylinder control device for in-cylinder injection internal combustion engine
JPH11166439A (en) Engine controller for vehicle
JP3976141B2 (en) Control device for variable cylinder internal combustion engine
JP4502030B2 (en) Control device for internal combustion engine
JP4204894B2 (en) Control device for internal combustion engine
JP2940413B2 (en) Internal combustion engine with variable cylinder mechanism
JP2008157126A (en) Control unit for internal combustion engine
JPH08105339A (en) Internal combustion engine with variable cylinder mechanism
JP4396253B2 (en) Intake control device for internal combustion engine
US8219301B2 (en) Control device for internal combustion engine
JP4760793B2 (en) Control device for internal combustion engine
JP2010084730A (en) Control device for internal combustion engine
JP2004211601A (en) Fuel cut control device of internal combustion engine for vehicle
JP4105041B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071026

R150 Certificate of patent or registration of utility model

Ref document number: 4036375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term