JP2005186490A - Method for molding thermoplastic resin - Google Patents

Method for molding thermoplastic resin Download PDF

Info

Publication number
JP2005186490A
JP2005186490A JP2003431708A JP2003431708A JP2005186490A JP 2005186490 A JP2005186490 A JP 2005186490A JP 2003431708 A JP2003431708 A JP 2003431708A JP 2003431708 A JP2003431708 A JP 2003431708A JP 2005186490 A JP2005186490 A JP 2005186490A
Authority
JP
Japan
Prior art keywords
preform
resin
thermoplastic resin
mold
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003431708A
Other languages
Japanese (ja)
Other versions
JP3987486B2 (en
JP2005186490A5 (en
Inventor
Kazuya Oba
和也 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Munekata Co Ltd
Original Assignee
Munekata Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Munekata Co Ltd filed Critical Munekata Co Ltd
Priority to JP2003431708A priority Critical patent/JP3987486B2/en
Publication of JP2005186490A publication Critical patent/JP2005186490A/en
Publication of JP2005186490A5 publication Critical patent/JP2005186490A5/ja
Application granted granted Critical
Publication of JP3987486B2 publication Critical patent/JP3987486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/56Compression moulding under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/002Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3205Particular pressure exerting means for making definite articles
    • B29C2043/3222Particular pressure exerting means for making definite articles pressurized gas, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • B29C2043/527Heating or cooling selectively cooling, e.g. locally, on the surface of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1701Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free
    • B29C2045/1702Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free dissolving or absorbing a fluid in the plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding method which can produce a high quality molding excellent in transfer properties of a minute uneven surface in high productivity when the press mold molding and embossing of a thermoplastic resin are carried out. <P>SOLUTION: A thermoplastic resin preform, after being heated to a temperature near the solidification temperature of the thermoplastic resin, is inserted between molds the temperature of which is kept close to the solidification temperature of the resin, and the molds are closed with low pressure. Next, carbon dioxide is injected between the surfaces of the molds and the preform and dissolved into the surface of the preform to lower the viscosity of the preform. Next, press force is increased, and the preform with the viscosity of the surface lowered is adhered to the surfaces of the molds. Next, after the carbon dioxide is discharged, the molding is taken out. The molding high in quality and excellent in transfer properties of the minute uneven surface can be produced in high productivity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱可塑性樹脂からなる予備成形体の表面に、二酸化炭素のような樹脂溶解性ガスを溶解させて行う成形方法であって、更に詳しくは、予備成形体及び金型に温度条件を付与して行う熱可塑性樹脂の成形方法に関する。   The present invention relates to a molding method in which a resin-soluble gas such as carbon dioxide is dissolved on the surface of a preform made of a thermoplastic resin, and more specifically, the temperature conditions are set on the preform and the mold. The present invention relates to a method for molding a thermoplastic resin.

光情報記録媒体や、導光板など、表面に微細形状を有し、これら表面形状の高転写性が要求される製品、または、カメラやプリンタ用の光学レンズのように、低複屈折性が要求される製品の製造は、従来、ポリカーボネート(以下、PC)やアクリル樹脂(以下、PMMA)などの熱可塑性樹脂を射出成形することにより得られている。   Low birefringence is required for optical information recording media, light guide plates, etc. that have fine shapes on the surface, such as products that require high transferability of these surface shapes, or optical lenses for cameras and printers. The manufacture of such products is conventionally obtained by injection molding a thermoplastic resin such as polycarbonate (hereinafter PC) or acrylic resin (hereinafter PMMA).

近年、低複屈折性や、更なる微細転写性が要求されるようになり、こうした製品を製造するには従来の射出成形では限界があることから、プレスモールド成形方法や、エンボス加工方法などの特殊成形方法、加工方法が提案されている。
プレスモールド成形方法とは、予備成形体を金型のキャビティ内に置いた後、キャビティ容積を縮小し、キャビティ内に高い内圧を均一に発生させて等圧圧縮を行う方法であり、その結果、保圧のかかりかたが射出成形と異なり均一になるので、成形品の残留ひずみが低減される。また、金型の転写性が著しく向上する。
エンボス加工方法とは、通常、ロールや金型を用いて模様、図案等の意匠形状を転写する加工方法をいうが、本発明においてはプレス金型を用いて意匠形状を転写する(形状は形成しない)ことを意味する。
In recent years, low birefringence and further fine transferability have been demanded, and there are limits to conventional injection molding to manufacture such products, so press molding methods, embossing methods, etc. Special molding methods and processing methods have been proposed.
The press mold forming method is a method in which after the preform is placed in the cavity of the mold, the cavity volume is reduced, and a high internal pressure is uniformly generated in the cavity to perform isobaric compression. Since the method of holding pressure is uniform unlike injection molding, residual distortion of the molded product is reduced. Further, the transferability of the mold is remarkably improved.
The embossing method usually refers to a processing method for transferring a design shape such as a pattern or design using a roll or a mold. In the present invention, a design shape is transferred using a press mold (the shape is formed). Does not).

熱可塑性樹脂からなる予備成形体のプレスモールド成形方法及びエンボス加工方法においては、従来、前記の様に成形前に金型、および、予備成形体を熱可塑性樹脂の固化温度以上に加熱した後、金型を昇圧してプレスし、その後、金型を熱可塑性樹脂の固化温度以下に冷却してから製品を取り出している。しかし、これらの方法では、予備成形体を再度溶融させて
からプレスするため、微細形状の転写性、低複屈折性は向上するものの、金型内における樹脂の予熱時間を長く要し、サイクルタイムも長くなるという問題が発生している。また、予備成形体の溶融冷却の繰り返しが行われていることから、冷却時における収縮率が一定せず、寸法精度が低下するという問題も発生している。
また、成形品への転写性を向上する目的で、射出前のキャビティ内にガス体を充填する次のような成形方法が公知である。
In the press-molding method and embossing method of a preform made of a thermoplastic resin, conventionally, as described above, after the mold and the preform are heated above the solidification temperature of the thermoplastic resin, The mold is pressurized and pressed, and then the product is taken out after the mold is cooled below the solidification temperature of the thermoplastic resin. However, in these methods, since the preform is melted again and then pressed, fine shape transferability and low birefringence are improved, but the resin preheating time in the mold is long, and the cycle time is long. The problem of becoming longer is also occurring. Further, since the melt cooling of the preform is repeated, there is a problem that the shrinkage rate during cooling is not constant and the dimensional accuracy is lowered.
For the purpose of improving transferability to a molded product, the following molding method is known in which a gas body is filled in a cavity before injection.

特開平10−128783号公報 この発明は、熱可塑性樹脂の射出成形において、樹脂充填工程中の樹脂の固化や粘度上昇を防止し、金型表面状態を高度に成形品に転写する方法を、複雑な装置や金型を使用せず経済的に提供するために、成形する熱可塑性樹脂に0.1重量%以上溶解する圧力で二酸化炭素を充填した冷却金型内に上記熱可塑性樹脂を溶融して充填し、該熱可塑性樹脂の表面の固化温度を低下させて成形する方法である。 しかし、この発明は、プレスモールド成形方法及びエンボス加工方法ではないことと、あらかじめ金型内に二酸化炭素を充填して樹脂の固化温度を低下させる成形方法であることから、プレスモールド成形方法には適用できない。JP, 10-128783, A In this invention, in injection molding of a thermoplastic resin, the method of preventing solidification of a resin and a viscosity rise in a resin filling process, and transferring a mold surface state to a molded product highly is complicated. In order to provide economically without using a simple apparatus or mold, the thermoplastic resin is melted in a cooling mold filled with carbon dioxide at a pressure that dissolves 0.1% by weight or more in the thermoplastic resin to be molded. And then molding by lowering the solidification temperature of the surface of the thermoplastic resin. However, the present invention is not a press mold molding method and an embossing method, and is a molding method in which the mold is filled with carbon dioxide in advance to lower the solidification temperature of the resin. Not applicable.

