JP2005187581A - Low-temperature fluidity improver for fuel oil - Google Patents

Low-temperature fluidity improver for fuel oil Download PDF

Info

Publication number
JP2005187581A
JP2005187581A JP2003429251A JP2003429251A JP2005187581A JP 2005187581 A JP2005187581 A JP 2005187581A JP 2003429251 A JP2003429251 A JP 2003429251A JP 2003429251 A JP2003429251 A JP 2003429251A JP 2005187581 A JP2005187581 A JP 2005187581A
Authority
JP
Japan
Prior art keywords
fuel oil
compound
oil
low
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003429251A
Other languages
Japanese (ja)
Inventor
Yuichi Matsui
雄一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Industry Co Ltd
Original Assignee
Toho Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Industry Co Ltd filed Critical Toho Chemical Industry Co Ltd
Priority to JP2003429251A priority Critical patent/JP2005187581A/en
Publication of JP2005187581A publication Critical patent/JP2005187581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a low-temperature fluidity improver which improves low-temperature fluidity of a fuel oil containing a residual oil, namely improves a CFPP (cold filter plugging point) and a corrected cold filter plugging point, is obtained by dispersing wax precipitated under slow cooling into a fuel oil and does not inhibits passage of an fuel oil through a filter and a fuel oil composition containing the improver. <P>SOLUTION: The low-temperature fluidity improver for a fuel oil comprises a specific hydrocarbon (compound A) and an amidation reaction product between an 8-24C hydrocarbon group-containing hydrocarbon-substituted succinic acid (anhydride) and an 8-24C hydrocarbon group-containing mono(di)hydrocarbon-substituted amine and/or its salt (compound B) in the weight ratio of (compound A):(compound B) of 1:99-50:50. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料油の低温流動性改良剤及びそれを添加した燃料油組成物に関するものであり、さらに詳しくは残渣油を含有する燃料油に対する低温流動性改良剤、並びに低温流動性を改良するために前記の低温流動性改良剤を添加した低温通油性又は/及びワックス分散性に優れた燃料油組成物に関する。 The present invention relates to a low-temperature fluidity improver for fuel oil and a fuel oil composition to which the low-temperature fluidity improver is added. More specifically, the present invention relates to a low-temperature fluidity improver for fuel oil containing residual oil, and improves low-temperature fluidity. Therefore, the present invention relates to a fuel oil composition excellent in low-temperature oil permeability and / or wax dispersibility to which the low-temperature fluidity improver is added.

原油を蒸留して得られる中間留分には、灯油、軽油、A重油があり、燃料油として大量に使用されている。これらの中で、軽油、A重油は低温下において、これに含まれるパラフィンワックスが固化し、燃料系内のフィルターを目詰りさせたり、配管を閉塞させることによりエンジンや燃焼設備が始動できなくなったり、停止したりして重大な問題を生ずることがある。 Middle distillates obtained by distilling crude oil include kerosene, light oil, and heavy oil A, and are used in large quantities as fuel oil. Among these, light oil and heavy oil A solidify the paraffin wax contained at low temperatures, clogging the filter in the fuel system, or blocking the piping, making it impossible to start the engine and combustion equipment. May stop and cause serious problems.

中でも、温水加熱ボイラー、ビニルハウスの温風暖房機、自家用発電機用ディーゼルエンジン、漁船などの船舶用ディーゼルエンジン等の燃料油として使用されるA重油については、ボイラーやエンジンへの送油パイプの閉塞や燃料フィルターの閉塞などが多く発生しており、低温におけるA重油の流動性の改良が望まれている。特に残留炭素分を付与するために常圧蒸留残渣又は/及び減圧蒸留残渣を含有するA重油などの中〜重質留出燃料油については、実際の使用条件下でのトラブルが発生しており、これについても改良が強く望まれているのが現状である。 Above all, for A heavy oil used as fuel oil for hot water heating boilers, greenhouse hot air heaters, diesel generators for private generators, marine diesel engines such as fishing boats, etc., oil supply pipes to boilers and engines Many blockages, fuel filter blockages, etc. have occurred, and it is desired to improve the fluidity of A heavy oil at low temperatures. Especially for medium to heavy distillate fuel oils such as A heavy oil containing atmospheric distillation residue and / or vacuum distillation residue to give residual carbon content, troubles have occurred under actual use conditions. However, there is a strong demand for improvement in this regard as well.

燃料油の低温性能を試験する方法として、一般的に行われているのは低温ろ過目詰り点(Cold filter Plugging Point、以下CFPPという)という試験方法である。この試験は、試料油を急冷し温度が1℃下がるごとに目開き45μmのフィルターを通過させ、フィルターの目詰り性を評価する方法である。 As a method for testing the low-temperature performance of fuel oil, a test method called a cold filter plugging point (hereinafter referred to as CFPP) is generally used. This test is a method of evaluating the clogging property of the filter by rapidly cooling the sample oil and passing it through a filter having an opening of 45 μm every time the temperature drops by 1 ° C.

このCFPP試験は、主に軽油を対象として開発された試験方法であり、A重油などの中〜重質留出燃料油に適用した場合、CFPPが低温作動限界温度を示していない例があることがわかってきている。これは、CFPP試験での試料油の冷却速度が急冷(約40℃/時)であり、実際の使用条件での燃料油タンク中での燃料油の温度の冷却速度(約1〜2℃/時)から大きくかけはなれているのが原因と考えられている。一般に、冷却速度が大きければ、析出するワックス結晶は小さくなり、フィルターを通過しやすくなる。逆に、冷却速度が小さければ、析出するワックス結晶は大きくなり、フィルター閉塞を起こしやすくなる。 This CFPP test is a test method developed mainly for diesel oil, and when applied to medium to heavy distillate fuel oil such as A heavy oil, there is an example that CFPP does not show the low temperature limit temperature. I know. This is because the cooling rate of the sample oil in the CFPP test is rapid cooling (about 40 ° C./hour), and the cooling rate of the temperature of the fuel oil in the fuel oil tank under actual use conditions (about 1-2 ° C./hour). It is thought that the reason is that it is far from the time. In general, when the cooling rate is high, the precipitated wax crystals become small and easily pass through the filter. On the other hand, if the cooling rate is low, the precipitated wax crystals become large, and filter clogging is likely to occur.

すなわち、CFPP試験で管理されたA重油などの重質留出燃料油は、低温作動限界温度より高い温度でフィルターの閉塞を起こす可能性が充分にあると考えられる。また、残留炭素分を含有するA重油などの重質留出燃料油に一般に用いられる燃料油用低温流動性改良剤を添加すると、残留炭素中に含まれるアスファルテン分と低温流動性改良剤の一部が影響を及ぼし合い、大きなワックスを形成し、フィルターの閉塞を起こす場合もある。 That is, it is considered that heavy distillate fuel oil such as A heavy oil managed in the CFPP test has a possibility of causing clogging of the filter at a temperature higher than the low temperature operating limit temperature. Further, when a low temperature fluidity improver for fuel oil generally used for heavy distillate fuel oil such as A heavy oil containing residual carbon is added, asphaltene contained in residual carbon and one of the low temperature fluidity improvers The parts may affect each other, forming a large wax and causing the filter to become clogged.

