JP2005187249A - High-purity, high-crystallinity carbonized product and artificial graphite - Google Patents

High-purity, high-crystallinity carbonized product and artificial graphite Download PDF

Info

Publication number
JP2005187249A
JP2005187249A JP2003429283A JP2003429283A JP2005187249A JP 2005187249 A JP2005187249 A JP 2005187249A JP 2003429283 A JP2003429283 A JP 2003429283A JP 2003429283 A JP2003429283 A JP 2003429283A JP 2005187249 A JP2005187249 A JP 2005187249A
Authority
JP
Japan
Prior art keywords
carbonized product
carbonized
purity
mesophase pitch
artificial graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003429283A
Other languages
Japanese (ja)
Inventor
Takashi Kojima
孝 小島
Takatsugu Fujiura
隆次 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003429283A priority Critical patent/JP2005187249A/en
Publication of JP2005187249A publication Critical patent/JP2005187249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a high-purity, high-crystallinity carbonized product and artificial graphite which are used as raw materials for preparing a high-quality carbon material and graphite material. <P>SOLUTION: The high-purity, high-crystallinity carbonized product is obtained by heat-treating raw material mesophase pitch at ≥500°C, wherein the raw material mesophase pitch is obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride. The high-purity, high-crystallinity artificial graphite is obtained by graphitizing the carbonized product at ≥1,900°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は各種炭素製品および黒鉛製品の原料に用いられる高純度かつ高結晶性を有する炭素化物および人造黒鉛に関する。   The present invention relates to high purity and high crystallinity carbonized materials and artificial graphite used as raw materials for various carbon products and graphite products.

炭素材料や黒鉛材料中には原料に起因する不純物が含まれている。炭素材料や黒鉛材料の骨材(フィラー)または添加材として用いられる現状の炭素化物(コークス)や人造黒鉛は、石炭産業や石油精製の副産物に由来するため不純物を多く含み化学純度が低い。また、天然黒鉛は人造黒鉛に比べ結晶性に優れているものの、金属分などの不純物を多く含む。これら不純物は炭素材料や黒鉛材料の使用の際に不都合となる場合が少なくない。問題となる不純物はその材料の使用形態によって異なるが、揮発して構造的な欠陥を残したり、残存して機能発現を阻害したりするため好ましくない場合が多い。このため、製品用途やグレードによっては高純度化のための特別な処理が必要となる(例えば、特許文献1および2参照)。このような不純物除去に要する煩雑な処理は製造時間の長時間化やコストアップの要因となっており、高純度性および高結晶性を有する安価な炭素化物や人造黒鉛が求められている。
特開平2−83205号 公報 特開2000−7313号 公報
Impurities originating from the raw materials are contained in the carbon material and the graphite material. Current carbonized products (coke) and artificial graphite used as an aggregate (filler) or additive for carbon materials and graphite materials are derived from the by-products of the coal industry and petroleum refining, and therefore contain many impurities and have low chemical purity. Natural graphite is superior in crystallinity to artificial graphite, but contains many impurities such as metal. These impurities are often inconvenient when using carbon materials or graphite materials. The impurities in question vary depending on the use form of the material, but are often not preferable because they volatilize and leave structural defects, or remain and impair the function. For this reason, special treatment for high purity is required depending on the product application and grade (see, for example, Patent Documents 1 and 2). Such a complicated process for removing impurities is a factor in prolonging the production time and increasing the cost, and there is a demand for inexpensive carbonized materials and artificial graphite having high purity and high crystallinity.
Japanese Patent Laid-Open No. 2-83205 JP 2000-7313 JP

本発明の目的は、炭素材料や黒鉛材料の原料として用いられる高純度かつ高結晶性の炭素化物および人造黒鉛を安価に提供することにある。   An object of the present invention is to provide inexpensively high-purity and high-crystallinity carbonized materials and artificial graphite used as raw materials for carbon materials and graphite materials.