特開2002−052583号公報 この発明は、転写性と光沢性に優れた成形品を得るために、射出成形において、キャビティ1内に一旦樹脂を充填した直後、キャビティ1と樹脂とが接している成形品のスキン層に二酸化炭素ガスを注入してスキン層を後退させてキャビティとスキン層間に空隙13を形成することにより、スキン層の成長を止め、併せてスキン層内に二酸化炭素ガスを溶解させて、スキン層を軟化させ、次に樹脂圧を高めてスキン層を再度キャビティ1内に密着させ、保圧をかけながら冷却して固化させるものである。 しかし、この発明は、成形原理が異なるために、予備成形体をプレスモールドする成形方法及びエンボス加工方法には適用できない。JP, 2002-052583, A In this invention, in order to obtain a molded article excellent in transferability and glossiness, the cavity 1 and the resin are in contact immediately after the resin is filled in the cavity 1 in the injection molding. By injecting carbon dioxide gas into the skin layer of the molded product and retracting the skin layer to form voids 13 between the cavity and the skin layer, the growth of the skin layer is stopped and the carbon dioxide gas is dissolved in the skin layer. Then, the skin layer is softened, and then the resin pressure is increased, the skin layer is brought into close contact with the cavity 1 again, and cooled and solidified while applying pressure. However, the present invention is not applicable to a molding method and an embossing method in which a preform is press-molded because the molding principle is different.

特開2003−320556号公報 この発明は、予め改質材を混合した樹脂を用いることなく、表面部分のみを必要な性状に改質した成形品を効率よく安価に製造できるようにするために、射出する溶融樹脂に対して溶解性を有する加圧ガスに改質材を溶解又は分散させ、該加圧ガスを金型キャビティ内に注入し、次いで該金型キャビティ内に溶融樹脂を射出すると云う成形方法である。 しかし、この発明は、溶解性を有するガスを用いてはいるが、あらかじめ加圧ガスを金型内に注入しておく方法であることから、プレスモールド成形方法又はエンボス加工方法には適用できない。JP, 2003-320556, A In this invention, in order to be able to manufacture efficiently and cheaply the molding which changed only the surface part into the required property, without using resin which mixed the modifier beforehand. It is said that the modifying material is dissolved or dispersed in a pressurized gas that is soluble in the injected molten resin, the pressurized gas is injected into the mold cavity, and then the molten resin is injected into the mold cavity. This is a molding method. However, although the present invention uses a gas having solubility, it is a method of injecting a pressurized gas into a mold in advance, and therefore cannot be applied to a press mold forming method or an embossing method.

本発明の第1の目的は、熱可塑性樹脂の成形方法において、成形サイクルタイムの短縮化を図ることにより生産性を高めることである。
更に、第2の目的は、熱可塑性樹脂の成形方法において、微細形状の転写性及び複屈折性をさらに改善された成形品を得る成形方法及び加工方法を提供することである。
更に、第3の目的は、熱可塑性樹脂の成形方法において、寸法精度の高い成形品を得る成形方法及び加工方法を提供することである。
The first object of the present invention is to increase productivity by shortening the molding cycle time in a thermoplastic resin molding method.
Furthermore, the second object is to provide a molding method and a processing method for obtaining a molded product having further improved transferability and birefringence of a fine shape in a thermoplastic resin molding method.
Furthermore, the third object is to provide a molding method and a processing method for obtaining a molded product with high dimensional accuracy in the thermoplastic resin molding method.

上記目的を達成するため、請求項1に記載の発明においては、熱可塑性樹脂の成形方法において、熱可塑性樹脂からなる予備成形体を、この予備成形体を構成する熱可塑性樹脂の固化温度付近まで加熱した後、これを熱可塑性樹脂の固化温度以下の温度に保った金型の間にはめ込み、金型を低圧で閉じ、次に、金型表面と予備成形体表面の間に樹脂溶解性ガスを注入して予備成形体表面に溶解させることにより、予備成形体表面の粘度を下げ、次に、金型のプレス力を高め、表面の粘度が低下した予備成形体と金型表面を高圧で密着させ、次に、残存する前記樹脂溶解性ガスを金型内から排出した後、成形品を取り出すことで微細な凹凸表面の転写性に優れ、かつ、寸法精度の良好な製品を短い成形サイクルタイムで得ることを特徴とするものである。   In order to achieve the above object, in the invention described in claim 1, in the method for molding a thermoplastic resin, a preform formed of the thermoplastic resin is brought to a temperature near the solidification temperature of the thermoplastic resin constituting the preform. After heating, this is inserted between molds maintained at a temperature lower than the solidification temperature of the thermoplastic resin, the mold is closed at a low pressure, and then the resin-soluble gas between the mold surface and the preform surface Is injected and dissolved on the surface of the preform body to lower the viscosity of the surface of the preform body, and then the press force of the mold is increased, and the preform body and the surface of the mold whose surface viscosity is reduced are increased at high pressure. Next, after discharging the remaining resin-soluble gas from the mold, the molded product is taken out, and a product with excellent transferability of fine uneven surfaces and good dimensional accuracy is obtained in a short molding cycle. Also characterized by getting in time It is.

更に、請求項2に記載の発明においては、熱可塑性樹脂の成形方法において、熱可塑性樹脂からなる予備成形体を、この予備成形体を構成する熱可塑性樹脂の固化温度以上まで加熱した後、これを熱可塑性樹脂の固化温度以上に加熱した金型の間にはめ込み、金型を低圧で閉じ、次に、金型表面と予備成形体表面の間に樹脂溶解性ガスを注入して予備成形体表面に溶解させることにより、予備成形体表面の粘度を下げ、次に、金型のプレス力を高め、表面の粘度が低下した予備成形体と金型表面を高圧で密着させ、次に、残存する前記樹脂溶解性ガスを金型内から排出し、金型および樹脂を熱可塑性樹脂の固化温度以下まで冷却した後、成形品を取り出すことで微細な凹凸表面の転写性が飛躍的に優れ、かつ、複屈折率の低い製品を短い成形サイクルタイムで得ることを特徴とするものである。   Furthermore, in the invention according to claim 2, in the method for molding a thermoplastic resin, after heating a preform made of the thermoplastic resin to a temperature equal to or higher than a solidification temperature of the thermoplastic resin constituting the preform, Is inserted between molds heated above the solidification temperature of the thermoplastic resin, the mold is closed at a low pressure, and then a resin-soluble gas is injected between the mold surface and the surface of the preform, and the preform is molded. By dissolving on the surface, the viscosity of the surface of the preform is lowered, then the press force of the mold is increased, and the preform and the surface of the mold whose surface viscosity is reduced are brought into close contact with each other at high pressure, and then the remaining The resin-dissolving gas is discharged from the mold, and after the mold and the resin are cooled to below the solidification temperature of the thermoplastic resin, the transferability of the fine uneven surface is dramatically improved by taking out the molded product, In addition, short molding of products with low birefringence It is characterized in that obtained in cycle time.

更に、請求項3に記載の発明においては、請求項1又は請求項2記載の発明において、金型キャビティ表面と予備成形体表面の間に注入する樹脂溶解性ガスの圧力、温度、および予備成形体と樹脂溶解性ガスの接触時間を変えることにより、予備成形体表面の粘度の降下量、および粘度が降下する層の厚さを厳密に制御することを特徴とするものである。   Further, in the invention described in claim 3, in the invention described in claim 1 or 2, the pressure, temperature, and preforming of the resin-soluble gas injected between the mold cavity surface and the preform surface. By changing the contact time between the body and the resin-soluble gas, the amount of decrease in the viscosity of the surface of the preformed body and the thickness of the layer in which the viscosity decreases are strictly controlled.

更に、請求項4に記載の発明においては、熱可塑性樹脂の成形方法において、熱可塑性樹脂からなる予備成形体を、熱可塑性樹脂の固化温度以下の温度に保ったスタンパーと熱可塑性樹脂の固化温度以下の温度に保った金型との間にはめ込み、金型を低圧で閉じ、次に、スタンパー表面と予備成形体表面の間に樹脂溶解性ガスを注入して予備成形体表面に溶解させることにより、予備成形体表面の粘度を下げ、次に、プレス力を高めて表面の粘度が低下した予備成形体とスタンパー表面を高圧で密着させ、次に、残存する前記樹脂溶解性ガスを金型内から排出した後、成形品を取り出すことで微細な凹凸表面の転写性に優れ、高品質な成形体を短い成形サイクルタイムで得ることを特徴とするものである。   Furthermore, in the invention according to claim 4, in the method for molding a thermoplastic resin, a preformed body made of the thermoplastic resin is maintained at a temperature not higher than the solidification temperature of the thermoplastic resin and the solidification temperature of the thermoplastic resin. Fit between molds kept at the following temperature, close the mold at low pressure, and then inject resin-soluble gas between the stamper surface and the preform surface to dissolve it on the preform surface To reduce the viscosity of the surface of the preformed body, and then to increase the pressing force to bring the surface of the preformed body and the stamper into close contact with each other at a high pressure. After discharging from the inside, the molded product is taken out to obtain a high-quality molded article with excellent transferability on a fine uneven surface and a short molding cycle time.