このように、残留炭素分を含有するA重油などの重質留出燃料油に適用した場合、軽油を対象としたCFPP試験では、冷却速度が大きすぎ結晶が小さくなり、また残留炭素に含まれるアスファルテン分と低温流動性改良剤がワックスに影響を及ぼし、低温作動限界温度を示さないこともある。つまり、残留炭素分を含有するA重油などの重質留出燃料油を、CFPP試験でのみ管理するのは問題がある。 As described above, when applied to heavy distillate fuel oil such as A heavy oil containing residual carbon, the cooling rate is too large in the CFPP test for light oil, and the crystals become small and are included in the residual carbon. Asphaltenes and cold flow improvers may affect the wax and may not exhibit a cold operating limit temperature. In other words, it is problematic to manage heavy distillate fuel oil such as A heavy oil containing residual carbon only in the CFPP test.

そこで、実際の低温作動限界温度を推定するため、(社)石油学会 燃料油部会 A重油専門委員会で簡易試験方法の検討がなされた。この結果、実際の作動限界温度と高い相関のある修正目詰り点試験〔石油製品討論会(平成6年11月10日、11日)「A重油の低温流動性評価方法の検討」前刷集44ページの表3<各種修正目詰り点と通油限界温度の相関>に記載の修正法のうち、通油限界温度と相関係数の最も良い“修正4目詰り点”〕を確立した。この試験は、燃料油を、冷却速度を1℃/時として冷却槽にて冷却し、冷却槽の温度が1℃下がるごとに、目開き149μmのフィルターを通過させて燃料油の目詰り性を評価するというものである。 Therefore, in order to estimate the actual low-temperature operating limit temperature, a simple test method was examined by the Japan Petroleum Institute Fuel Oil Division A Heavy Oil Technical Committee. As a result, the modified clogging point test highly correlated with the actual operating temperature limit [Petroleum product debate (November 10 and 11, 1994) "Examination of low temperature fluidity evaluation method for heavy oil A" Preprint Of the correction methods described in Table 3 on page 44 <Correlation between various corrected clogging points and oil passage limit temperature>, “corrected 4 clogging points” having the best correlation coefficient with the oil passage limit temperature were established. In this test, the fuel oil was cooled in a cooling tank at a cooling rate of 1 ° C./hour, and each time the temperature of the cooling tank decreased by 1 ° C., the fuel oil was clogged by passing it through a filter with a mesh size of 149 μm. It is to evaluate.

さらに燃料油に対して望まれる性能としては、フィルター通油性が挙げられる。フィルター通油性は、一般的に燃料油に対して溶解性の悪い添加剤等を添加することによって悪化することが多いと言われている。また、燃料油に残留炭素分を付与するため、残渣油を燃料油に含有させることもあるが、この残渣油の含有量が多い燃料油では、フィルター通油性が悪化することが多い。フィルター通油性の悪い燃料油は、実用上では燃料油の曇り点(Cloud Point、以下CPという)より高い温度で燃料系統のフィルターを閉塞させ、燃料油の供給を止めてしまう等のトラブルを起こすことがある。 Furthermore, the performance desired for the fuel oil includes filter oil permeability. It is said that filter oil permeability is often deteriorated by adding an additive having poor solubility to fuel oil. Further, in order to impart residual carbon to the fuel oil, the residual oil may be included in the fuel oil. However, the fuel oil with a high content of the residual oil often deteriorates the filter oil permeability. Fuel oil with poor filter oil permeability causes troubles such as clogging the fuel system filter at a temperature higher than the cloud point (hereinafter referred to as CP) of the fuel oil and stopping the supply of fuel oil. Sometimes.

フィルター通油性の一般的な試験方法としては、燃料油のCPより5℃乃至10℃高い温度まで燃料油を冷却し、その温度で適当な目開き(5μm乃至10μm)のフィルターを用いてろ過することによって試験する。さらに具体的には、定量ポンプ等を用いて通油量を一定にし、フィルター前後の差圧を測定する方法、ろ過圧力を一定にし、フィルターの通油量又は通油速度を測定する方法などが用いられている。 As a general test method for filter oil permeability, the fuel oil is cooled to a temperature 5 to 10 ° C. higher than the CP of the fuel oil, and filtered using a filter having an appropriate opening (5 μm to 10 μm) at that temperature. By testing. More specifically, there are a method of measuring the differential pressure before and after the filter with a constant oil flow rate using a metering pump, a method of measuring the oil flow rate or speed of the filter with a constant filtration pressure, etc. It is used.

またさらに燃料油に対して望まれる性能としては、徐冷低温下におけるワックス分散性も挙げられる。これはタンカーなどで燃料油を運搬する際又は燃料油をタンク内で貯蔵する時に外気温が下がり、燃料の温度がCP以下になった時ワックスが析出し、析出したワックスがタンク底部に沈降して圧密なワックス層を形成するといった問題が生じることがある。特に燃焼設備の燃料タンクは、なるべく多くの燃料を使いきれるように燃料の供給を燃料タンク底部から行なう構造になっているものが多く、ワックスが沈降すると、ワックス濃度の高い燃料がタンク底部より供給され、燃料フィルターの閉塞等のトラブルが起こりやすくなるといわれている。 Further, the performance desired for the fuel oil includes wax dispersibility under slow cooling and low temperature. This is because when the fuel oil is transported by a tanker or when the fuel oil is stored in the tank, the outside air temperature drops, and when the fuel temperature falls below the CP, wax is deposited, and the deposited wax settles at the bottom of the tank. Problems such as forming a dense wax layer. In particular, many fuel tanks in combustion facilities are designed to supply fuel from the bottom of the fuel tank so that as much fuel as possible can be used. When wax settles, fuel with a high wax concentration is supplied from the bottom of the tank. It is said that troubles such as blockage of the fuel filter are likely to occur.

ワックス分散性の一般的な試験方法としては、燃料油を目盛付の共栓付メスシリンダー等に一定量採取し、燃料油のCPより5℃程度高い温度から燃料油の低温作動限界温度付近まで1℃/時の冷却速度で冷却し、析出したワックスの沈降比率を測定する方法などが用いられている。 As a general test method for wax dispersibility, a certain amount of fuel oil is collected in a graduated graduated cylinder, etc., from a temperature about 5 ° C. higher than the CP of the fuel oil to near the low temperature operating limit temperature of the fuel oil. A method of cooling at a cooling rate of 1 ° C./hour and measuring the sedimentation ratio of the precipitated wax is used.