本発明者らは上記課題を解決すべく鋭意検討した結果、縮合多環炭化水素モノマーの触媒重合によって得られる合成メソフェーズピッチは、高い炭素化収率で結晶性に優れた高純度の炭素化物および人造黒鉛を再現性良く安定して与えることを見出し本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a synthetic mesophase pitch obtained by catalytic polymerization of a condensed polycyclic hydrocarbon monomer is a high-purity carbonized product with high carbonization yield and excellent crystallinity, and The inventors have found that artificial graphite can be stably provided with good reproducibility and have led to the present invention.

すなわち、本発明は弗化水素および三弗化硼素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させて得られた原料メソフェーズピッチを、500℃以上の温度で熱処理することによって得られる炭素化物であって、灰分が200ppm未満であり、かつ該炭素化物を3000℃で黒鉛化処理したときのX線回折によって求められる層間距離d002が0.337nm未満となる炭素化物および該炭素化物を1900℃以上の温度で黒鉛化して得られる人造黒鉛である。   That is, the present invention provides a raw material mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride, by heat treatment at a temperature of 500 ° C. or higher. The obtained carbonized product, which has an ash content of less than 200 ppm and has an interlayer distance d002 of less than 0.337 nm determined by X-ray diffraction when the carbonized product is graphitized at 3000 ° C. and the carbonized product It is artificial graphite obtained by graphitizing a compound at a temperature of 1900 ° C. or higher.

本発明により、高品位の炭素製品や黒鉛製品の原料として有用な高純度かつ高結晶性の炭素化物および人造黒鉛が効率良く得られる。   According to the present invention, highly pure and highly crystalline carbonized materials and artificial graphite useful as raw materials for high-quality carbon products and graphite products can be obtained efficiently.

本発明における炭素化物および人造黒鉛の原料となるメソフェーズピッチ(光学的異方性ピッチ)は、弗化水素および三弗化硼素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させて得られたものである。この合成メソフェーズピッチは特許第2931593号公報、特許第2621253号公報あるいは特許第2526585号公報に示されるようにナフタレン、モノメチルナフタレン、ジメチルナフタレン、アントラセン、フェナントレン、アセナフテン、ピレン等ならびにこれらの骨格を有する縮合多環炭化水素、およびこれらの混合物ないしこれらを含有する物質を重合して得られるものである。本発明における炭素化物および人造黒鉛の原料となるメソフェーズピッチは、ナフタレンを重合して得られるメソフェーズピッチが好ましい。この重合反応はピッチ原料1モルに対し、重合触媒として弗化水素0.1〜20モル、三弗化硼素0.05〜1.0モルを使用し、100〜400℃の温度で5〜300分間反応させることにより行なわれる。重合反応終了後、触媒を分離し、さらに軽質分の除去処理を行なう。こうして得られる合成メソフェーズピッチは、化学純度、黒鉛化性、品質安定性にきわめて優れる。   The mesophase pitch (optically anisotropic pitch) used as a raw material for the carbonized material and artificial graphite in the present invention is obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride. It was obtained. This synthetic mesophase pitch is composed of naphthalene, monomethylnaphthalene, dimethylnaphthalene, anthracene, phenanthrene, acenaphthene, pyrene, and the like, as shown in Japanese Patent No. 2931593, Japanese Patent No. 2612253, or Japanese Patent No. 2526585 It is obtained by polymerizing polycyclic hydrocarbons and mixtures thereof or substances containing them. The mesophase pitch used as a raw material for the carbonized material and artificial graphite in the present invention is preferably a mesophase pitch obtained by polymerizing naphthalene. In this polymerization reaction, 0.1 to 20 mol of hydrogen fluoride and 0.05 to 1.0 mol of boron trifluoride are used as a polymerization catalyst with respect to 1 mol of pitch raw material, and the temperature is 100 to 400 ° C. This is done by reacting for a minute. After completion of the polymerization reaction, the catalyst is separated, and further light components are removed. The synthetic mesophase pitch obtained in this way is extremely excellent in chemical purity, graphitization and quality stability.