更に、請求項5に記載の発明においては、熱可塑性樹脂の成形方法において、熱可塑性樹脂からなる予備成形体を、熱可塑性樹脂の固化温度以上に加熱したスタンパーと、熱可塑性樹脂の固化温度以下の温度に保った金型の間にはめ込み、金型を低圧で閉じ、次に、スタンパー表面と予備成形体表面の間に樹脂溶解性ガスを注入して予備成形体表面に溶解させることにより、予備成形体表面の粘度を下げ、次に、プレス力を高め、表面の粘度が低下した予備成形体とスタンパー表面を高圧で密着させ、次に、残存する前記樹脂溶解性ガスを排出し、スタンパーおよび樹脂を熱可塑性樹脂の固化温度以下まで冷却した後、成形品を取り出すことで微細な凹凸表面の転写性が飛躍的に優れた、高品質な成形体を得ることを特徴とするものである。   Furthermore, in the invention according to claim 5, in the method for molding a thermoplastic resin, a preformed body made of the thermoplastic resin is heated to a temperature equal to or higher than the solidification temperature of the thermoplastic resin, and is equal to or lower than the solidification temperature of the thermoplastic resin. By fitting between molds kept at a temperature of, closing the mold at low pressure, and then injecting a resin-soluble gas between the stamper surface and the preform surface to dissolve it on the preform surface, Lowering the viscosity of the surface of the preformed body, then increasing the pressing force, bringing the preformed body with the reduced surface viscosity into close contact with the stamper surface at high pressure, then discharging the remaining resin-soluble gas, And after cooling the resin to below the solidification temperature of the thermoplastic resin, the molded product is taken out to obtain a high-quality molded product with remarkably excellent transferability of the fine uneven surface. .

更に、請求項6に記載の発明においては、請求項4又は請求項5記載の発明において、スタンパー表面と予備成形体表面の間に注入する樹脂溶解性ガスの圧力、温度、および予備成形体と樹脂溶解性ガスの接触時間を変えることにより、予備成形体表面の粘度の降下量、および粘度が降下する層の厚さを厳密に制御することを特徴とするものである。   Furthermore, in the invention described in claim 6, in the invention described in claim 4 or claim 5, the pressure and temperature of the resin-soluble gas injected between the stamper surface and the surface of the preform, and the preform By changing the contact time of the resin-soluble gas, the amount of decrease in the viscosity of the surface of the preformed body and the thickness of the layer in which the viscosity decreases are strictly controlled.

更に、請求項7に記載の発明においては、請求項1〜6のいずれか1項に記載の発明において、樹脂溶解性ガスとして、二酸化炭素又は、窒素又は、メタン又は、エタン又は、プロパン又は、これらの炭化水素の一部の水素をフッ素で置換したフロン、などを単体で用いる又は、これらを複数種混合した状態で用いることを特徴とするものである。
金型内に注入した二酸化炭素は、プレス工程後、金型が開くと同時に排出される。ただし、二酸化炭素の圧力が高い場合は、金型が開く直前に、別回路から排出しておくのが望ましい。
ところで、上記した請求項1、2、4、5において、金型温度は、金型温度をTt、樹脂の固化温度をTf、二酸化炭素の溶解により低下する樹脂の固化温度をΔTco2と定義すると、金型温度はTf−ΔTco2≦Tt≦Tfの範囲で設定するのが望ましい。
また、Tt−(Tf−ΔTco2)が大きいほど製品の転写性が向上する。
Furthermore, in the invention according to claim 7, in the invention according to any one of claims 1 to 6, as the resin-soluble gas, carbon dioxide, nitrogen, methane, ethane, propane, These hydrocarbons are characterized by using, for example, chlorofluorocarbons in which a part of hydrogen is substituted with fluorine, or the like in a mixed state.
The carbon dioxide injected into the mold is discharged as soon as the mold is opened after the pressing process. However, when the pressure of carbon dioxide is high, it is desirable to discharge from a separate circuit immediately before the mold is opened.
By the way, in the above claims 1, 2, 4, and 5, the mold temperature is defined as Tt, the solidification temperature of the resin as Tf, and the solidification temperature of the resin that is lowered by the dissolution of carbon dioxide as ΔTco2. The mold temperature is preferably set in the range of Tf−ΔTco2 ≦ Tt ≦ Tf.
In addition, the larger the Tt− (Tf−ΔTco2), the better the product transferability.

請求項1、4、7に記載の発明では、予備成形体の表面に、二酸化炭素等を溶解させることで、予備成形体表面の粘度を低下させる。このため、金型温度を熱可塑性樹脂の固化温度以下の一定温度に保持したまま、プレスモールド成形、または、エンボス加工を可能にする。これにより、プレス工程前に金型温度を上昇させ、冷却工程中に金型温度を降下させる必要があった従来法と比較して、成形サイクルタイムが大幅に改善され、生産性が向上する。また、固化する際に樹脂温度が変化しないため、樹脂の収縮による寸法精度の低下もほとんど起きない製品を得られる。   In the inventions according to claims 1, 4, and 7, the viscosity of the surface of the preform is lowered by dissolving carbon dioxide or the like on the surface of the preform. For this reason, press mold forming or embossing is enabled while maintaining the mold temperature at a constant temperature below the solidification temperature of the thermoplastic resin. As a result, the molding cycle time is greatly improved and the productivity is improved as compared with the conventional method in which the mold temperature is raised before the pressing process and the mold temperature needs to be lowered during the cooling process. Further, since the resin temperature does not change when solidifying, a product can be obtained in which the dimensional accuracy is hardly lowered by the shrinkage of the resin.

請求項2、5、7に記載の発明では、従来のプレスモールド成形、または、エンボス加工と同様に、プレス工程前に金型温度を上昇させ、冷却工程中に金型温度を降下させる必要があるため、成形サイクルタイムの改善は少ないものの、予備成形体表面の粘度は大幅に低下し、微細な凹凸表面の転写性が大幅に向上し、ひずみ緩和により、複屈折率が大幅に改善される。また、請求項3、6、7記載のように、金型表面と予備成形体表面の間に注入する二酸化炭素等の圧力、温度、および、予備成形体と二酸化炭素の接触時間を変えることにより、予備成形体表面の粘度の降下量、および、粘度降下する層の厚さを厳密に制御可能で、この粘度降下層が、予備成形体より厚くなるように条件を設定した場合、予備成形体全体の粘度が低下するため、内部ひずみが緩和され、複屈折率の低い製品を得られる。   In the inventions according to claims 2, 5 and 7, it is necessary to raise the mold temperature before the pressing process and lower the mold temperature during the cooling process, as in the conventional press molding or embossing. Therefore, although the improvement in molding cycle time is small, the viscosity of the preform surface is greatly reduced, the transferability of the fine uneven surface is greatly improved, and the birefringence is greatly improved by strain relaxation. . Further, as described in claims 3, 6 and 7, by changing the pressure and temperature of carbon dioxide or the like injected between the mold surface and the preform surface, and the contact time of the preform and carbon dioxide The amount of decrease in the viscosity of the surface of the preformed body and the thickness of the layer where the viscosity is lowered can be strictly controlled. When the conditions are set so that the viscosity-decreasing layer is thicker than the preformed body, Since the overall viscosity is reduced, the internal strain is relaxed and a product having a low birefringence can be obtained.