燃料油の低温下における流動性を保つ方法として、従来様々な方法が用いられている。例えば、低温下でも燃料油の温度を下がらないようにするため、温水やヒーターにより直接燃料油を加熱・保温する方法があるが、エネルギーコスト的に有利な方法とは言い難い。また、比較的低温でも流動性のある灯油を軽油・A重油に添加し、ワックスの析出量を下げ低温下での流動性を保つ方法も用いられているが、気温が下がる冬期は需要が多くなり、価格も高くなるので有利な方法とは言い難い。 Conventionally, various methods are used as a method for maintaining the fluidity of fuel oil at a low temperature. For example, in order to prevent the temperature of the fuel oil from being lowered even at a low temperature, there is a method in which the fuel oil is directly heated and kept warm with hot water or a heater, but this is not an advantageous method in terms of energy cost. A method is also used in which kerosene, which is fluid even at relatively low temperatures, is added to light oil / heavy oil A to reduce wax precipitation and maintain fluidity at low temperatures, but there is much demand in the winter when the temperature drops. It is difficult to say that it is an advantageous method because the price is high.

さらに、燃料油の低温における流動性を改良する技術として、低温流動性改良剤を燃料に添加する方法が知られている。低温流動性改良剤は、低温下で燃料より析出してくるワックスに作用し、析出したワックスを微細なまま燃料油中で安定化させるはたらきをもっている。これまでに提案された流動性改良剤としては、例えば、エチレン−プロピレンコポリマー(特許文献1、特許文献2)、エチレン−酢酸ビニルコポリマー(特許文献3)などのエチレン性単量体からなるポリマー型添加剤、芳香族ジカルボン酸アミド・アミン塩とエチレン−酢酸ビニルコポリマー又はエチレン−プロピレンコポリマーとの組合せ(特許文献4、特許文献5)、芳香族ジカルボン酸アミド・アミン塩とポリエステル化合物との組合せ(特許文献6)などが提唱されている。しかしながら、これらの添加剤はCFPP試験には効果を示す事があるが、修正目詰り点試験及び析出ワックス分散性には効果はほとんどなく、さらにフィルター通油性を悪化させることが多い。例えば燃料油に、エチレン−酢酸ビニルコポリマーを用いた場合、概ね添加量300mg/Lで通油性能が悪化し始め、添加量500mg/Lを超えるとフィルター通油性能が実用上大きな問題となる場合もある。 Furthermore, as a technique for improving the fluidity of fuel oil at low temperatures, a method of adding a low temperature fluidity improver to the fuel is known. The low temperature fluidity improver acts on the wax precipitated from the fuel at a low temperature, and has the function of stabilizing the precipitated wax in the fuel oil while being fine. Examples of fluidity improvers proposed so far include polymer types composed of ethylenic monomers such as ethylene-propylene copolymers (Patent Documents 1 and 2) and ethylene-vinyl acetate copolymers (Patent Document 3). Additive, combination of aromatic dicarboxylic acid amide / amine salt and ethylene-vinyl acetate copolymer or ethylene-propylene copolymer (Patent Document 4, Patent Document 5), combination of aromatic dicarboxylic acid amide / amine salt and polyester compound ( Patent Document 6) has been proposed. However, these additives may be effective in the CFPP test, but have little effect on the corrected clogging point test and precipitated wax dispersibility, and often deteriorate the oil permeability of the filter. For example, when ethylene-vinyl acetate copolymer is used for the fuel oil, the oil passage performance starts to deteriorate at an addition amount of 300 mg / L. When the addition amount exceeds 500 mg / L, the filter oil passage performance becomes a serious problem in practice. There is also.

さらに、低温下で析出するワックスの沈降を抑えるため、アルケニルコハク酸アミド(特許文献7)やポリオキシアルキレンエステル(特許文献8)などの界面活性剤型の添加剤やポリアルキレンポリアミン−α,ω−ビス脂肪酸アミドのアルキレンオキシド付加物と脂肪酸との反応によるアミドエステルとエチレン−酢酸ビニルコポリマー又はアルキル(メタ)アクリレートなどとの組み合わせ(特許文献9)などが提唱されているが、これらも修正目詰り点への効果は少ない。
特公昭60−35396 特開昭60−137997 特開昭55−137193 特開昭56−92996 特開昭58−1792 特開平6−49464 特開昭56−43391 特開昭57−177092 特公平7−47742
Furthermore, in order to suppress sedimentation of wax precipitated at low temperature, surfactant type additives such as alkenyl succinic acid amide (Patent Document 7) and polyoxyalkylene ester (Patent Document 8) and polyalkylene polyamine-α, ω -Combinations of amide esters by reaction of alkylene oxide adducts of bis-fatty acid amides with fatty acids and ethylene-vinyl acetate copolymers or alkyl (meth) acrylates (Patent Document 9) have been proposed. Little effect on clogging points.
Shoko 60-35396 JP-A-60-137997 JP 55-137193 A JP 56-92996 JP 58-1792 A JP-A-6-49464 JP 56-43391 JP-A-57-177092 JP 7-47742

本発明は上述の技術の問題点、つまり残渣油を含有する燃料油に対し低温流動性、すなわちCFPPや修正目詰り点を改良し、徐冷下で析出したワックスを燃料油中で分散させ、燃料油のフィルター通油性を阻害しない低温流動性改良剤及びこれを含有する燃料油組成物を提供する事を目的とするものである。 The present invention improves the low temperature fluidity, that is, CFPP and the correction clogging point with respect to the above-described technical problems, that is, the fuel oil containing the residual oil, and disperses the wax precipitated under slow cooling in the fuel oil, An object of the present invention is to provide a low-temperature fluidity improver that does not impair the filter oil permeability of a fuel oil and a fuel oil composition containing the same.

本発明者らは前記の目的を達成するために鋭意研究を重ねた。その結果、残渣油を含有する燃料油に特定の炭化水素及び特定のアマイド化反応生成物を添加することにより、徐冷下で析出したワックスを分散させ、フィルター通油性を悪化させずに低温流動性を改良できるという事実を見出した。 The inventors of the present invention have made extensive studies to achieve the above object. As a result, by adding specific hydrocarbons and specific amidation reaction products to fuel oil containing residual oil, wax precipitated under slow cooling is dispersed, and low-temperature flow without deteriorating filter oil permeability I found the fact that it can improve the sex.