本発明において用いられる原料メソフェーズピッチとは、該ピッチを樹脂中に埋め込み、常法により研磨後偏光顕微鏡下で光学組織を観察したときに光学的異方性相部分の含有率が50%以上であるピッチである。該ピッチのメトラー法による軟化点は200℃以上、炭素化収率は70%以上のものが好ましい。
ここで言う炭素化収率とは、メソフェーズピッチを不活性ガス雰囲気下5℃/分で昇温し600℃に到達後2時間保持した場合の歩留まりである。
The raw material mesophase pitch used in the present invention is that the pitch is embedded in a resin, and when the optical structure is observed under a polarizing microscope after polishing by a conventional method, the content of the optically anisotropic phase portion is 50% or more. It is a certain pitch. The pitch has a softening point of 200 ° C. or higher and a carbonization yield of 70% or higher.
The carbonization yield mentioned here is the yield when the mesophase pitch is heated at 5 ° C./min in an inert gas atmosphere and held for 2 hours after reaching 600 ° C.

上記メソフェーズピッチを500℃以上の温度で熱処理することによって炭素化物が製造される。熱処理の方法としては、特に限定されない。静置あるいは攪拌下での常圧熱処理でもよいし、加圧下での熱処理でもよい。例えば耐熱性容器にこの混合物を仕込み窒素雰囲気下炉内で熱処理することによって行なわれる。また、コンベア式の連続熱処理炉等も使用できる。生産性の観点からはつぎのような連続的な熱処理が望ましい。すなわち、不活性雰囲気下500℃以上の温度に保った反応容器内に、あらかじめ熱処理しておいた顆粒状または粉末状の炭素化物を仕込んでおき、攪拌下に原料メソフェーズピッチをそのままあるいは溶融状態で添加していくことで顆粒状または粉末状の炭素化物を製造する。   A carbonized product is produced by heat-treating the mesophase pitch at a temperature of 500 ° C. or higher. The heat treatment method is not particularly limited. It may be a normal pressure heat treatment under standing or stirring, or a heat treatment under pressure. For example, the heat-resistant container is charged with this mixture and heat-treated in a furnace in a nitrogen atmosphere. A conveyor type continuous heat treatment furnace or the like can also be used. From the viewpoint of productivity, the following continuous heat treatment is desirable. That is, a granular or powdered carbonized product that has been heat-treated in advance is placed in a reaction vessel maintained at a temperature of 500 ° C. or higher in an inert atmosphere, and the raw material mesophase pitch is left as it is or in a molten state with stirring. By adding it, a granular or powdered carbonized product is produced.

この方法では、添加した原料ピッチは加熱によりまず低粘度の液体となって、予め仕込んでおいた顆粒状または粉末状のピッチ熱処理物(以下、戻し媒と称す)の表面上に分散する。その後熱による重合が進むことにより最終的には不融の炭素化物へと変化する。戻し媒は攪拌によって常に流動状態が保たれているので、ピッチの反応によって生成するガスは速やかに系外に排出され、静置で熱処理を行うときのような著しい溶融発泡を全く起こさず静置での熱処理に比べてはるかに小さな容積の反応器で連続的に効率よく炭素化できる。またピッチは戻し媒表面上に分散して重合が進み、戻し媒の流動によるせん断を受けながら固化するので得られた熱処理物の光学組織がモザイク状となる。   In this method, the added raw material pitch first becomes a low-viscosity liquid by heating, and is dispersed on the surface of a granular or powdery pitch heat treatment (hereinafter referred to as a return medium) previously prepared. Thereafter, the polymerization by heat proceeds to finally change to an infusible carbonized product. Since the return medium is always kept in a fluid state by stirring, the gas generated by the reaction of the pitch is quickly discharged out of the system, and does not cause any significant melting and foaming as in the case of heat treatment by standing. Compared with the heat treatment in, the reactor can be continuously and efficiently carbonized in a much smaller reactor volume. Further, the pitch is dispersed on the surface of the return medium, polymerization proceeds, and solidifies while receiving shear due to the flow of the return medium, so that the optical structure of the heat-treated product obtained has a mosaic shape.