本発明に用いられる熱可塑性樹脂は、例えばスチレン系樹脂、(例えば、ポリスチレン、ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体等)、ABS樹脂、ポリエチレン、ポリプロピレン、エチレン−プロピレン樹脂、エチレン−エチルアクリレート樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリブテン、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド、ポリビニルアルコール、ポリメチルメタクリレート、飽和ポリエステル樹脂(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、生分解性ポリエステル樹脂(例えば、ポリ乳酸のようなヒドロキシカルボン酸縮合物、ポリブチレンサクシネートのようなジオールとジカルボン酸の縮合物等)ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリエーテルエーテルケトン、液晶ポリマー等の1種または2種以上の混合物、さらに無機物や有機物の各種充填材が混合された樹脂が挙げられる。これらの熱可塑性樹脂中では、非晶性樹脂が特に好ましい。   The thermoplastic resin used in the present invention is, for example, a styrene resin (for example, polystyrene, butadiene / styrene copolymer, acrylonitrile / styrene copolymer, acrylonitrile / butadiene / styrene copolymer, etc.), ABS resin, polyethylene, Polypropylene, ethylene-propylene resin, ethylene-ethyl acrylate resin, polyvinyl chloride, polyvinylidene chloride, polybutene, polycarbonate, polyacetal, polyphenylene oxide, polyvinyl alcohol, polymethyl methacrylate, saturated polyester resin (for example, polyethylene terephthalate, polybutylene terephthalate, etc. ), Biodegradable polyester resins (for example, hydroxycarboxylic acid condensates such as polylactic acid, diol and dibutyl such as polybutylene succinate) Condensates of rubonic acid, etc.) Polyamide resin, polyimide resin, fluororesin, polysulfone, polyethersulfone, polyarylate, polyetheretherketone, liquid crystal polymer, etc., one or a mixture of two or more, various inorganic and organic substances Examples thereof include a resin mixed with a filler. Among these thermoplastic resins, amorphous resins are particularly preferable.

本発明で用いる樹脂溶解性ガスとしては、予備成形体の表面を効率的に溶解するガスが好ましく、具体的には、二酸化炭素、メタン、エタン、プロパンなどの炭化水素及びその一部の水素をフッ素などで置換したフロンの一種又は複数種の混合が考えられる。そして、これらのガスは、単独で、又は、混合して用いることが可能であるが、二酸化炭素は安全性、価格、取り扱い易さ、環境に対する影響の点で最も良好である。   The resin-soluble gas used in the present invention is preferably a gas that efficiently dissolves the surface of the preform, and specifically includes hydrocarbons such as carbon dioxide, methane, ethane, and propane, and a part of hydrogen. One or a mixture of a plurality of chlorofluorocarbons substituted with fluorine or the like can be considered. These gases can be used alone or in combination, but carbon dioxide is the best in terms of safety, price, ease of handling, and influence on the environment.

本実施例は、請求項1に記載した発明に対応するもので、この詳細を図面を用いて詳しく説明する。図1は成形装置全体を示し、図2(a)は予備成形体X−1の平面図、(b)はA−A´線断面図、図3(a)は成形品X−2の平面図、(b)はB−B´線断面図、を示し、図4(a)は成形フローを示し、(b)は成形フローに対応する樹脂の固化温度の変化と金型温度を示す。   This embodiment corresponds to the invention described in claim 1, and details thereof will be described in detail with reference to the drawings. FIG. 1 shows the entire molding apparatus, FIG. 2 (a) is a plan view of the preform X-1, (b) is a cross-sectional view taken along the line AA ', and FIG. 3 (a) is a plan view of the molded product X-2. FIG. 4B is a sectional view taken along line B-B ′, FIG. 4A shows a molding flow, and FIG. 4B shows a change in the solidification temperature of the resin corresponding to the molding flow and the mold temperature.

各図において、符号の8a、8bはプレスモールド成形用の金型で、この金型8a、8b内には熱水が循環して金型8a、8bを加熱するために熱交換器9a、9bが組み込まれていると共に金型8b側には、金型8aと8bを密閉したときにシールを担保するシール材10が取り付けられている。金型温度の調整は、温度調整機6により、温度調整ライン7a、7bを通り行われる。温度調整機6は自社製で、ポンプ2a、2b、加熱機3、冷却機5、電磁弁4a、4b、4c、4d、4e、4fで構成される。装置の動作は、水源1の水を、ポンプ2aで流し加熱機3で熱水にし、または、ポンプ2bで流し冷却機5で冷水にし、これらを電磁弁4a、4b、4c、4d、4e、4fにより切り替えながら、金型8a、8bの熱交換器9a、9b内を循環させる。金型8a、8bに熱水を流す際は、電磁弁4a、4c、4fを開き、金型8a、8bに冷水を流す際は、電磁弁4b、4d、4eを開く。金型8a、8b内への二酸化炭素の注入は、二酸化炭素発生注入装置21により、二酸化炭素供給ライン11を通り行われる。二酸化炭素発生注入装置21は自社製で、電磁弁12a、12b、圧力センサー13、背圧弁14、安全弁15、温度センサー16、蓄圧タンク17、加温機18、減圧弁19、逆止弁20で構成される。装置の動作は、二酸化炭素発生源22より発生した二酸化炭素を、減圧弁19で圧力の調整を行い、加温機18で温度調整を行い、蓄圧タンク17に蓄圧する。次に背圧弁14で圧力の微調整を行い、電磁弁12a、12bにより、二酸化炭素の注入排出を行う。二酸化炭素の注入時には電磁弁12bが開き、二酸化炭素排出時には電磁弁12aが開く。成形動作中、金型8a、8bが閉じている場合、金型8a、8b内に注入された二酸化炭素はシール材10により圧力を保持することが出来る。   In each figure, reference numerals 8a and 8b denote press mold molds, and heat exchangers 9a and 9b are used to heat the molds 8a and 8b by circulating hot water in the molds 8a and 8b. And a sealing material 10 that secures a seal when the molds 8a and 8b are sealed is attached to the mold 8b side. The mold temperature is adjusted by the temperature adjuster 6 through the temperature adjustment lines 7a and 7b. The temperature regulator 6 is made in-house, and includes pumps 2a, 2b, a heater 3, a cooler 5, and solenoid valves 4a, 4b, 4c, 4d, 4e, 4f. The operation of the apparatus is as follows: the water from the water source 1 is poured by the pump 2a and converted into hot water by the heater 3, or the pump 2b is poured and cooled by the cooler 5, and these are cooled by the solenoid valves 4a, 4b, 4c, 4d, 4e, While switching by 4f, the heat exchangers 9a and 9b of the molds 8a and 8b are circulated. When flowing hot water through the molds 8a and 8b, the electromagnetic valves 4a, 4c and 4f are opened, and when flowing cold water through the molds 8a and 8b, the electromagnetic valves 4b, 4d and 4e are opened. Carbon dioxide is injected into the molds 8a and 8b through the carbon dioxide supply line 11 by the carbon dioxide generation and injection device 21. Carbon dioxide generating and injecting device 21 is made in-house, with solenoid valves 12a and 12b, pressure sensor 13, back pressure valve 14, safety valve 15, temperature sensor 16, pressure storage tank 17, warming machine 18, pressure reducing valve 19, and check valve 20. Composed. The operation of the apparatus is to store the carbon dioxide generated from the carbon dioxide generation source 22 by adjusting the pressure by the pressure reducing valve 19, adjusting the temperature by the warmer 18, and accumulating the pressure in the pressure accumulating tank 17. Next, the pressure is finely adjusted by the back pressure valve 14, and carbon dioxide is injected and discharged by the electromagnetic valves 12a and 12b. The electromagnetic valve 12b opens when carbon dioxide is injected, and the electromagnetic valve 12a opens when carbon dioxide is discharged. When the molds 8a and 8b are closed during the molding operation, the carbon dioxide injected into the molds 8a and 8b can maintain the pressure by the sealing material 10.

図4または図5に基づいて、請求項1、2、3、7に記載した本発明に係るプレスモールド成形方法を説明する。樹脂にはPMMA(住友化学株式会社、商品名MGSS)を用いた。この樹脂の固化温度は約100℃である。予備成形体X-1を図2に示し、成形品の形状を図3に示す。予備成形体X-1の形状は、長さ28mm、幅28mm、肉厚3mmの板形状で、成形品X-2の形状は、長さ32mm、幅32mm、高さ4mm、肉厚1.5mmの箱形状で、成形品X-2の中央部分には幅20μm、深さ5.7μmの微細連続V溝23を有している。   Based on FIG. 4 or FIG. 5, the press mold forming method according to the present invention described in claims 1, 2, 3, and 7 will be described. PMMA (Sumitomo Chemical Co., Ltd., trade name MGSS) was used as the resin. The solidification temperature of this resin is about 100 ° C. The preform X-1 is shown in FIG. 2, and the shape of the molded product is shown in FIG. The shape of the preform X-1 is 28mm long, 28mm wide and 3mm thick, and the shape of the molded product X-2 is 32mm long, 32mm wide, 4mm high and 1.5mm thick. It is box-shaped and has a fine continuous V-groove 23 having a width of 20 μm and a depth of 5.7 μm at the center of the molded product X-2.