すなわち、本発明は下記一般式(1)で示される化合物Aと、下記一般式(2)で示される化合物Bを、その重量比(化合物A):(化合物B)が1:99乃至50:50の範囲となるように含有する燃料油用低温流動性向上剤である。

Figure 2005187581
(式中、nは2以上の整数を、X〜Xはそれぞれ独立して、水素、直鎖炭化水素基又は分岐炭化水素基、もしくは炭素数3以上のシクロ炭化水素基を示す。)
Figure 2005187581
(式中、X、X10のうちいずれか一方は炭素数8乃至24の直鎖又は分岐の炭化水素基で、もう一方は水素を示す。X11はNR12又はNHR、X12はH、HNHR又はHN2である。また、R〜Rはそれぞれ独立して炭素数8乃至24の炭化水素基を示す。) That is, in the present invention, the weight ratio of the compound A represented by the following general formula (1) and the compound B represented by the following general formula (2) (compound A) :( compound B) is 1:99 to 50: It is a low-temperature fluidity improver for fuel oil that is contained in a range of 50.
Figure 2005187581
(In the formula, n represents an integer of 2 or more, and X 1 to X 8 each independently represent hydrogen, a linear hydrocarbon group or a branched hydrocarbon group, or a cyclohydrocarbon group having 3 or more carbon atoms.)
Figure 2005187581
(In the formula, any one of X 9 and X 10 is a linear or branched hydrocarbon group having 8 to 24 carbon atoms, and the other represents hydrogen. X 11 is NR 1 R 2 or NHR 3 , X 12 is H + , HN + HR 4 R 5, or HN + H 2 R 6 , and R 1 to R 6 each independently represents a hydrocarbon group having 8 to 24 carbon atoms.

さらに本発明は、上記の燃料油用流動性改良剤を含有する燃料油にも関する。すなわち上記の燃料油用流動性改良剤を10mg/L乃至2000mg/L含有させ、徐冷条件でCPより低い温度に冷却したとき析出するワックス結晶を小さくし、ワックスの分散性を改良し、CPより高い温度での燃料油のフィルター通油性を悪化させることなく低温流動性を改良した燃料油組成物である。 The present invention further relates to a fuel oil containing the above-described fluidity improver for fuel oil. That is, the above-mentioned fluidity improver for fuel oil is contained in an amount of 10 mg / L to 2000 mg / L, and the wax crystals that precipitate when cooled to a temperature lower than CP under slow cooling conditions are reduced, and the dispersibility of the wax is improved. A fuel oil composition having improved low-temperature fluidity without deteriorating filter oil permeability of fuel oil at higher temperatures.

本発明の低温流動性向上剤を、残渣油を含有する燃料油に添加することにより、フィルター通油性を阻害することなく、修正目詰り点及びCFPPを改善し、さらに析出ワックスの分散性を改善している。これにより、残渣油を含有する燃料油を使用する際、または輸送や貯蔵する際、フィルターの閉塞、ワックス沈降による弊害等の諸問題を解決する事が可能である。 By adding the low-temperature fluidity improver of the present invention to fuel oil containing residual oil, the corrected clogging point and CFPP are improved without impairing the filter oil permeability, and further the dispersibility of the precipitated wax is improved. doing. Thereby, when using the fuel oil containing the residual oil, or when transporting or storing, it is possible to solve various problems such as filter clogging and harmful effects due to wax sedimentation.

本発明が対象とする燃料油とは、残留炭素分を付与するために残渣油を含有させた、沸点範囲が150〜500℃のいわゆる中質〜重質留出燃料油である。さらに具体的には、残渣油として例えば石油を常圧又は減圧によって蒸留した際の蒸留残渣油、水素化脱硫や接触改質処理を行なった処理油の蒸留残渣油、熱分解、接触分解、水素化分解などの分解処理油の蒸留残渣油等であり、一般的にアスファルテン分を含有することを特徴とする。このような残渣油を、石油を直接常圧又は減圧で蒸留した中〜重質留出燃料油、水素化脱硫や接触改質処理を行なった中〜重質留出燃料油、熱分解、触媒分解、水素化分解などの分解処理を行なった中〜重質留出燃料油などの1種類又は2種類以上の混合物に含有させた燃料油である。 The fuel oil targeted by the present invention is a so-called medium to heavy distillate fuel oil having a boiling point range of 150 to 500 ° C. containing a residual oil for imparting a residual carbon content. More specifically, for example, residual oil obtained by distilling petroleum at normal pressure or reduced pressure, residual oil obtained by hydrodesulfurization or catalytic reforming, thermal cracking, catalytic cracking, hydrogen It is a distillation residue oil of cracked oil such as chemical cracking, and is generally characterized by containing asphaltenes. Medium to heavy distillate fuel oil obtained by directly distilling petroleum oil at normal pressure or reduced pressure, medium to heavy distillate fuel oil subjected to hydrodesulfurization or catalytic reforming, thermal cracking, catalyst It is a fuel oil contained in one or a mixture of two or more kinds of medium to heavy distillate fuel oil that has undergone cracking treatment such as cracking and hydrocracking.

本発明に係る一般式(1)で示される化合物としては、例えばノルマルパラフィン、イソパラフィン、シクロパラフィン、これらの混合物であるマイクロクリスタリンワックス、ポリエチレン、ポリプロピレン、エチレンとプロピレンの共重合物、ポリブテン、ポリイソブテン及びこれらの混合物が挙げられる。さらに一般式(1)で示される化合物の炭素数は20乃至100が好ましく、またさらには、一般式(1)で示される化合物は、ノルマルパラフィン、イソパラフィン、シクロパラフィン、マイクロクリスタリンワックスから選ばれる1種または2種以上の化合物がさらに好ましい。 Examples of the compound represented by the general formula (1) according to the present invention include normal paraffin, isoparaffin, cycloparaffin, a mixture of microcrystalline wax, polyethylene, polypropylene, a copolymer of ethylene and propylene, polybutene, polyisobutene, and the like. These mixtures are mentioned. Further, the compound represented by the general formula (1) preferably has 20 to 100 carbon atoms. Further, the compound represented by the general formula (1) is selected from normal paraffin, isoparaffin, cycloparaffin, and microcrystalline wax. More preferred are seeds or two or more compounds.

一般式(2)で示される化合物としては、例えば下記(2)−1〜(2)−7が挙げられる。
(2)−1;炭化水素基の炭素数が8乃至24の炭化水素置換コハク酸(無水物)と炭化水素基の炭素数が8乃至24のモノ炭化水素置換アミンとのアマイド化反応生成物
(2)−2;炭化水素基の炭素数が8乃至24の炭化水素置換コハク酸(無水物)と炭化水素基の炭素数が8乃至24のジ炭化水素置換アミンとのアマイド化反応生成物
(2)−3;(2)−1の化合物と炭化水素基の炭素数が8乃至24のモノ炭化水素置換アミンとの塩
(2)−4;(2)−1の化合物と炭化水素基の炭素数が8乃至24のジ炭化水素置換アミンとの塩
(2)−5;(2)−2の化合物と炭化水素基の炭素数が8乃至24のモノ炭化水素置換アミンとの塩
(2)−6;(2)−2の化合物と炭化水素基の炭素数が8乃至24のジ炭化水素置換アミンとの塩
(2)−7;上記(2)−1〜(2)−6の化合物の混合物
Examples of the compound represented by the general formula (2) include the following (2) -1 to (2) -7.
(2) -1: Amidation reaction product of a hydrocarbon-substituted succinic acid (anhydride) having 8 to 24 carbon atoms in the hydrocarbon group and a monohydrocarbon-substituted amine having 8 to 24 carbon atoms in the hydrocarbon group (2) -2: Amidation reaction product of a hydrocarbon-substituted succinic acid (anhydride) having 8 to 24 carbon atoms in the hydrocarbon group and a dihydrocarbon-substituted amine having 8 to 24 carbon atoms in the hydrocarbon group (2) -3; salt of compound (2) -1 and monohydrocarbon-substituted amine having 8 to 24 carbon atoms of hydrocarbon group (2) -4; compound of (2) -1 and hydrocarbon group A salt of a dihydrocarbon-substituted amine having 8 to 24 carbon atoms (2) -5; a salt of a compound of (2) -2 with a monohydrocarbon-substituted amine having a hydrocarbon group having 8 to 24 carbon atoms ( 2) -6; a compound of (2) -2 and a dihydrocarbon-substituted amine having 8 to 24 carbon atoms in the hydrocarbon group; Salt (2) -7; mixture of the (2) -1 (2) -6 of compound