予め反応器に仕込んでおく戻し媒は、最初は静置法等で製造した流れ組織の熱処理物を使用せざるを得ないが、反応を継続していくうちに新しいモザイク組織の熱処理物にほぼ完全に置換され、最終的に得られる炭素化物は組織的に均質なものとなる。   As the return medium charged in the reactor in advance, a heat-treated product with a flow structure manufactured by a stationary method or the like must be used at first.However, as the reaction continues, almost a new heat-treated product with a mosaic structure is used. Completely substituted and the final carbonized product is systematically homogeneous.

戻し媒を用いて熱処理する場合の反応器には、顆粒状または粉末状のピッチ熱処理物を充分に攪拌できるような攪拌装置を付属した漕型の反応器、攪拌可能なパドルを備えた筒型の反応器、あるいはロータリーキルン等が利用できる。漕型反応器を使用する場合は、たとえば特開平7−286181号公報に記載されたような攪拌羽根の回転軸を傾けて設置した反応器等が利用できる。   In the case of heat treatment using a return medium, the reactor is a vertical reactor equipped with a stirrer that can sufficiently stir the granular or powder pitch heat-treated product, and a cylindrical type equipped with a stirrable paddle Or a rotary kiln can be used. When a vertical reactor is used, for example, a reactor installed with a rotating shaft of a stirring blade inclined as described in JP-A-7-286181 can be used.

得られた炭素化物は必要により粉砕処理される。さらに必要により分級によって粒度調整して用いてもよい。粉砕機については衝撃式粉砕機やジェットミル、マイクロアトマイザー等から適宜、最適機種が選択される。分級機についても機械式分級、風力式分級機等から適宜、最適機種が選択され特に限定されない。   The obtained carbonized product is pulverized as necessary. If necessary, the particle size may be adjusted by classification. For the pulverizer, an optimum model is appropriately selected from an impact pulverizer, a jet mill, a micro atomizer, and the like. As for the classifier, an optimum model is appropriately selected from a mechanical classifier, a wind classifier, and the like, and is not particularly limited.

上述のような熱処理によって得られる炭素化物の灰分は200ppm未満、好ましくは100ppm未満である。本発明における灰分の測定はつぎにようにして行なわれる。高純度アルミナるつぼを電気炉に入れ700℃で10分間加熱しデシケーター中で室温まで放冷後、その質量を0.1mgの桁まではかる。その後、るつぼに測定する炭化物試料の質量Mが40gになるよう0.1mgの桁まではかりとる。るつぼを電気炉に入れ700℃で48hr酸素雰囲気中で加熱した後、デシケーター中で室温まで放冷し、灰の質量mを0.1mgの桁まではかる。灰分Aは、次の式によって算出する。
A=m/M×100
A:灰分(質量%)m:灰の質量(g) M:試料採取量(g)
The ash content of the carbonized product obtained by the heat treatment as described above is less than 200 ppm, preferably less than 100 ppm. The ash content in the present invention is measured as follows. A high-purity alumina crucible is placed in an electric furnace, heated at 700 ° C. for 10 minutes, allowed to cool to room temperature in a desiccator, and the mass is measured to the order of 0.1 mg. Thereafter, the carbide sample to be measured in the crucible is weighed to the order of 0.1 mg so that the mass M becomes 40 g. The crucible is put in an electric furnace and heated in an oxygen atmosphere at 700 ° C. for 48 hours, and then allowed to cool to room temperature in a desiccator, and the mass m of ash is measured to the order of 0.1 mg. Ash content A is calculated by the following equation.
A = m / M × 100
A: Ash content (mass%) m: Mass of ash (g) M: Sampling amount (g)