請求項1に記載した成形工程を図4に基づいて説明する。始めに、(A)に示すように、80℃に加熱したPMMA予備成形体X-1を、温度調整機6および温度調整ライン7a、7bにより80℃に保った金型8a、8bの間に置く。次に、(B)に示すように、金型8aを予備成形体X-1の表面に接触する寸前の状態まで閉じ、二酸化炭素発生注入装置21より、二酸化炭素注入ライン11を通して、金型8aと予備成形体X-1の間に、圧力8MPa、温度40℃の二酸化炭素を1sec注入する。これにより、樹脂における表面の固化温度は、PMMAの約100℃から約60℃低下して、約40℃になる。次に、(C)に示すように、金型8aを50MPaの圧力で締め、5秒間保持する。次に、(D)に示すように、二酸化炭素注入ライン11中の二酸化炭素を排出する。次に、(E)に示すように、金型8aを開き、成形品X-2を取り出す。成形の条件を表1に、これにより得られた成形品の評価を表2に示す。   The forming process described in claim 1 will be described with reference to FIG. First, as shown in (A), the PMMA preform X-1 heated to 80 ° C. is placed between the molds 8a and 8b maintained at 80 ° C. by the temperature adjuster 6 and the temperature adjustment lines 7a and 7b. Put. Next, as shown in (B), the mold 8a is closed to a state just before contacting the surface of the preform X-1, and the mold 8a is passed from the carbon dioxide generation injection device 21 through the carbon dioxide injection line 11. And carbon dioxide at a pressure of 8 MPa and a temperature of 40 ° C. are injected for 1 second between the preform X-1 and the preform X-1. As a result, the solidification temperature of the surface of the resin is about 40 ° C., which is about 60 ° C. lower than about 100 ° C. of PMMA. Next, as shown in (C), the mold 8a is tightened with a pressure of 50 MPa and held for 5 seconds. Next, as shown in (D), carbon dioxide in the carbon dioxide injection line 11 is discharged. Next, as shown in (E), the mold 8a is opened and the molded product X-2 is taken out. Table 1 shows the molding conditions, and Table 2 shows the evaluation of the molded product thus obtained.

二酸化炭素の注入圧力を15MPaとした以外は、実施例1と同様である。成形の条件を表1に、これにより得られた成形品の評価を表2に示す。   The same as Example 1 except that the injection pressure of carbon dioxide was 15 MPa. Table 1 shows the molding conditions, and Table 2 shows the evaluation of the molded product thus obtained.

二酸化炭素の温度を60℃とした以外は、実施例1と同様である。成形の条件を表1に、これにより得られた成形品の評価を表2に示す。   The same as Example 1 except that the temperature of carbon dioxide was 60 ° C. Table 1 shows the molding conditions, and Table 2 shows the evaluation of the molded product thus obtained.

二酸化炭素の接触時間を5secとした以外は、実施例1と同様である。成形の条件を表1に。これにより得られた成形品の評価を表2に示す。   The same as Example 1 except that the contact time of carbon dioxide was 5 sec. Table 1 shows the molding conditions. Table 2 shows the evaluation of the molded product thus obtained.

実施例1と同様の装置、および、樹脂を用い、図5に示す工程で実施した。始めに、(A)に示すように、140℃に加熱したPMMA予備成形体X-1を、温度調整機6および温度調整ライン7a、7bにより140℃に加熱した金型8a、8bの間に置く。次に、(B)に示すように、金型8aを予備成形体X-1の表面に接触する寸前の状態まで閉じ、二酸化炭素発生注入装置21より、二酸化炭素注入ライン11を通して、金型8aと予備成形体9aの間に、圧力8MPa、温度40℃の二酸化炭素を1sec注入する。これにより、樹脂における表面の固化温度は、PMMAの約100℃から、約60℃低下して、約40℃になる。次に、(C)に示すように、金型8aを50MPaの圧力で締め、5秒間保持する。次に、(D)に示すように、二酸化炭素注入ライン11中の二酸化炭素を排出し、温度調整機6および温度調整ライン7a、7bにより、金型8aを80℃まで冷却する。次に、(E)に示すように、金型8aを開き、成形品X-2を取り出す。成形の条件を表1に、これにより得られた成形品の評価を表2に示す。   The same apparatus as in Example 1 and resin were used, and the process shown in FIG. 5 was performed. First, as shown in (A), the PMMA preform X-1 heated to 140 ° C. is placed between the molds 8a and 8b heated to 140 ° C. by the temperature adjuster 6 and the temperature adjustment lines 7a and 7b. Put. Next, as shown in (B), the mold 8a is closed to a state just before contacting the surface of the preform X-1, and the mold 8a is passed from the carbon dioxide generation injection device 21 through the carbon dioxide injection line 11. And carbon dioxide having a pressure of 8 MPa and a temperature of 40 ° C. are injected for 1 second between the preform 9a and the preform 9a. As a result, the solidification temperature of the surface of the resin is reduced by about 60 ° C. from about 100 ° C. of PMMA to about 40 ° C. Next, as shown in (C), the mold 8a is tightened with a pressure of 50 MPa and held for 5 seconds. Next, as shown in (D), carbon dioxide in the carbon dioxide injection line 11 is discharged, and the mold 8a is cooled to 80 ° C. by the temperature adjuster 6 and the temperature adjustment lines 7a and 7b. Next, as shown in (E), the mold 8a is opened and the molded product X-2 is taken out. Table 1 shows the molding conditions, and Table 2 shows the evaluation of the molded product thus obtained.

樹脂溶解性ガスを、二酸化炭素と窒素の比率3:1の混合体とした以外は、実施例2と同様である。これにより得られた成形品の評価を表1に示す。二酸化炭素と窒素の比率を変えることで、成形品の転写性のみをコントロールすることが出来る。   Example 2 is the same as Example 2 except that the resin-soluble gas is a mixture of carbon dioxide and nitrogen in a ratio of 3: 1. Table 1 shows the evaluation of the molded product thus obtained. By changing the ratio of carbon dioxide and nitrogen, only the transferability of the molded product can be controlled.

〔比較例1〕
二酸化炭素の注入を行わなかった以外は、実施例1と同様である。成形の条件を表1に、これにより得られた成形品の評価を表2に示す。

Figure 2005186490
Figure 2005186490
評価基準 ◎=非常に良い ○=良い △=やや劣る [Comparative Example 1]
The same as Example 1 except that carbon dioxide was not injected. Table 1 shows the molding conditions, and Table 2 shows the evaluation of the molded product thus obtained.
Figure 2005186490
Figure 2005186490
Evaluation criteria ◎ = very good ○ = good △ = slightly inferior