このとき、炭化水素基の炭素数が8乃至24の炭化水素置換コハク酸(無水物)としては、例えばアルキル基又はアルケニル基の炭素数が8乃至24のアルキルコハク酸(無水物)又はアルケニルコハク酸(無水物)があり、アルキル基又はアルケニル基は直鎖であっても分岐であっても良い。このとき、アルキルコハク酸又はアルケニルコハク酸は1種類であっても良いし2種類以上の混合物でも良い。 In this case, the hydrocarbon-substituted succinic acid (anhydride) having 8 to 24 carbon atoms in the hydrocarbon group is, for example, an alkyl succinic acid (anhydride) or alkenyl succinic acid having 8 to 24 carbon atoms in the alkyl group or alkenyl group. There is an acid (anhydride), and the alkyl group or alkenyl group may be linear or branched. At this time, the alkyl succinic acid or the alkenyl succinic acid may be one kind or a mixture of two or more kinds.

また、炭化水素基の炭素数が8乃至24のモノ(又はジ)炭化水素置換アミンとしては、例えばアルキル基又はアルケニル基の炭素数が8乃至24のモノ(又はジ)アルキル(又はアルケニル)アミンがあり、アルキル基又はアルケニル基は直鎖、分岐のいずれも使用できる。このとき、モノ(又はジ)アルキル(又はアルケニル)アミンは1種類であっても良いし2種類以上の混合物でも良い。 Examples of the mono (or di) hydrocarbon-substituted amine having 8 to 24 carbon atoms in the hydrocarbon group include, for example, mono (or di) alkyl (or alkenyl) amines having 8 to 24 carbon atoms in the alkyl group or alkenyl group. The alkyl group or alkenyl group can be either linear or branched. At this time, the mono (or di) alkyl (or alkenyl) amine may be one kind or a mixture of two or more kinds.

上記一般式(2)で示される化合物はいずれも公知の方法によって得ることができる。また、(炭化水素置換コハク酸(無水物)):(炭化水素置換アミン)で示す反応モル比は1:1より炭化水素置換アミンのモル比が大きくすることが好ましい。1:1より炭化水素置換アミンのモル比が小さくなると、コハク酸(無水物)の2塩基酸が残存してしまい燃料油や潤滑油に対して悪影響を及ぼすことがある。
炭化水素置換コハク酸(無水物)と炭化水素置換アミンとの反応は発熱反応であり、また炭化水素置換アミンの炭化水素基の炭素数が大きくなると炭化水素置換アミンの融点が高くなるため、必要により、反応溶媒を用いても良い。但し使用する反応溶媒は水酸基、カルボキシル基、酸無水物基、アミノ基等の活性基をもたないものであることが望ましい。
Any of the compounds represented by the general formula (2) can be obtained by a known method. The reaction molar ratio represented by (hydrocarbon-substituted succinic acid (anhydride)) :( hydrocarbon-substituted amine) is preferably larger than the molar ratio of hydrocarbon-substituted amine. If the molar ratio of the hydrocarbon-substituted amine is smaller than 1: 1, dibasic acid of succinic acid (anhydride) remains, which may adversely affect fuel oil and lubricating oil.
The reaction between the hydrocarbon-substituted succinic acid (anhydride) and the hydrocarbon-substituted amine is an exothermic reaction. Also, the larger the number of carbon atoms in the hydrocarbon-substituted amine, the higher the melting point of the hydrocarbon-substituted amine. Thus, a reaction solvent may be used. However, it is desirable that the reaction solvent used has no active group such as a hydroxyl group, a carboxyl group, an acid anhydride group, and an amino group.

本発明の流動性向上剤は、残渣油を含有する燃料油に対し10mg/L乃至2000mg/L添加することが良好な性能を得る上で好ましい。この際、化合物Aと化合物Bを同時に添加しても、別々に添加してもよい。また、本発明の流動性向上剤には本発明の目的を損なわない限り他の成分を含有させてもよい。   The fluidity improver of the present invention is preferably added in an amount of 10 mg / L to 2000 mg / L to the fuel oil containing the residual oil in order to obtain good performance. At this time, Compound A and Compound B may be added simultaneously or separately. Further, the fluidity improver of the present invention may contain other components as long as the object of the present invention is not impaired.