該炭素化物は3000℃の温度で黒鉛化処理したときのX線回折によって求められる格子面間隔d002が0.3370nm未満、好ましくは0.3365nm以下である。本発明におけるX線測定はつぎのように行なわれる。炭素化物0.5gとケイ素粉末0.05gとを乳鉢で十分混合し測定サンプルとし、X線回折装置理学Geigerflexにて、スキャン角度:10〜35°(2θ、CuKα)、スキャンスピ−ド1°/分、X線印加電圧および電流はそれぞれ30kVおよび20mAの条件で測定する。格子面間隔d002は学振法に基づき解析する。   The carbonized product has a lattice spacing d002 determined by X-ray diffraction when graphitized at a temperature of 3000 ° C. of less than 0.3370 nm, preferably 0.3365 nm or less. The X-ray measurement in the present invention is performed as follows. Carbonized product 0.5g and silicon powder 0.05g are mixed well in a mortar to make a measurement sample. Scan angle: 10-35 ° (2θ, CuKα), scan speed 1 ° with X-ray diffractometer Science Geigerflex. / Min, X-ray applied voltage and current are measured at 30 kV and 20 mA, respectively. The lattice spacing d002 is analyzed based on the Gakushin method.

該炭素化物は1900℃以上の温度で黒鉛化処理することによって、高い化学純度および高い黒鉛化度をもった人造黒鉛として用いることもできる。   The carbonized product can be used as artificial graphite having a high chemical purity and a high graphitization degree by graphitizing at a temperature of 1900 ° C. or higher.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれら実施例により制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples.

実施例1
市販のナフタレン(アドケムコ社製、純度95%)78モル、弗化水素(森田化学社製、純度99.9%)31.2モルおよび三弗化硼素(ステラケミファ社製、純度99.7%)7.8モルを43リットルのオートクレーブに仕込み280℃で4時間反応させた。その後オートクレーブの放出弁を開け、窒素を吹き込み実質的に全量の弗化水素、三弗化硼素を除去した。さらに脱軽質処理を行なうことによって軟化点285℃のメソフェーズピッチ(光学的異方性相含有率:100%)を得た。該メソフェーズピッチ500gをカーボン製容器に入れ、電気炉を用いて窒素雰囲気下10℃/分で600℃まで昇温しこの温度で2時間保持した。室温まで冷却後取り出したところ、炭素化収率は86%であった。
Example 1
78 mol of commercially available naphthalene (manufactured by Adchemco, purity 95%), 31.2 mol of hydrogen fluoride (Morita Chemical, purity 99.9%) and boron trifluoride (manufactured by Stella Chemifa, purity 99.7%) ) 7.8 mol was charged into a 43 liter autoclave and reacted at 280 ° C. for 4 hours. Thereafter, the autoclave discharge valve was opened, and nitrogen was blown to remove substantially all of the hydrogen fluoride and boron trifluoride. Furthermore, a mesophase pitch (optical anisotropic phase content: 100%) having a softening point of 285 ° C. was obtained by performing a lighter treatment. 500 g of the mesophase pitch was put in a carbon container, heated to 600 ° C. at 10 ° C./min in a nitrogen atmosphere using an electric furnace, and kept at this temperature for 2 hours. When it was taken out after cooling to room temperature, the carbonization yield was 86%.

該炭素化物について灰分分析を行なった結果、15ppmであった。該炭素化物をアルゴン雰囲気下3000℃で1時間黒鉛化した後、X線測定を行なった。面間隔d002は0.3356nmであった。   As a result of ash content analysis of the carbonized product, it was 15 ppm. The carbonized product was graphitized at 3000 ° C. for 1 hour under an argon atmosphere, and then X-ray measurement was performed. The surface interval d002 was 0.3356 nm.

実施例2
実施例1で得られた炭素化物を粗粉砕して平均粒径が約0.5mmの戻し媒用熱処理物を得た。次に攪拌機を装備した直径170mm、高さ170mmの漕型反応器の中に、この熱処理物200gを戻し媒としてあらかじめ仕込み、攪拌しながら窒素気流下550℃に昇温した。ここへ該メソフェーズピッチを毎分10gの速度で反応器に加え、全体で300g投入した。投入終了後550℃で10分間保持した後、反応器を冷却し内容物を取り出したところ、400gの粒状の炭素化物が得られた。同じ操作を7回繰り返して約99%の置換率の炭素化物を得た。
Example 2
The carbonized material obtained in Example 1 was coarsely pulverized to obtain a heat treatment product for return medium having an average particle size of about 0.5 mm. Next, 200 g of this heat-treated product was charged in advance in a vertical reactor equipped with a stirrer and having a diameter of 170 mm and a height of 170 mm as a return medium, and the temperature was raised to 550 ° C. under nitrogen flow while stirring. The mesophase pitch was added to the reactor at a rate of 10 g / min, and a total of 300 g was charged. After the completion of the charging, the reactor was kept at 550 ° C. for 10 minutes, and then the reactor was cooled and the contents were taken out. As a result, 400 g of granular carbonized product was obtained. The same operation was repeated 7 times to obtain a carbonized product having a substitution rate of about 99%.

該炭素化物について灰分分析を行なった結果、71ppmであった。該炭素化物をアルゴン雰囲気下3000℃で1時間黒鉛化した後、X線測定を行なった。面間隔d002は0.3365nmであった。   As a result of ash analysis of the carbonized product, it was 71 ppm. The carbonized product was graphitized at 3000 ° C. for 1 hour under an argon atmosphere, and then X-ray measurement was performed. The surface interval d002 was 0.3365 nm.

比較例1
石炭系ピッチ(軟化点300℃)を用いて、実施例1と同様の条件で熱処理し炭素化物を得た。該炭素化物の灰分は3%であった。実施例1と同様の条件で黒鉛化処理し黒鉛化物を得た。該黒鉛化物の面間隔d002は0.3358nmであった。
Comparative Example 1
Carbonized material was obtained by heat treatment under the same conditions as in Example 1 using a coal-based pitch (softening point 300 ° C.). The ash content of the carbonized product was 3%. Graphitization was performed under the same conditions as in Example 1 to obtain a graphitized product. The interplanar spacing d002 of the graphitized product was 0.3358 nm.

比較例2
石油系ピッチ(軟化点:120℃)を用い実施例1と同様の条件で熱処理し炭素化物を得た。該炭素化物の灰分は0.2%であった。また、実施例1と同様の条件で黒鉛化処理し黒鉛化物を得た。該黒鉛化物の面間隔d002は0.3359nmであった。
Comparative Example 2
A carbonized product was obtained by heat treatment under the same conditions as in Example 1 using petroleum pitch (softening point: 120 ° C.). The ash content of the carbonized product was 0.2%. Further, graphitization was performed under the same conditions as in Example 1 to obtain a graphitized product. The interplanar spacing d002 of the graphitized product was 0.3359 nm.

本発明によって得られる炭素化物や人造黒鉛は各種炭素材料や黒鉛材料の原料として利用可能である。例えば、ベアリング、シール材、モーターブラシ、放電加工用電極などの機械関連部材、断熱チューブ、結晶成長用チューブ、ヒーターなどの半導体関連部材、ホットプレスや金属熱処理炉に用いられる高温炉材に適用できる。また、原子力、核融合、宇宙航空などのハイテク分野で用いられる炭素成型品や黒鉛成型品の原料として有用である。さらに、樹脂への添加改質材としても有用である。   The carbonized material and artificial graphite obtained by the present invention can be used as raw materials for various carbon materials and graphite materials. For example, it can be applied to bearings, sealing materials, motor brushes, machine-related members such as electric discharge machining electrodes, heat-insulating tubes, crystal growth tubes, semiconductor-related members such as heaters, and high-temperature furnace materials used in hot presses and metal heat treatment furnaces. . It is also useful as a raw material for carbon molded products and graphite molded products used in high-tech fields such as nuclear power, nuclear fusion, and aerospace. Furthermore, it is also useful as an additive modifier to the resin.

Claims (4)

弗化水素および三弗化硼素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させて得られた原料メソフェーズピッチを、500℃以上の温度で熱処理することによって得られる炭素化物であって、灰分が200ppm未満であり、かつ該炭素化物を3000℃の温度で黒鉛化処理したときのX線回折によって求められる面間隔d002が0.3370nm未満となる炭素化物。   A carbonized product obtained by heat-treating a raw material mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride at a temperature of 500 ° C. or higher. A carbonized product having an ash content of less than 200 ppm and an interplanar spacing d002 of less than 0.3370 nm determined by X-ray diffraction when the carbonized product is graphitized at a temperature of 3000 ° C. 原料メソフェーズピッチがナフタレンを重合して得られたものである請求項1記載の炭素化物。   The carbonized product according to claim 1, wherein the raw material mesophase pitch is obtained by polymerizing naphthalene. 請求項1記載の炭素化物を1900℃以上の温度で黒鉛化処理することによって得られる人造黒鉛。   Artificial graphite obtained by graphitizing the carbonized material according to claim 1 at a temperature of 1900 ° C or higher. 炭素化を行なうに際し、熱処理容器内にあらかじめ熱処理しておいた顆粒状または粉末状の炭素化物を仕込んでおき、攪拌下に原料メソフェーズピッチを添加していくことによって得られる請求項1記載の炭素化物。   2. The carbon according to claim 1, which is obtained by charging granulated or powdered carbonized material that has been heat-treated in advance into a heat treatment container and adding raw material mesophase pitch under stirring when performing carbonization. monster.
JP2003429283A 2003-12-25 2003-12-25 High-purity, high-crystallinity carbonized product and artificial graphite Pending JP2005187249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429283A JP2005187249A (en) 2003-12-25 2003-12-25 High-purity, high-crystallinity carbonized product and artificial graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003429283A JP2005187249A (en) 2003-12-25 2003-12-25 High-purity, high-crystallinity carbonized product and artificial graphite

Publications (1)

Publication Number Publication Date
JP2005187249A true JP2005187249A (en) 2005-07-14

Family

ID=34787997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429283A Pending JP2005187249A (en) 2003-12-25 2003-12-25 High-purity, high-crystallinity carbonized product and artificial graphite

Country Status (1)

Country Link
JP (1) JP2005187249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022494A (en) * 2012-12-21 2013-04-03 济宁碳素集团有限公司 Preparation method of synthetic graphite and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022494A (en) * 2012-12-21 2013-04-03 济宁碳素集团有限公司 Preparation method of synthetic graphite and application thereof
CN103022494B (en) * 2012-12-21 2013-11-06 济宁碳素集团有限公司 Preparation method of synthetic graphite and application thereof

Similar Documents

Publication Publication Date Title
JP5525050B2 (en) Silicon carbide powder manufacturing method and system
CN103209923B (en) Single-crystal silicon carbide manufacture silicon carbide powder and manufacture method thereof
JP5615542B2 (en) Method for producing silicon for solar cell and other uses
WO1983004188A1 (en) Process for manufacturing metal carbides and their precursors
NO174694B (en) Apparatus and method for producing uniform, fine, boron-containing ceramic powders
CN110357106B (en) Method for preparing nano twin crystal boron carbide powder
US3933984A (en) Process of manufacturing whisker crystalline silicon carbide
CN115087620B (en) Method for separating impurities from silicon carbide and temperature-treated and purified silicon carbide powder
CN111777047A (en) Preparation method of nano-submicron sphere-like boron nitride
US4839150A (en) Production of silicon carbide
KR101423512B1 (en) Method for purifying impurities from Tar or Pitch and apparatus thereof
WO2014132561A1 (en) Method for producing silicon carbide and silicon carbide
EP2014617A2 (en) Process For Melting Silicon Powders
CN1535244A (en) Method for producing and purifying sodium hydride
Jiang et al. An efficient way of recycling silicon kerf waste for synthesis of high‐quality SiC
US4963286A (en) Dispersions of silica in carbon and a method of making such dispersions
JP2005187249A (en) High-purity, high-crystallinity carbonized product and artificial graphite
Murray Low temperature synthesis of boron carbide using a polymer precursor powder route
TW202239711A (en) Process for the preparation of pure lithium oxide
JP6014012B2 (en) Coke production method and coke
JP2008308360A (en) Manufacturing method of carbon material for electric double layer capacitor electrode
EP1127842B1 (en) Carbon material comprising particles having a coarsely granular surface and process for the production thereof
JPH08290905A (en) Hexagonal boron nitride powder and its production
CN114835124B (en) Preparation method of nano silicon carbide particles based on ferric nitrate shape regulator
JPS6270216A (en) Production of coke for isotropic carbon material