本実施例は、請求項4に対応するもので、この実施例の装置を図6に示し、予備成形体X-1を図7(a)(b)に、成形品X-2を図8(a)(b)に示し、工程を図9(a)に、樹脂の固化温度とスタンパー温度の変化を(b)に示す。符号の8a、8bがエンボス加工用の金型、8cがスタンパーで、スタンパー温度の調整は、温度調整機6により、温度調整ライン7a、7bを介してスタンパー8c内の熱交換器8d内に熱媒を循環させることにより行われる。温度調整機6は自社製で、ポンプ2a、2b、加熱機3、冷却機5、電磁弁4a、4b、4c、4d、4e、4fで構成される。装置の動作は、水源1の水を、ポンプ2aで流し加熱機3で熱水にし、または、ポンプ2bで流し冷却機5で冷水にし、これらを電磁弁4a、4b、4c、4d、4e、4fにより切り替えながら、スタンパー8cの熱交換器8d内を循環させる。スタンパー8cに熱水を流す際は、電磁弁4a、4c、4eを開き、スタンパー8cに冷水を流す際は電磁弁4b、4d、4fを開く。金型内への二酸化炭素の注入は、二酸化炭素発生注入装置21により、二酸化炭素供給ライン11を通り行われる。二酸化炭素発生注入装置21は自社製で、電磁弁12a、12b、圧力センサー13、背圧弁14、安全弁15、温度センサー16、蓄圧タンク17、加温機18、減圧弁19、逆止弁20で構成される。装置の動作は、二酸化炭素発生源22より発生した二酸化炭素を、減圧弁19で圧力の調整を行い、加温機18で温度調整を行い、蓄圧タンク17に蓄圧する。次に背圧弁14で圧力の微調整を行い、電磁弁12a、12bにより、二酸化炭素の注入排出を行う。二酸化炭素の注入時には電磁弁12bが開き、二酸化炭素排出時には電磁弁12aが開く。成形動作中、金型8a、8bが閉じている場合、金型内に注入された二酸化炭素はシール材10により圧力を保持することが出来る。   This embodiment corresponds to claim 4, and the apparatus of this embodiment is shown in FIG. 6, the preform X-1 is shown in FIGS. 7 (a) and 7 (b), and the molded product X-2 is shown in FIG. FIGS. 9A and 9B show the steps shown in FIGS. 9A and 9B, and FIG. 9B shows the changes in the resin solidification temperature and the stamper temperature. Reference numerals 8a and 8b are embossing dies, 8c is a stamper, and the temperature of the stamper is adjusted by the temperature adjuster 6 through the temperature adjustment lines 7a and 7b in the heat exchanger 8d in the stamper 8c. This is done by circulating a medium. The temperature regulator 6 is made in-house, and includes pumps 2a and 2b, a heater 3 and a cooler 5, and solenoid valves 4a, 4b, 4c, 4d, 4e, and 4f. The operation of the apparatus is as follows: the water from the water source 1 is poured by the pump 2a and converted into hot water by the heater 3, or the pump 2b is poured and cooled by the cooler 5, and these are cooled by the solenoid valves 4a, 4b, 4c, 4d, 4e, While switching by 4f, the inside of the heat exchanger 8d of the stamper 8c is circulated. When flowing hot water through the stamper 8c, the electromagnetic valves 4a, 4c, 4e are opened, and when flowing cold water through the stamper 8c, the electromagnetic valves 4b, 4d, 4f are opened. Carbon dioxide is injected into the mold through a carbon dioxide supply line 11 by a carbon dioxide generating / injecting device 21. Carbon dioxide generating and injecting device 21 is made in-house, with solenoid valves 12a and 12b, pressure sensor 13, back pressure valve 14, safety valve 15, temperature sensor 16, pressure storage tank 17, warming machine 18, pressure reducing valve 19, and check valve 20. Composed. The operation of the apparatus is to store the carbon dioxide generated from the carbon dioxide generation source 22 by adjusting the pressure by the pressure reducing valve 19, adjusting the temperature by the warmer 18, and accumulating the pressure in the pressure accumulating tank 17. Next, the pressure is finely adjusted by the back pressure valve 14, and carbon dioxide is injected and discharged by the electromagnetic valves 12a and 12b. The electromagnetic valve 12b opens when carbon dioxide is injected, and the electromagnetic valve 12a opens when carbon dioxide is discharged. When the molds 8a and 8b are closed during the molding operation, the carbon dioxide injected into the molds can maintain the pressure by the sealing material 10.

図9(a)(b)または図10(a)(b)に基づいて、請求項4、5、6、7に記載した本発明に係るプレスモールド成形方法を説明する。樹脂にはPMMA(住友化学株式会社 商品名MGSS)を用いた。この樹脂の固化温度は約100℃である。予備成形体X-1及び成形品X-2の形状は、図7、8に示すように、長さ32mm、幅32mm、厚さ1.5mmの平板形状で、成形品X-2の中央部分には幅20μm、深さ5.7μmの微細連続V溝23を有している。   Based on FIG. 9 (a) (b) or FIG. 10 (a) (b), a press mold forming method according to the present invention described in claims 4, 5, 6 and 7 will be described. PMMA (Sumitomo Chemical Co., Ltd., trade name MGSS) was used as the resin. The solidification temperature of this resin is about 100 ° C. As shown in FIGS. 7 and 8, the shapes of the preform X-1 and the molded product X-2 are a flat plate shape having a length of 32 mm, a width of 32 mm, and a thickness of 1.5 mm. Has a fine continuous V-groove 23 having a width of 20 μm and a depth of 5.7 μm.

次に、成形工程を図9(a)(b)に基づいて説明する。始めに、(A)に示すように、常温のPMMA予備成形体X-1を、温度調整機6および温度調整ライン7a、7bにより80℃に保ったスタンパー8cと、80℃に保った金型8bの間に置く。次に、(B)に示すように、スタンパー8cを予備成形体X-1の表面に接触する寸前の状態まで閉じ、二酸化炭素発生注入装置21より、二酸化炭素注入ライン11を通して、スタンパー8cと予備成形体X-1の間に、圧力15MPa、温度40℃の二酸化炭素を1sec注入する。これにより、樹脂の固化温度は、PMMAの約100℃から、約60℃低下して、約40℃になる。次に、(C)に示すように、金型8aを50MPaの圧力で締め、5秒間保持する。次に、(D)に示すように、二酸化炭素注入ライン11中の二酸化炭素を排出する。次に、(E)に示すように、金型8aを開き、成形品X-2を取り出す。成形の条件を表3に、これにより得られた成形品の評価を表4に示す。   Next, a shaping | molding process is demonstrated based on Fig.9 (a) (b). First, as shown in (A), a normal temperature PMMA preform X-1 was maintained at 80 ° C. by a temperature adjuster 6 and temperature adjustment lines 7a and 7b, and a mold maintained at 80 ° C. Put between 8b. Next, as shown in (B), the stamper 8c is closed to a state just before contacting the surface of the preform X-1, and the stamper 8c and the preparatory material are supplied from the carbon dioxide generating / injecting device 21 through the carbon dioxide injection line 11. Carbon dioxide having a pressure of 15 MPa and a temperature of 40 ° C. is injected into the compact X-1 for 1 second. As a result, the solidification temperature of the resin is reduced by about 60 ° C. from about 100 ° C. of PMMA to about 40 ° C. Next, as shown in (C), the mold 8a is tightened with a pressure of 50 MPa and held for 5 seconds. Next, as shown in (D), carbon dioxide in the carbon dioxide injection line 11 is discharged. Next, as shown in (E), the mold 8a is opened and the molded product X-2 is taken out. Table 3 shows the molding conditions, and Table 4 shows the evaluation of the molded product thus obtained.

実施例3と同様の装置、および、樹脂を用い、図10(a)(b)に示す工程で実施した。始めに、(A)に示すように、常温のPMMA予備成形体X-1を、温度調整機6および温度調整ライン7a、7bにより120℃に加熱したスタンパー8cと、80℃に保った金型8bの間に置く。次に、(B)に示すように、スタンパー8cを予備成形体X-1の表面に接触する寸前の状態まで閉じ、二酸化炭素発生注入装置21より、二酸化炭素注入ライン11を通して、スタンパー8cと予備成形体X-1の間に、圧力8MPa、温度40℃の二酸化炭素を1sec注入する。これにより、樹脂の固化温度は、PMMAの約100℃から、約60℃低下して、約40℃になる。次に、(C)に示すように、金型8aを50MPaの圧力で締め、5秒間保持する。次に、(D)に示すように、二酸化炭素注入ライン11中の二酸化炭素を排出し、温度調整機6および温度調整ライン7a、7bにより、スタンパー8cを80℃まで冷却する。次に、(E)に示すように、金型8aを開き、成形品X-2を取り出す。成形の条件を表3に、これにより得られた成形品の評価を表4に示す。   Using the same apparatus and resin as in Example 3, the steps shown in FIGS. 10 (a) and 10 (b) were performed. First, as shown in (A), a PMMA preform X-1 at room temperature was heated to 120 ° C. by a temperature adjuster 6 and temperature adjustment lines 7a and 7b, and a mold maintained at 80 ° C. Put between 8b. Next, as shown in (B), the stamper 8c is closed to a state just before contacting the surface of the preform X-1, and the stamper 8c and the preparatory material are supplied from the carbon dioxide generating / injecting device 21 through the carbon dioxide injection line 11. Carbon dioxide having a pressure of 8 MPa and a temperature of 40 ° C. is injected into the compact X-1 for 1 second. As a result, the solidification temperature of the resin is reduced by about 60 ° C. from about 100 ° C. of PMMA to about 40 ° C. Next, as shown in (C), the mold 8a is tightened with a pressure of 50 MPa and held for 5 seconds. Next, as shown in (D), carbon dioxide in the carbon dioxide injection line 11 is discharged, and the stamper 8c is cooled to 80 ° C. by the temperature adjuster 6 and the temperature adjustment lines 7a and 7b. Next, as shown in (E), the mold 8a is opened and the molded product X-2 is taken out. Table 3 shows the molding conditions, and Table 4 shows the evaluation of the molded product thus obtained.