以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
なお、本実施例及び比較例においては、評価油として減圧残渣を含有し(10%残留炭素分が0.4重量%)、密度(15℃);0.871g/cm、動粘度;3.15mm/s、T50;290℃のA重油を使用した。低温流動性試験方法(CFPP及び修正目詰り点)、ワックス分散性試験及びフィルター通油性試験は下記の方法によって試験した。
CFPP試験方法;
JIS K 2288に準拠して試験した。
修正目詰り点試験方法;
CFPP試験に準拠するが、金網の目開きを149μmとし、冷却槽の冷却速度を1℃/時とし、吸引時間が初めて30秒以上となった冷却槽温度を修正目詰り点とした。吸引は1試料につき1回限りとし、1度吸引した試料を再度吸引しないこととした。
ワックス分散性試験方法;
(1) 100mlの共栓付メスシリンダーに試験する燃料油を100ml分取した。
(2) 温度調整機能付の空気浴槽に(1)を入れ、CPより5℃高い温度で2時間保持した。
(3) 空気浴槽を1℃/時の冷却速度で冷却し、(CPより低い)試験温度まで冷却した。
(4) 試験温度で2時間保持し、析出沈降したワックス層(=W)と上部の清澄層(=C)の比率を下記の式(i)により求めた。
WD(%)=100×W/(W+C) … (i)
なお、ワックスの分散性が良好である燃料油では、WDの値が大きくなる。
フィルター通油性試験;
(1) 試験する燃料油550mlをビーカーに分取した。
(2) 温度調整機能付の空気浴槽に(1)を入れ、試験温度にて20時間静置した。
(3) 試験温度にてビーカー内を撹拌し、濾過直径;3.5cm(濾過面積;9.62cm2)、フィルター目開き;5μm、減圧度;50.7kPa(380mmHg)、の条件で減圧濾過した。
(4) このとき、燃料油が100ml濾過されるごとに濾過時間を測定し、濾過速度を求めた。
なお、フィルター通油性が良好である燃料油では、濾過速度が速くなる。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
In addition, in a present Example and a comparative example, a vacuum residue is contained as evaluation oil (10% residual carbon content is 0.4 weight%), density (15 degreeC); 0.871 g / cm < 3 >, kinematic viscosity; 3 A heavy oil at 15 mm 2 / s, T50; 290 ° C. was used. The low temperature fluidity test method (CFPP and corrected clogging point), wax dispersibility test and filter oil permeability test were tested by the following methods.
CFPP test method;
The test was conducted according to JIS K 2288.
Corrected clogging point test method;
Although conforming to the CFPP test, the opening of the wire mesh was set to 149 μm, the cooling rate of the cooling bath was set to 1 ° C./hour, and the cooling bath temperature at which the suction time became 30 seconds or more for the first time was taken as the corrected clogging point. Suction was limited to one time per sample, and the sample once sucked was not sucked again.
Wax dispersibility test method;
(1) 100 ml of fuel oil to be tested was collected in a 100 ml measuring cylinder with a stopper.
(2) (1) was put into an air bath with a temperature adjustment function, and kept at a temperature 5 ° C. higher than CP for 2 hours.
(3) The air bath was cooled at a cooling rate of 1 ° C./hour and cooled to the test temperature (lower than CP).
(4) Holding at the test temperature for 2 hours, the ratio of the precipitated and precipitated wax layer (= W) to the upper clarified layer (= C) was determined by the following formula (i).
WD (%) = 100 × W / (W + C) (i)
In addition, the value of WD becomes large in the fuel oil with good dispersibility of the wax.
Filter oil permeability test;
(1) 550 ml of the fuel oil to be tested was dispensed into a beaker.
(2) (1) was put into an air bath with a temperature adjustment function and allowed to stand at the test temperature for 20 hours.
(3) The inside of the beaker is stirred at the test temperature, and the filtration is performed under reduced pressure under the conditions of filtration diameter: 3.5 cm (filtration area: 9.62 cm 2 ), filter opening: 5 μm, degree of vacuum: 50.7 kPa (380 mmHg). did.
(4) At this time, every time 100 ml of fuel oil was filtered, the filtration time was measured to determine the filtration rate.
In addition, in the fuel oil with favorable filter oil permeability, a filtration speed becomes quick.

化合物Aの例1
融点61℃、25℃の針入度11、ガスクロマトグラフィーによる平均分子量が404である日本精蝋製ノルマルパラフィンワックス140を化合物H−1とした。
化合物Aの例2
融点50℃、25℃の針入度23、ガスクロマトグラフィーによる平均分子量が344である日本精蝋製ノルマルパラフィンワックス120を化合物H−2とした。
化合物Aの例3
融点70℃、25℃の針入度30、分子量範囲が500〜800の日本精蝋製マイクロクリスタリンワックスHi−Mic−1045を化合物H−3とした。
化合物Aの例4
融点75℃、25℃の針入度12、分子量範囲が500〜800の日本精蝋製マイクロクリスタリンワックスHi−Mic−2065を化合物H−4とした。
Example 1 of Compound A
Normal paraffin wax 140 manufactured by Nippon Seiwa Co., Ltd., having a melting point of 61 ° C. and a penetration of 11 at 25 ° C. and an average molecular weight of 404 by gas chromatography was designated as Compound H-1.
Example 2 of Compound A
Normal paraffin wax 120 manufactured by Nippon Seiwa Co., Ltd., having a melting point of 50 ° C. and a penetration of 23 at 25 ° C. and an average molecular weight of 344 by gas chromatography, was designated as Compound H-2.
Example 3 of Compound A
Compound H-3 was a microcrystalline wax Hi-Mic-1045 manufactured by Nippon Seiwa Co., Ltd. having a melting point of 70 ° C., a penetration of 30 at 25 ° C. and a molecular weight range of 500 to 800.
Example 4 of Compound A
Compound H-4 was a microcrystalline wax Hi-Mic-2065 manufactured by Nippon Seiwa Co., Ltd. having a melting point of 75 ° C. and a penetration of 12 at 25 ° C. and a molecular weight range of 500 to 800.

製造例1(化合物Bの例1)
撹拌装置、窒素吹き込み管及びコンデンサーを備えた反応設備に、中和価;346mgKOH/gの(ヘキサデセニルコハク酸無水物約70%、オクタデセニルコハク酸無水物約25%、その他の成分として、不純物としての炭素数16及び18のオレフィンを約3%含有する)アルケニルコハク酸無水物324g(1モル)仕込み、撹拌を継続しつつ、全アミン価115mgKOH/gのジ水添タローアミン(花王製ファーミンD86、アルキル基の代表組成が、C14;4%、C16;30%、C18;66%のジアルキルアミン、以下同じ)513g(1.05モル)を仕込み、100℃に昇温し、100℃にて3時間熟成して目的とする化合物S−1を得た。
Production Example 1 (Example 1 of Compound B)
In a reactor equipped with a stirrer, a nitrogen blowing tube and a condenser, a neutralization value of 346 mg KOH / g (hexadecenyl succinic anhydride about 70%, octadecenyl succinic anhydride about 25%, other As an ingredient, 324 g (1 mol) of alkenyl succinic anhydride (containing about 3% of olefins having 16 and 18 carbon atoms as impurities) was charged, and dihydrogenated tallow amine (total amine value 115 mgKOH / g) while continuing stirring. Kao's Farmin D86, the alkyl group has a typical composition of C14; 4%, C16; 30%, C18; 66% dialkylamine, the same shall apply hereinafter) 513 g (1.05 mol), heated to 100 ° C., The target compound S-1 was obtained by aging at 100 ° C. for 3 hours.

製造例2(化合物Bの例2)
撹拌装置、窒素吹き込み管及びコンデンサーを備えた反応設備に、中和価;535mgKOH/gの(オクテニルコハク酸無水物約99%)アルケニルコハク酸無水物210g(1モル)仕込み、撹拌を継続しつつ、全アミン価215mgKOH/gの水添タローアミン(花王製ファーミンT、アルキル基の代表組成が、C14;4%、C16;30%、C18;66%のモノアルキルアミン)470g(1.8モル)を仕込み、80℃に昇温し、80℃にて3時間熟成して目的とする化合物S−2を得た。
Production Example 2 (Example 2 of Compound B)
A reactor equipped with a stirrer, a nitrogen blowing tube and a condenser was charged with 210 g (1 mol) of alkenyl succinic anhydride having a neutralization value of 535 mg KOH / g (about 99% octenyl succinic anhydride), and stirring was continued. 470 g (1.8 mol) of hydrogenated tallow amine (Kao-Farmin T, representative composition of alkyl groups: C14; 4%, C16; 30%, C18; 66% monoalkylamine) having a total amine value of 215 mgKOH / g The resulting mixture was heated to 80 ° C. and aged at 80 ° C. for 3 hours to obtain the target compound S-2.

製造例3(化合物Bの例3)
撹拌装置、窒素吹き込み管及びコンデンサーを備えた反応設備に、中和価;346mgKOH/gの(ヘキサデセニルコハク酸無水物約70%、オクタデセニルコハク酸無水物約25%、その他の成分として、不純物としての炭素数16及び18のオレフィンを約3%含有する)アルケニルコハク酸無水物324g(1モル)仕込み、撹拌を継続しつつ、全アミン価115mgKOH/gのジ水添タローアミン(ファーミンD86)を732g(1.5モル)仕込み、100℃に昇温し、100℃にて3時間熟成して目的とする化合物S−3を得た。
Production Example 3 (Example 3 of Compound B)
In a reactor equipped with a stirrer, a nitrogen blowing tube and a condenser, a neutralization value of 346 mg KOH / g (hexadecenyl succinic anhydride about 70%, octadecenyl succinic anhydride about 25%, other As an ingredient, 324 g (1 mol) of alkenyl succinic anhydride (containing about 3% of olefins having 16 and 18 carbon atoms as impurities) was charged, and dihydrogenated tallow amine (total amine value 115 mgKOH / g) while continuing stirring. (Farmin D86) was charged with 732 g (1.5 mol), heated to 100 ° C., and aged at 100 ° C. for 3 hours to obtain the target compound S-3.

製造例4(化合物Bの例4)
撹拌装置、窒素吹き込み管及びコンデンサーを備えた反応設備に、中和価;325mgKOH/gの(オクタデセニルコハク酸無水物約90%、ヘキサデセニルコハク酸約5%、その他の成分として、不純物としての炭素数16及び18のオレフィンを約3%含有する)アルケニルコハク酸無水物345g(1モル)仕込み、撹拌を継続しつつ、全アミン価115mgKOH/gのジ水添タローアミン(ファーミンD86)を878g(1.5モル)仕込み、100℃に昇温し、100℃にて3時間熟成して目的とする化合物S−4を得た。
Production Example 4 (Example 4 of Compound B)
In a reactor equipped with a stirrer, a nitrogen blowing tube and a condenser, neutralization value: 325 mg KOH / g (octadecenyl succinic anhydride about 90%, hexadecenyl succinic acid about 5%, as other components 345 g (1 mol) of alkenyl succinic anhydride (containing about 3% of olefins having 16 and 18 carbon atoms as impurities), and with continued stirring, a dihydrogenated tallow amine (Farmin D86 with a total amine number of 115 mg KOH / g) ) (878 g (1.5 mol)), heated to 100 ° C. and aged at 100 ° C. for 3 hours to obtain the intended compound S-4.

比較化合物1
数平均分子量2300、酢酸ビニルの共重合割合が30重量%のエチレン−酢酸ビニルコポリマーを化合物R−1とした。
比較化合物2
数平均分子量3000、酢酸ビニルの共重合割合が27重量%のエチレン−酢酸ビニルコポリマーを化合物R−2とした。
Comparative compound 1
An ethylene-vinyl acetate copolymer having a number average molecular weight of 2,300 and a vinyl acetate copolymerization ratio of 30% by weight was designated as Compound R-1.
Comparative compound 2
An ethylene-vinyl acetate copolymer having a number average molecular weight of 3000 and a vinyl acetate copolymerization ratio of 27% by weight was designated as Compound R-2.

表1に化合物A及び化合物Bを組合せて燃料油に添加し、低温流動性試験(CFPP及び修正目詰り点試験)を実施した結果を示した。なお比較例として添加剤を添加しないときの試験結果(ブランク)、化合物A又はBを単独で添加したときの試験結果及び比較化合物1及び2の試験結果も併記した。
表2に化合物A及び化合物Bを組合せて燃料油に添加し、+5℃においてフィルター通油性試験を実施した結果を示した。なお比較例として、ブランク及び比較化合物2の試験結果も併記した。
表3に化合物A及び化合物Bを組合せて燃料油に添加し、−8℃においてワックス分散性試験を実施した結果を示した。なお比較例として、比較化合物1及び2の試験結果も併記した。
Table 1 shows the results of performing a low temperature fluidity test (CFPP and modified clogging point test) by adding compound A and compound B in combination to fuel oil. As a comparative example, the test result when no additive was added (blank), the test result when compound A or B was added alone, and the test results of comparative compounds 1 and 2 were also shown.
Table 2 shows the results of combining the compound A and the compound B and adding them to the fuel oil and conducting the filter oil permeability test at + 5 ° C. In addition, the test result of the blank and the comparative compound 2 was also written together as a comparative example.
Table 3 shows the results of a combination of compound A and compound B added to fuel oil and a wax dispersibility test conducted at -8 ° C. As a comparative example, the test results of comparative compounds 1 and 2 are also shown.

Figure 2005187581
Figure 2005187581

Figure 2005187581
Figure 2005187581

Figure 2005187581
Figure 2005187581

表1に掲げた実施例1〜12と比較例1〜8を比較すると、実施例1〜12のいずれの例も比較例1〜8より低温性能(CFPP及び修正目詰り点)が改良されていることが確認できる。
表2では、比較例6〜8で示した通りエチレン−酢酸ビニルコポリマーは、添加量が500mg/Lを超えると、著しくフィルター通油性が悪化することが確認できたが、実施例5,9,10では添加量が800mg/Lでもフィルター通油性は悪化しないことが確認出来た。
さらに表3では、比較例5〜7の通りエチレン−酢酸ビニルコポリマーは、ワックス分散性を改良されていないが、実施例1〜12では、著しくワックス分散性が改善されている。





When Examples 1-12 listed in Table 1 and Comparative Examples 1-8 are compared, all of Examples 1-12 are improved in low-temperature performance (CFPP and corrected clogging point) than Comparative Examples 1-8. It can be confirmed.
In Table 2, as shown in Comparative Examples 6 to 8, it was confirmed that the ethylene-vinyl acetate copolymer significantly deteriorated the filter oil permeability when the addition amount exceeded 500 mg / L. No. 10, it was confirmed that the filter oil permeability did not deteriorate even when the added amount was 800 mg / L.
Furthermore, in Table 3, although ethylene-vinyl acetate copolymer is not improving the wax dispersibility as Comparative Examples 5-7, in Examples 1-12, the wax dispersibility is remarkably improved.





Claims (6)

下記一般式(1)で示される化合物Aと、下記一般式(2)で示される化合物Bを、その重量比(化合物A):(化合物B)が1:99乃至50:50となるように含有する燃料油用低温流動性向上剤。
Figure 2005187581
(式中、nは2以上の整数、X1〜Xはそれぞれ独立して、水素、直鎖炭化水素基又は分岐炭化水素基、もしくは炭素数3以上のシクロ炭化水素基を示す。)
Figure 2005187581
(式中、X、X10のうちいずれか一方は炭素数8乃至24の直鎖又は分岐の炭化水素基で、もう一方は水素を示し、X11はNR12又はNHR、X12はH、HNHR又はHN2である。また、R〜Rはそれぞれ独立して炭素数8乃至24の炭化水素基を示す。)
The compound A represented by the following general formula (1) and the compound B represented by the following general formula (2) are mixed so that the weight ratio (compound A) :( compound B) is 1:99 to 50:50. Contains low-temperature fluidity improver for fuel oil.
Figure 2005187581
(In the formula, n represents an integer of 2 or more, and X 1 to X 8 each independently represent hydrogen, a linear hydrocarbon group or a branched hydrocarbon group, or a cyclohydrocarbon group having 3 or more carbon atoms.)
Figure 2005187581
(In the formula, one of X 9 and X 10 is a linear or branched hydrocarbon group having 8 to 24 carbon atoms, the other represents hydrogen, and X 11 represents NR 1 R 2 or NHR 3 , X 12 is H + , HN + HR 4 R 5, or HN + H 2 R 6 , and R 1 to R 6 each independently represents a hydrocarbon group having 8 to 24 carbon atoms.
化合物Aの炭素数が、20乃至100である請求項1に記載の低温流動性向上剤。 The low temperature fluidity improver according to claim 1, wherein the compound A has 20 to 100 carbon atoms. 化合物Aが、ノルマルパラフィン、イソパラフィン、シクロパラフィン、マイクロクリスタリンワックスから選ばれる1種または2種以上の化合物である請求項1または2に記載の低温流動性向上剤。 The low-temperature fluidity improver according to claim 1 or 2, wherein compound A is one or more compounds selected from normal paraffin, isoparaffin, cycloparaffin, and microcrystalline wax. 請求項1〜3のいずれか1項に記載の低温流動性向上剤を10mg/L乃至2000mg/L含有する、燃料油の曇り点より高い温度でのフィルター通油性が良好である残渣油を含有する燃料油組成物。 A residual oil containing 10 mg / L to 2000 mg / L of the low-temperature fluidity improver according to any one of claims 1 to 3 and having good filter oil permeability at a temperature higher than the cloud point of the fuel oil. A fuel oil composition. 請求項1〜3のいずれか1項に記載の低温流動性向上剤を10mg/L乃至2000mg/L含有する、燃料油の曇り点より低い温度でのワックス分散性が良好である残渣油を含有する燃料油組成物。 A residual oil containing 10 mg / L to 2000 mg / L of the low-temperature fluidity improver according to any one of claims 1 to 3 and having good wax dispersibility at a temperature lower than the cloud point of the fuel oil. A fuel oil composition. 請求項1〜3のいずれか1項に記載の化合物Aと化合物Bが、重量比(化合物A):(化合物B)が1:99乃至50:50の範囲で10mg/L乃至2000mg/Lの濃度になるように添加された燃料油の曇り点より高い温度でのフィルター通油性が良好であり、燃料油の曇り点より低い温度でのワックス分散性が良好である残渣油を含有する燃料油組成物。




The compound A and the compound B according to any one of claims 1 to 3, wherein the weight ratio (compound A) :( compound B) is 10 mg / L to 2000 mg / L in a range of 1:99 to 50:50. Fuel oil containing residual oil having good filter oil permeability at a temperature higher than the cloud point of the fuel oil added so as to have a concentration and good wax dispersibility at a temperature lower than the cloud point of the fuel oil Composition.




JP2003429251A 2003-12-25 2003-12-25 Low-temperature fluidity improver for fuel oil Pending JP2005187581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429251A JP2005187581A (en) 2003-12-25 2003-12-25 Low-temperature fluidity improver for fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003429251A JP2005187581A (en) 2003-12-25 2003-12-25 Low-temperature fluidity improver for fuel oil

Publications (1)

Publication Number Publication Date
JP2005187581A true JP2005187581A (en) 2005-07-14

Family

ID=34787970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429251A Pending JP2005187581A (en) 2003-12-25 2003-12-25 Low-temperature fluidity improver for fuel oil

Country Status (1)

Country Link
JP (1) JP2005187581A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643391A (en) * 1979-09-14 1981-04-22 Toho Chem Ind Co Ltd Fuel oil composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643391A (en) * 1979-09-14 1981-04-22 Toho Chem Ind Co Ltd Fuel oil composition

Similar Documents

Publication Publication Date Title
JP2868234B2 (en) Use as chemical composition and fuel additive
EA025254B1 (en) Modified alkyl-phenol-aldehyde resins, use thereof as additives for improving the properties of liquid hydrocarbon fuels in cold conditions
JPS581792A (en) Two-component flow improving agent additive for intermediate distillate fuel oils
JPH06322380A (en) Distilled petroleum fuel oil containing additive for improving low-temperature characteristics
CN1025745C (en) Fuel compositions
US6342081B1 (en) Cloud point depressants for middle distillate fuels
IL140401A (en) Fuel compositions containing propoxylate
CN102549120A (en) Ethylene/vinyl acetate/unsaturated esters terpolymer as an additive for improving the resistance to cold of liquid hydrocarbons such as middle distillates and fuels
EA030317B1 (en) Additives for improving the resistance to wear and to lacquering of (bio)diesel fuel and composition of (bio)diesel fuel
KR101711211B1 (en) Addites for fuel oils
CN1065886C (en) Oil additives and compositions
JP2004217688A (en) A heavy oil
JP2541993B2 (en) Liquid fuel composition
CA3066844C (en) Winterized pour point depressants
JP2005187581A (en) Low-temperature fluidity improver for fuel oil
JPH07316116A (en) New compound with improved low-temperature flowability, intermediate distillate composition containing same,and liquid fuel composition
CN1031528A (en) The chemical composition and the Application of Additives that acts as a fuel thereof
JP3725347B2 (en) Fuel oil low temperature fluidity improver and fuel oil composition
JP2023534510A (en) fuel composition
JP3787930B2 (en) Fuel oil composition
JP2004091676A (en) Fuel oil a
JPS60137998A (en) Fluidity enhancer for fuel oil
CA2369326A1 (en) Cold flow improvers for distillate fuel compositions
JP4715287B2 (en) Fluidity improver for fuel oil
JP3951388B2 (en) Low temperature fluidity improver for heavy oil A

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060901

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100303

A602 Written permission of extension of time

Effective date: 20100308

Free format text: JAPANESE INTERMEDIATE CODE: A602

A02 Decision of refusal

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A02