〔比較例2〕
二酸化炭素の注入を行わなかった以外は、実施例8と同様である。成形の条件を表3に、これにより得られた成形品の評価を表4に示す。

Figure 2005186490
Figure 2005186490
評価基準 ◎=非常に良い ○=良い △=やや劣る
なお、請求項6に関する実施例は、実施例2、実施例3、実施例4、実施例5に記載されている結果と同一であるため、説明文については省略する。 [Comparative Example 2]
Example 8 is the same as Example 8 except that carbon dioxide was not injected. Table 3 shows the molding conditions, and Table 4 shows the evaluation of the molded product thus obtained.
Figure 2005186490
Figure 2005186490
Evaluation Criteria ◎ = Very Good ○ = Good △ = Slightly Inferior In addition, the examples related to claim 6 are the same as the results described in Example 2, Example 3, Example 4, and Example 5. The explanation is omitted.

本発明を実施するためのプレスモールド成形装置の説明図。Explanatory drawing of the press mold shaping apparatus for implementing this invention. 予備成形体の説明図であって、(a)は平面図、(b)はA−A´線断面図。It is explanatory drawing of a preforming body, Comprising: (a) is a top view, (b) is AA 'sectional view taken on the line. 成形体の説明図であって、(a)は平面図、(b)はB−B´線断面図。It is explanatory drawing of a molded object, Comprising: (a) is a top view, (b) is a BB 'sectional view taken on the line. (a)(b) 本発明の請求項1に基づくプレスモールド成形工程の説明図。(A) (b) Explanatory drawing of the press molding process based on Claim 1 of this invention. (a)(b) 本発明の請求項2に基づくプレスモールド成形工程の説明図。(A) (b) Explanatory drawing of the press molding process based on Claim 2 of this invention. 本発明を実施するためのエンボス加工装置の説明図。Explanatory drawing of the embossing apparatus for implementing this invention. 予備成形体の説明図であって、(a)は平面図、(b)はC−C´線断面図。It is explanatory drawing of a preforming body, Comprising: (a) is a top view, (b) is CC 'line sectional drawing. 成形体の説明図であって、(a)は平面図、(b)はD−D´線断面図。It is explanatory drawing of a molded object, Comprising: (a) is a top view, (b) is DD 'line sectional drawing. (a)(b) 本発明の請求項4に基づくエンボス加工工程の説明図。(A) (b) Explanatory drawing of the embossing process based on Claim 4 of this invention. (a)(b) 本発明の請求項5に基づくエンボス加工工程の説明図。(A) (b) Explanatory drawing of the embossing process based on Claim 5 of this invention.

符号の説明Explanation of symbols

1 水源
2a、2b ポンプ
3 加熱機
4a、4b、4c、4d、4e、4f 電磁弁
5 冷却機
6 温度調整機
7a、7b 温度調整ライン
8a、8b 金型
8c スタンパー
9a、9b 熱交換器
10 シール材
11 二酸化炭素注入ライン
12a、12b 電磁弁
13 圧力センサー
14 背圧弁
15 安全弁
16 温度センサー
17 蓄圧タンク
18 加温機
19 減圧弁
20 逆止弁
21 二酸化炭素発生注入装置
22 二酸化炭素発生源
23 微細連続V溝
X-1 予備成形体
X-2 成形品
1 Water source
2a, 2b pump
3 Heating machine
4a, 4b, 4c, 4d, 4e, 4f Solenoid valve
5 Cooling machine
6 Temperature controller
7a, 7b Temperature adjustment line
8a, 8b mold
8c stamper
9a, 9b heat exchanger
10 Sealing material
11 CO2 injection line
12a, 12b Solenoid valve
13 Pressure sensor
14 Back pressure valve
15 Safety valve
16 Temperature sensor
17 Accumulation tank
18 Heater
19 Pressure reducing valve
20 Check valve
21 Carbon dioxide generator
22 Sources of carbon dioxide
23 Fine continuous V groove
X-1 preform
X-2 Molded product

Claims (7)

熱可塑性樹脂からなる予備成形体を、この予備成形体を構成する熱可塑性樹脂の固化温度付近まで加熱した後、これを熱可塑性樹脂の固化温度以下の温度に保った金型の間にはめ込み、金型を低圧で閉じ、次に、金型表面と予備成形体表面の間に樹脂溶解性ガスを注入して予備成形体表面に溶解させることにより、予備成形体表面の粘度を下げ、次に、金型のプレス力を高め、表面の粘度が低下した予備成形体と金型表面を高圧で密着させ、次に、残存する前記樹脂溶解性ガスを金型内から排出した後、成形品を取り出すことで微細な凹凸表面の転写性に優れ、かつ、寸法精度の良好な製品を短い成形サイクルタイムで得る熱可塑性樹脂の成形方法。   After heating the preform made of the thermoplastic resin to near the solidification temperature of the thermoplastic resin constituting the preform, it is inserted between molds maintained at a temperature lower than the solidification temperature of the thermoplastic resin, The mold is closed at a low pressure, and then the viscosity of the preform surface is lowered by injecting a resin-soluble gas between the mold surface and the preform surface to dissolve the preform body surface. Then, the press force of the mold is increased, the preform having a reduced surface viscosity is brought into close contact with the mold surface, and then the remaining resin-soluble gas is discharged from the mold, A method for molding a thermoplastic resin that, by taking out, produces a product with excellent transferability on a fine uneven surface and good dimensional accuracy in a short molding cycle time. 熱可塑性樹脂からなる予備成形体を、この予備成形体を構成する熱可塑性樹脂の固化温度以上まで加熱した後、これを熱可塑性樹脂の固化温度以上に加熱した金型の間にはめ込み、金型を低圧で閉じ、次に、金型表面と予備成形体表面の間に樹脂溶解性ガスを注入して予備成形体表面に溶解させることにより、予備成形体表面の粘度を下げ、次に、金型のプレス力を高め、表面の粘度が低下した予備成形体と金型表面を高圧で密着させ、次に、残存する前記樹脂溶解性ガスを金型内から排出し、金型および樹脂を熱可塑性樹脂の固化温度以下まで冷却した後、成形品を取り出すことで微細な凹凸表面の転写性が飛躍的に優れ、かつ、複屈折率の低い製品を短い成形サイクルタイムで得る熱可塑性樹脂の成形方法。   A preform formed of a thermoplastic resin is heated to a temperature equal to or higher than the solidification temperature of the thermoplastic resin constituting the preform, and then inserted between molds heated to a temperature equal to or higher than the solidification temperature of the thermoplastic resin. Is closed at low pressure, and then the viscosity of the preform surface is lowered by injecting a resin-soluble gas between the mold surface and the preform surface to dissolve the preform surface. The press force of the mold is increased, and the preform and the mold surface with reduced surface viscosity are brought into close contact with each other at high pressure. Then, the remaining resin-soluble gas is discharged from the mold, and the mold and the resin are heated. Molding of a thermoplastic resin that cools to below the solidification temperature of the plastic resin and then takes out the molded product to obtain a product with a remarkably excellent transferability of fine uneven surfaces and a low birefringence in a short molding cycle time. Method. 金型キャビティ表面と予備成形体表面の間に注入する樹脂溶解性ガスの圧力、温度、および予備成形体と樹脂溶解性ガスの接触時間を変えることにより、予備成形体表面の粘度の降下量、および粘度が降下する層の厚さを厳密に制御することを特徴とする請求項1又は請求項2記載の熱可塑性樹脂の成形方法。   By changing the pressure and temperature of the resin soluble gas injected between the mold cavity surface and the preform surface, and the contact time between the preform and the resin soluble gas, the amount of decrease in the viscosity of the preform surface, 3. The method for molding a thermoplastic resin according to claim 1, wherein the thickness of the layer in which the viscosity is lowered is strictly controlled. 熱可塑性樹脂からなる予備成形体を、熱可塑性樹脂の固化温度以下の温度に保ったスタンパーと熱可塑性樹脂の固化温度以下の温度に保った金型との間にはめ込み、金型を低圧で閉じ、次に、スタンパー表面と予備成形体表面の間に樹脂溶解性ガスを注入して予備成形体表面に溶解させることにより、予備成形体表面の粘度を下げ、次に、プレス力を高めて表面の粘度が低下した予備成形体とスタンパー表面を高圧で密着させ、次に、残存する前記樹脂溶解性ガスを金型内から排出した後、成形品を取り出すことで微細な凹凸表面の転写性に優れ、高品質な成形体を短い成形サイクルタイムで得る熱可塑性樹脂の成形方法。   A preform made of thermoplastic resin is fitted between a stamper maintained at a temperature lower than the solidification temperature of the thermoplastic resin and a mold maintained at a temperature lower than the solidification temperature of the thermoplastic resin, and the mold is closed at a low pressure. Next, by injecting a resin-soluble gas between the stamper surface and the preformed body surface and dissolving it in the preformed body surface, the viscosity of the preformed body surface is lowered, and then the pressing force is increased to increase the surface. The preform with reduced viscosity and the surface of the stamper are brought into close contact with each other at high pressure, and then the remaining resin-soluble gas is discharged from the mold, and then the molded product is taken out to obtain transferability on a fine uneven surface. A method of molding a thermoplastic resin to obtain an excellent, high-quality molded product in a short molding cycle time. 熱可塑性樹脂からなる予備成形体を、熱可塑性樹脂の固化温度以上に加熱したスタンパーと、熱可塑性樹脂の固化温度以下の温度に保った金型の間にはめ込み、金型を低圧で閉じ、次に、スタンパー表面と予備成形体表面の間に樹脂溶解性ガスを注入して予備成形体表面に溶解させることにより、予備成形体表面の粘度を下げ、次に、プレス力を高め、表面の粘度が低下した予備成形体とスタンパー表面を高圧で密着させ、次に、残存する前記樹脂溶解性ガスを排出し、スタンパーおよび樹脂を熱可塑性樹脂の固化温度以下まで冷却した後、成形品を取り出すことで微細な凹凸表面の転写性が飛躍的に優れた、高品質な成形体を得る熱可塑性樹脂の成形方法。   A preform made of thermoplastic resin is inserted between a stamper heated to a temperature higher than the solidification temperature of the thermoplastic resin and a mold maintained at a temperature lower than the solidification temperature of the thermoplastic resin, and the mold is closed at a low pressure. In addition, by injecting a resin-soluble gas between the stamper surface and the preformed body surface and dissolving it in the preformed body surface, the viscosity of the preformed body surface is lowered, and then the pressing force is increased to increase the surface viscosity. The preform and the surface of the stamper with reduced pressure are brought into close contact with each other at high pressure, and then the remaining resin-soluble gas is discharged, and the molded product is taken out after the stamper and the resin are cooled to below the solidification temperature of the thermoplastic resin. A method for molding a thermoplastic resin that yields a high-quality molded product that is remarkably excellent in the transferability of fine uneven surfaces. スタンパー表面と予備成形体表面の間に注入する樹脂溶解性ガスの圧力、温度、および予備成形体と樹脂溶解性ガスの接触時間を変えることにより、予備成形体表面の粘度の降下量、および粘度が降下する層の厚さを厳密に制御することを特徴とする請求項4又は請求項5記載の熱可塑性樹脂の成形方法。   By changing the pressure and temperature of the resin-soluble gas injected between the stamper surface and the preform surface, and the contact time between the preform and the resin-soluble gas, the amount of decrease in the viscosity of the preform surface and the viscosity 6. The method for molding a thermoplastic resin according to claim 4, wherein the thickness of the layer in which the temperature falls is controlled strictly. 樹脂溶解性ガスとして、二酸化炭素又は、窒素又は、メタン又は、エタン又は、プロパン又は、これらの炭化水素の一部の水素をフッ素で置換したフロン、などを単体で用いる又は、これらを複数種混合した状態で用いることを特徴とする請求項1〜6のいずれか1項に記載の熱可塑性樹脂の成形方法。

As a resin-soluble gas, carbon dioxide, nitrogen, methane, ethane, propane, chlorofluorocarbons in which a part of hydrogen of these hydrocarbons is substituted with fluorine, or the like is used alone, or a plurality of these are mixed. The method for molding a thermoplastic resin according to any one of claims 1 to 6, wherein the method is used in a state where the thermoplastic resin is used.

JP2003431708A 2003-12-26 2003-12-26 Molding method of thermoplastic resin Expired - Fee Related JP3987486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431708A JP3987486B2 (en) 2003-12-26 2003-12-26 Molding method of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431708A JP3987486B2 (en) 2003-12-26 2003-12-26 Molding method of thermoplastic resin

Publications (3)

Publication Number Publication Date
JP2005186490A true JP2005186490A (en) 2005-07-14
JP2005186490A5 JP2005186490A5 (en) 2006-01-19
JP3987486B2 JP3987486B2 (en) 2007-10-10

Family

ID=34789628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431708A Expired - Fee Related JP3987486B2 (en) 2003-12-26 2003-12-26 Molding method of thermoplastic resin

Country Status (1)

Country Link
JP (1) JP3987486B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175755A (en) * 2004-12-22 2006-07-06 Hitachi Maxell Ltd Manufacturing apparatus of molded product
JP2006175756A (en) * 2004-12-22 2006-07-06 Hitachi Maxell Ltd Manufacturing method of molded product
EP1738887A1 (en) * 2005-06-29 2007-01-03 Munekata Co. Ltd. Gas assisted compression moulding method
JP2007130957A (en) * 2005-11-14 2007-05-31 Ricoh Co Ltd Plastic molded article, its manufacturing device, and its manufacturing method
JP2009107276A (en) * 2007-10-31 2009-05-21 Canon Inc Injection molding method of thermoplastic resin
CN101293393B (en) * 2007-04-28 2010-12-01 株式会社名机制作所 Light guide plate forming mold and light guide plate forming method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106003540B (en) * 2016-06-02 2018-10-02 威海赛威医疗科技有限公司 A kind of processing technology of disposable medical sodium citrate vacuum blood collection tube

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175755A (en) * 2004-12-22 2006-07-06 Hitachi Maxell Ltd Manufacturing apparatus of molded product
JP2006175756A (en) * 2004-12-22 2006-07-06 Hitachi Maxell Ltd Manufacturing method of molded product
JP4611731B2 (en) * 2004-12-22 2011-01-12 日立マクセル株式会社 Manufacturing method of molded products
EP1738887A1 (en) * 2005-06-29 2007-01-03 Munekata Co. Ltd. Gas assisted compression moulding method
JP2007130957A (en) * 2005-11-14 2007-05-31 Ricoh Co Ltd Plastic molded article, its manufacturing device, and its manufacturing method
CN101293393B (en) * 2007-04-28 2010-12-01 株式会社名机制作所 Light guide plate forming mold and light guide plate forming method
JP2009107276A (en) * 2007-10-31 2009-05-21 Canon Inc Injection molding method of thermoplastic resin

Also Published As

Publication number Publication date
JP3987486B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
US20040119204A1 (en) Process for producing light transmitting plate
TW538260B (en) Method for producing light transmitting plate
JP3857703B2 (en) Manufacturing method and manufacturing apparatus of molded body
US20050189665A1 (en) Method for producing light transmitting plate
JP3290011B2 (en) Preform molding method in injection stretch blow molding
WO1998052734A1 (en) Method for injection molding of thermoplastic resins
EP1179405B1 (en) Injection moulding method
JP3987486B2 (en) Molding method of thermoplastic resin
KR102643807B1 (en) Manufacturing equipment and manufacturing method for resin containers
US20100032871A1 (en) Method for molding thermoplastic resin
JP4699492B2 (en) Molded body manufacturing apparatus and manufacturing method
JP4224048B2 (en) Molded body manufacturing apparatus and manufacturing method
JP5311797B2 (en) Optical element manufacturing method
JPH10323872A (en) Method and machine for injection molding
JP2004322597A (en) Method of manufacturing injection molding and injection mold
JP2007137033A (en) Resin molded body processing method and resin molded body processing apparatus
JP2001062862A (en) Method for injection molding amorphous thermoplastic
JP2005186490A5 (en)
EP1738887A1 (en) Gas assisted compression moulding method
JP2009083395A (en) Production process of thermoplastic resin molding
JP4895348B2 (en) Plastic molded product, manufacturing apparatus and manufacturing method thereof
JP2010089293A (en) Molding method
JP5419379B2 (en) Injection molding method
JP2002086517A (en) Method for manufacturing plastic molded product and mold therefor
JP2007260928A (en) Manufacturing method of bathtub made of synthetic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Effective date: 20070412

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100720

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees