JP2005185977A - Method for manufacturing mixed metal oxide catalyst - Google Patents

Method for manufacturing mixed metal oxide catalyst Download PDF

Info

Publication number
JP2005185977A
JP2005185977A JP2003431778A JP2003431778A JP2005185977A JP 2005185977 A JP2005185977 A JP 2005185977A JP 2003431778 A JP2003431778 A JP 2003431778A JP 2003431778 A JP2003431778 A JP 2003431778A JP 2005185977 A JP2005185977 A JP 2005185977A
Authority
JP
Japan
Prior art keywords
containing compound
metal oxide
manufacturing
oxide catalyst
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003431778A
Other languages
Japanese (ja)
Inventor
Tomoaki Kobayashi
智明 小林
Yasuhiro Mangaya
康弘 萬ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2003431778A priority Critical patent/JP2005185977A/en
Publication of JP2005185977A publication Critical patent/JP2005185977A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply manufacturing a mixed metal oxide catalyst having a orthorhombic phase. <P>SOLUTION: This method for manufacturing the mixed metal oxide catalyst comprises the steps of: preparing a mixture of water, a Mo-containing compound (a), a V-containing compound and an X-containing compound (wherein X is Te or Sb) and/or a Y-containing compound (wherein Y is Nb, W, Zr or Ti); separating the obtained mixture into a gel portion and a solution portion and; firing the gel portion. The mixed metal oxide catalyst manufactured by this method is suitable for producing acrolein and acrylic acid or methacrolein and methacrylic acid from propane or butane by a gas phase catalytic reaction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プロパン又はブタン等のアルカン類やプロピレン又はブテン等のアルケン類、アクロレイン又はメタアクロレイン等の不飽和アルデヒドから気相接触酸化によりアクリル酸又はメタクリル酸等の不飽和含酸素化合物を製造するために適した複合金属酸化物触媒の製造方法に関する。   The present invention produces an unsaturated oxygen-containing compound such as acrylic acid or methacrylic acid by vapor-phase catalytic oxidation from an alkane such as propane or butane, an alkene such as propylene or butene, or an unsaturated aldehyde such as acrolein or metaacrolein. The present invention relates to a method for producing a composite metal oxide catalyst suitable for the purpose.

アクリル酸及びメタクリル酸等の不飽和含酸素化合物の製造は一般に2段酸化反応で行われている。即ち、アクリル酸またはメタクリル酸を例に採ると、まず1段目反応ではBi−Mo系複合酸化物触媒を使用して原料ガスであるプロピレンまたはイソブチレンからアクロレインまたはメタクロレインを製造し、引き続き2段目反応ではMo−V系複合酸化物触媒を使用してアクリル酸またはメタクリル酸をそれぞれ製造している。
ところが、近年プロピレン、イソブチレンより安価なプロパン、イソブタン等のアルカンを原料に不飽和含酸素化合物を効率よく製造する方法への関心が高まり、これらプロセスに使用する触媒として、MoVTe系触媒やMoVSb系触媒が報告されている。これらのMoVTe及びMoVSb系触媒は数種類の結晶構造が含まれ、代表的には斜方晶相及び六方晶相の2つの結晶構造が存在する。その中で主反応をつかさどる結晶構造は斜方晶相であり、この結晶構造を選択的に調製する方法が知られている。
The production of unsaturated oxygenated compounds such as acrylic acid and methacrylic acid is generally carried out by a two-stage oxidation reaction. That is, taking acrylic acid or methacrylic acid as an example, in the first stage reaction, first, acrolein or methacrolein is produced from propylene or isobutylene, which is a raw material gas, using a Bi-Mo composite oxide catalyst, and then the second stage reaction. In the eye reaction, Mo-V composite oxide catalyst is used to produce acrylic acid or methacrylic acid, respectively.
However, in recent years, interest in methods for efficiently producing unsaturated oxygenated compounds from raw materials of alkanes such as propane and isobutane, which are cheaper than propylene and isobutylene, has increased, and MoVTe catalysts and MoVSb catalysts have been used as catalysts for these processes. Has been reported. These MoVTe and MoVSb-based catalysts include several types of crystal structures, and typically have two crystal structures, an orthorhombic phase and a hexagonal phase. Among them, the crystal structure that controls the main reaction is an orthorhombic phase, and a method for selectively preparing this crystal structure is known.

例えば特許文献1では、Mo−V−Sb−X−O(Xは、Ti、Zr、Nb、Ta、Cr、W、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Zn、In、Sn、Pb、Bi、Ce、及びアルカリ土類金属の中から選ばれた1種以上の金属元素)で表される斜方晶相及び六方晶相を含む複合酸化物に、蓚酸やエチレングリコール、または過酸化水素を加える事により六方晶相を選択的に除去することで、結果として斜方晶相を製造する方法が開示されている。   For example, in Patent Document 1, Mo—V—Sb—X—O (X is Ti, Zr, Nb, Ta, Cr, W, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu. , Ag, Zn, In, Sn, Pb, Bi, Ce, and one or more metal elements selected from alkaline earth metals) and complex oxides including orthorhombic and hexagonal phases In addition, a method for producing an orthorhombic phase by selectively removing the hexagonal phase by adding oxalic acid, ethylene glycol, or hydrogen peroxide is disclosed.

また特許文献2では、A−V−N−X−O(AはMo及びWからなる群から選択される少なくとも1つの元素であり、NはTe及びSeからなる群から選択される少なくとも1つの元素であり、さらにXはNb、Ta、Tiなどからなる群から選択される少なくとも1つの元素である)を有する混合金属酸化物を、有機酸、アルコール、無機酸に接触させた後、不溶性物質を回収して斜方晶相を形成させ、この物質で触媒前駆体溶液をシーディングすることにより定量的な収量で斜方晶相を製造する方法が開示されている。   In Patent Document 2, AVNXO (A is at least one element selected from the group consisting of Mo and W, and N is at least one selected from the group consisting of Te and Se. An insoluble substance after contacting a mixed metal oxide having an element, and X is at least one element selected from the group consisting of Nb, Ta, Ti, etc.) with an organic acid, alcohol, or inorganic acid Is collected to form an orthorhombic phase, and a method of producing an orthorhombic phase in a quantitative yield is disclosed by seeding a catalyst precursor solution with this material.

特開平10−330343JP 10-330343 A 特開2003−024787JP2003-024787A

特許文献1では2つ以上の結晶をもつ触媒を溶媒で洗浄する事により、六方晶相等を溶解除去して斜方晶相のみを固体として回収しているが、この洗浄方法は洗浄後の斜方晶相を持つ触媒量が少なくなることが欠点である。また特許文献2では特許文献1のように溶媒で斜方晶相以外を洗浄除去した後、残った固体をシード材として触媒前駆体溶液に入れて斜方晶相を選択的に調製している。しかし、この調製工程は煩雑であり作業性に問題がある。また、上記2つの特許文献では洗浄した後の有用な金属を含む洗浄液は廃棄するか又は再利用する場合においても処理が必要となり、触媒調製全体の製造コストが高くなる。   In Patent Document 1, a catalyst having two or more crystals is washed with a solvent to dissolve and remove the hexagonal crystal phase and the like, and only the orthorhombic phase is recovered as a solid. The disadvantage is that the amount of catalyst having a tetragonal phase is reduced. In Patent Document 2, as in Patent Document 1, other than the orthorhombic phase is washed away with a solvent, and the remaining solid is used as a seed material in the catalyst precursor solution to selectively prepare the orthorhombic phase. . However, this preparation process is complicated and has a problem in workability. Further, in the above two patent documents, the cleaning liquid containing useful metal after cleaning requires treatment even when it is discarded or reused, and the manufacturing cost of the entire catalyst preparation becomes high.

本発明者等は、気相接触酸化反応によりプロパン及びイソブタンから、各々アクロレイン、アクリル酸及びメタクロレイン、メタクリル酸を製造するのに適した斜方晶相を選択的に含む複合金属酸化物触媒、更にアクロレイン及びメタクロレインから、各々アクリル酸、メタクリル酸を製造するのに適した斜方晶相を選択的に含む複合金属酸化物触媒を製造する方法について種々検討した。その結果、モリブデン、バナジウム及び特定の金属を含むスラリーを静置する事によって溶液部とゲル部を分離すると目的とする斜方晶相複合金属酸化物触媒が選択的に製造できることを見出し、本発明を完成させた。   The inventors of the present invention provide a composite metal oxide catalyst that selectively contains an orthorhombic phase suitable for producing acrolein, acrylic acid and methacrolein, and methacrylic acid, respectively, from propane and isobutane by a gas phase catalytic oxidation reaction, Furthermore, various methods for producing a composite metal oxide catalyst selectively containing an orthorhombic phase suitable for producing acrylic acid and methacrylic acid from acrolein and methacrolein were investigated. As a result, it was found that by separating a solution part and a gel part by allowing a slurry containing molybdenum, vanadium and a specific metal to stand, an intended orthorhombic phase complex metal oxide catalyst can be selectively produced. Was completed.

すなわち、本発明は
(1)
(a)Mo含有化合物、V含有化合物
並びに
(b)X含有化合物(Xは、TeまたはSbを示す。)及び/またはY含有化合物(YはNb、W、ZrまたはTiを示す。)
と水との混合物を調製し、得られた混合物をゲル部と溶液部に分離し、該ゲル部を焼成処理することを特徴とする
下記一般式(1)
Mo(1)
(式中Mo及びVはそれぞれモリブデン、バナジウムを、XはTeまたはSbを、YはNb、W、ZrまたはTiをそれぞれ表す。a〜dは各元素の組成比を表し、0.1<a<6、0≦b<6、0≦c<6の正数であるが、bとcが同時に0となることはない。また、dは他の元素の酸化状態により変化する数である。)
で表される斜方晶相複合金属酸化物触媒の製造方法、
(2)aが0.9以上、1.5以下、bが1以上、2以下、cが0.5以上、1.5以下である上記(1)記載の製造方法、
(3)Y含有化合物を蓚酸イオンを含む状態で使用する上記(1)または(2)記載の製造方法。、
(4)Te含有化合物とNb含有化合物を使用する上記(1)〜(3)のいずれか1項に記載の製造方法、
(5)斜方晶相複合金属酸化物触媒が、プロパンまたはブタンから気相接触反応によりアクロレイン及びアクリル酸、またはメタクロレイン及びメタクリル酸を製造するための触媒である上記(1)〜(4)のいずれか1項に記載の製造方法
に関する。
That is, the present invention provides (1)
(A) Mo-containing compound, V-containing compound and (b) X-containing compound (X represents Te or Sb) and / or Y-containing compound (Y represents Nb, W, Zr or Ti).
A mixture of water and water is prepared, the obtained mixture is separated into a gel part and a solution part, and the gel part is subjected to a baking treatment, and the following general formula (1)
Mo 6 V a X b Y c O d (1)
(Wherein Mo and V are molybdenum and vanadium, X is Te or Sb, Y is Nb, W, Zr or Ti, respectively, ad represents the composition ratio of each element, and 0.1 <a <6, 0 ≦ b <6, 0 ≦ c <6, but b and c are not 0 at the same time, and d is a number that varies depending on the oxidation state of other elements. )
A process for producing an orthorhombic phase complex metal oxide catalyst represented by:
(2) The production method according to (1), wherein a is 0.9 or more and 1.5 or less, b is 1 or more and 2 or less, and c is 0.5 or more and 1.5 or less,
(3) The production method according to (1) or (2), wherein the Y-containing compound is used in a state containing oxalate ions. ,
(4) The production method according to any one of (1) to (3), wherein a Te-containing compound and an Nb-containing compound are used.
(5) The above (1) to (4), wherein the orthorhombic phase complex metal oxide catalyst is a catalyst for producing acrolein and acrylic acid, or methacrolein and methacrylic acid from propane or butane by a gas phase catalytic reaction. The manufacturing method of any one of these.

本発明により、気相接触酸化反応によりプロパン又はブタン等のアルカン類やプロピレン又はブテン等のアルケン類、アクロレイン又はメタアクロレイン等の不飽和アルデヒドから気相接触酸化によりアクリル酸又はメタクリル酸等の不飽和含酸素化合物を製造するのに適した複合金属酸化物触媒が容易に製造できる。   According to the present invention, an unsaturated compound such as acrylic acid or methacrylic acid is obtained by gas phase catalytic oxidation from an alkane such as propane or butane, an alkene such as propylene or butene, an unsaturated aldehyde such as acrolein or metaacrolein by a gas phase catalytic oxidation reaction A composite metal oxide catalyst suitable for producing an oxygen-containing compound can be easily produced.

以下、本発明を詳細に説明する。
本発明により得られる触媒は前記式(1)で表されるが、前記式(1)において、1<a<4、0.5<b<2、0.1<c<2である範囲が好ましく、0.9≦a≦1.5、1≦b≦2、0.5≦c≦1.5である範囲が特に好ましい。これらの組成比はプラズマ発光分析によって測定することができる。
Hereinafter, the present invention will be described in detail.
The catalyst obtained by the present invention is represented by the above formula (1). In the above formula (1), there are ranges where 1 <a <4, 0.5 <b <2, 0.1 <c <2. The ranges of 0.9 ≦ a ≦ 1.5, 1 ≦ b ≦ 2, and 0.5 ≦ c ≦ 1.5 are particularly preferable. These composition ratios can be measured by plasma emission analysis.

本発明においてはまず、(a)モリブデン含有化合物及びバナジウム含有化合物(以下(a)群化合物と言うこともある)並びに(b)X含有化合物(Xは、TeまたはSbを示し、2種を併用することも可能である。)及び/またはY含有化合物(YはNb、W、Zr、Tiを示し、2種以上を併用することも可能である。)(以下(b)群化合物と言うこともある)と水との混合物を調製する。これら(a)群または(b)群化合物としては、空気中で焼成することにより酸化物に分解できるものであれば特に制限はなく、例えば(a)群化合物のうち、モリブデン含有化合物としてはモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、モリブデン酸ナトリウム等が、バナジウムの化合物としては酸化バナジウム、バナジン酸アンモニウム、オキソ硫酸バナジル等が挙げられる。また、(b)群化合物としては、金属XまたはYの酸化物、塩化物、硫酸塩、硝酸塩、蓚酸塩等が挙げられる。(b)群化合物のうち、X含有化合物としては、三酸化アンチモン、硫酸アンチモン、酢酸アンチモン等のSb含有化合物、二酸化テルル、テルル酸等のTe含有化合物が、また、Y含有化合物としては、ニオブ酸、酸化ニオブ、蓚酸水素ニオブ等のNb含有化合物、パラタングステン酸アンモニウム、タングステン酸、酸化タングステン等のW含有化合物、酸化ジルコニウム、硝酸ジルコニウム、酢酸ジルコニウム等のZr含有化合物、酸化チタン、蓚酸チタンアンモニウム、硫酸チタン等のTi含有化合物がそれぞれ好ましい化合物として挙げられる。(b)群化合物のうち、X含有化合物とY含有化合物は、少なくともどちらか一方を使用するが、両者を併用する方が好ましく、Te含有化合物とNb含有化合物を併用するのが特に好ましい。   In the present invention, first, (a) a molybdenum-containing compound and a vanadium-containing compound (hereinafter sometimes referred to as (a) group compound) and (b) an X-containing compound (X represents Te or Sb, and two types are used in combination. And / or a Y-containing compound (Y represents Nb, W, Zr, Ti, and two or more types can be used in combination) (hereinafter referred to as a group compound (b)) Prepare a mixture of water). These (a) group or (b) group compounds are not particularly limited as long as they can be decomposed into oxides by firing in air. For example, among the (a) group compounds, molybdenum-containing compounds include molybdenum. Examples of vanadium compounds include ammonium oxide, molybdenum trioxide, molybdic acid, sodium molybdate, and the like. Examples of vanadium compounds include vanadium oxide, ammonium vanadate, and vanadyl oxosulfate. Examples of the (b) group compound include metal X or Y oxides, chlorides, sulfates, nitrates, and oxalates. Among (b) group compounds, X-containing compounds include Sb-containing compounds such as antimony trioxide, antimony sulfate and antimony acetate, Te-containing compounds such as tellurium dioxide and telluric acid, and Y-containing compounds include niobium. Nb-containing compounds such as acid, niobium oxide, niobium hydrogen oxalate, W-containing compounds such as ammonium paratungstate, tungstic acid, tungsten oxide, Zr-containing compounds such as zirconium oxide, zirconium nitrate, zirconium acetate, titanium oxide, ammonium ammonium oxalate Ti-containing compounds such as titanium sulfate are preferred compounds. Among the (b) group compounds, at least one of the X-containing compound and the Y-containing compound is used, but it is preferable to use both in combination, and it is particularly preferable to use the Te-containing compound and the Nb-containing compound in combination.

(a)群化合物と(b)群化合物は、両者をあわせて、常温〜100℃で水に溶解及び/又は分散してスラリーとされる。水の使用量は、これら原料化合物を溶解できるか、溶解できなくても均一なスラリー状にできる程度であれば特に制限はない。(b)群化合物のうち、X含有化合物とY含有化合物を併用する場合、(a)群化合物とX含有化合物と水を混合したスラリー液にY含有化合物を添加する。この場合Y含有化合物は固体状で加えても良いし、各種溶媒、好ましくは水に溶解又は分散させた後、加えても良い。また、Y含有化合物をこのように別途添加する場合、Y含有化合物は蓚酸を含んだ化合物、好ましくは蓚酸塩もしくは蓚酸を含む水溶液にY含有化合物を加えて溶解及び/又はスラリーとして添加する事が好ましい。   The (a) group compound and the (b) group compound are combined and dissolved and / or dispersed in water at room temperature to 100 ° C. to form a slurry. The amount of water used is not particularly limited as long as these raw material compounds can be dissolved or can be dissolved even if they cannot be dissolved. (B) When using together an X containing compound and a Y containing compound among group compounds, a Y containing compound is added to the slurry liquid which mixed the (a) group compound, X containing compound, and water. In this case, the Y-containing compound may be added in a solid state, or may be added after being dissolved or dispersed in various solvents, preferably water. In addition, when the Y-containing compound is added separately as described above, the Y-containing compound may be added as a solution containing oxalic acid, preferably dissolved and / or slurry by adding the Y-containing compound to an aqueous solution containing oxalate or oxalic acid. preferable.

スラリー調製後、攪拌を続けるとゲル状物質が生成し、このゲル状物質を含むスラリーは静置することで溶液部とゲル部に分離する。静置時間は特に制限はないが、5分〜100時間、好ましくは30分〜48時間である。また、静置している時の温度は50℃以下が好ましい。静置後、溶液部を取り除きゲル部を分離するが、その方法は一般的な濾過方法で良く、例えば自然濾過や吸引濾過等で良い。
なお、溶液部に(a)群または(b)群化合物を加え、スラリーとして再び使用することも可能である。
When stirring is continued after slurry preparation, a gel-like substance is generated, and the slurry containing the gel-like substance is allowed to stand to separate into a solution part and a gel part. The standing time is not particularly limited, but is 5 minutes to 100 hours, preferably 30 minutes to 48 hours. Further, the temperature at the time of standing is preferably 50 ° C. or less. After standing, the solution part is removed and the gel part is separated. The method may be a general filtration method, for example, natural filtration or suction filtration.
In addition, it is also possible to add (a) group or (b) group compound to a solution part, and to use again as a slurry.

続いて取り出したゲル部を好ましくは乾燥し、焼成する。
焼成処理は、温度差が150〜400℃程度になるような2段階の温度で行うのが好ましい。第一の焼成処理は、酸素ガスの存在下(例えば空気中)で、250℃以上、好ましくは250〜350℃の温度で0.5〜12時間行い、第二の焼成処理は窒素、ヘリウム等不活性ガス中で400℃以上、好ましくは500〜650℃で0.5〜10時間行う。2回に分けて実施する焼成処理において、焼成温度、時間が上記範囲からはずれると触媒性能は低下する場合がある。特にアクロレイン、アクリル酸、メタクロレイン、メタクリル酸といった不飽和含酸素化合物の選択性が低下するので好ましくない。
Subsequently, the taken-out gel part is preferably dried and fired.
The baking treatment is preferably performed at a two-stage temperature such that the temperature difference is about 150 to 400 ° C. The first baking treatment is performed in the presence of oxygen gas (for example, in the air) at a temperature of 250 ° C. or higher, preferably 250 to 350 ° C. for 0.5 to 12 hours, and the second baking treatment is nitrogen, helium, or the like. It is carried out in an inert gas at 400 ° C. or higher, preferably at 500 to 650 ° C. for 0.5 to 10 hours. In the calcination treatment carried out in two steps, the catalyst performance may be lowered if the calcination temperature and time deviate from the above ranges. In particular, the selectivity of unsaturated oxygen-containing compounds such as acrolein, acrylic acid, methacrolein, and methacrylic acid is not preferable.

こうして得られた酸化物は、通常、X線回折(Cu−Kα線を使用)の2θ値に6.6°、7.8°、9.0°、22.2°(各±0.3°)の主な回折ピークを示す斜方晶相を持つ複合金属酸化物である。   The oxide thus obtained usually has 6.6 °, 7.8 °, 9.0 °, 22.2 ° (± 0.3 each) on the 2θ value of X-ray diffraction (using Cu—Kα ray). °) is a complex metal oxide with an orthorhombic phase showing the main diffraction peaks.

本発明の製造方法で得られる複合金属酸化物触媒は、そのまま触媒として使用することができるが、粉砕して使用することが好ましい。本発明により得られる触媒は固定床、流動床、移動床等のいずれの反応様式にも適用できるが、固定床の場合、好ましくはシリカ、アルミナ、シリコンカーバイト等の球状担体に粉末状の本発明の複合金属酸化物触媒を担持成型した被覆触媒または粉末状の複合金属酸化物を打錠成型等の成型機で成型した触媒が有利となる。また、流動床、移動床反応器には、耐摩耗性を向上させるためにさらにシリカ成分等を複合金属酸化物触媒に添加して調製した数十ミクロン程度の均一な触媒の使用が有利となる。   The composite metal oxide catalyst obtained by the production method of the present invention can be used as it is, but is preferably used after being pulverized. The catalyst obtained by the present invention can be applied to any reaction mode such as a fixed bed, a fluidized bed, and a moving bed. However, in the case of a fixed bed, it is preferably a powdery material on a spherical support such as silica, alumina, or silicon carbide. A coated catalyst obtained by supporting and molding the composite metal oxide catalyst of the invention or a catalyst obtained by molding a powdered composite metal oxide with a molding machine such as tableting molding is advantageous. In addition, for fluidized bed and moving bed reactors, it is advantageous to use a uniform catalyst of about several tens of microns prepared by adding a silica component or the like to the composite metal oxide catalyst in order to improve wear resistance. .

本発明により得られた触媒は、プロパン又はブタン等のアルカン類やプロピレン又はブテン等のアルケン類、アクロレイン又はメタアクロレイン等の不飽和アルデヒドから気相接触酸化によりアクリル酸又はメタクリル酸等の不飽和含酸素化合物を製造するために好ましく使用できる。   The catalyst obtained by the present invention contains an unsaturated compound such as acrylic acid or methacrylic acid by gas phase catalytic oxidation from an alkane such as propane or butane, an alkene such as propylene or butene, or an unsaturated aldehyde such as acrolein or metaacrolein. It can be preferably used for producing an oxygen compound.

以下に実施例により本発明をより具体的に説明するが、本発明は、その趣旨を越えない限り、以下の実施例に限定されるものではない。   EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1
蒸留水600mlにモリブデン酸アンモニウム50.00gを室温で溶解した。この水溶液を80℃に加熱してメタバナジン酸アンモニウム9.39g、テルル酸14.74gを添加して10分間攪拌し、その後40℃以下まで放冷し調合液Aを得た。また、別の容器で蒸留水200mlに蓚酸水素ニオブ29.47g(Nb換算で15重量%含有)を添加して煮沸溶解させ、その後40℃以下まで放冷し調合液Bを得た。調合液Bを調合液Aに添加して充分に攪拌すると、時間と共にゲルが生成した。このゲル状スラリーを24時間静置すると溶液部とゲル部に分離した。そのゲル部を分取して吸引濾過した後、濾紙上に残った固形物を乾燥させ固体を得た。その固体を空気雰囲気下で300℃、2時間の焼成を行い、引き続き窒素流通下で600℃、6時間の焼成を行い複合金属酸化物触媒を得た。
得られた触媒についてX線回折(Cu−Kα線を使用)を行った結果を図1に示す。得られた固形物は、2θ値で6.6°、7.8°、9.0°、22.2°(各±0.3°)の斜方晶相を選択的に含む複合金属酸化物であることを確認した。また得られた固形物につきプラズマ発光分析により組成を分析した結果、Mo1.1Te1.6Nb0.9(酸素を除く)であった。
Example 1
In 600 ml of distilled water, 50.00 g of ammonium molybdate was dissolved at room temperature. This aqueous solution was heated to 80 ° C., 9.39 g of ammonium metavanadate and 14.74 g of telluric acid were added and stirred for 10 minutes, and then allowed to cool to 40 ° C. or lower to obtain Formulation A. In another container, 29.47 g of niobium hydrogen oxalate (containing 15% by weight in terms of Nb 2 O 5 ) was added to 200 ml of distilled water and dissolved by boiling, and then allowed to cool to 40 ° C. or lower to obtain Formulation B . When the preparation liquid B was added to the preparation liquid A and sufficiently stirred, a gel was formed with time. When this gel slurry was allowed to stand for 24 hours, it separated into a solution part and a gel part. The gel part was collected and subjected to suction filtration, and the solid remaining on the filter paper was dried to obtain a solid. The solid was calcined at 300 ° C. for 2 hours in an air atmosphere, and subsequently calcined at 600 ° C. for 6 hours under a nitrogen flow to obtain a composite metal oxide catalyst.
FIG. 1 shows the result of X-ray diffraction (using Cu—Kα ray) for the obtained catalyst. The obtained solid was a composite metal oxide selectively containing an orthorhombic phase of 6.6 °, 7.8 °, 9.0 °, 22.2 ° (each ± 0.3 °) in terms of 2θ values. It was confirmed to be a thing. As a result of analyzing the composition of the obtained solid by plasma emission analysis, it was Mo 6 V 1.1 Te 1.6 Nb 0.9 (excluding oxygen).

比較例1
実施例1で24時間静置後分離した溶液部をエバポレーターで乾燥させ固体を得た。その固体を空気雰囲気下で300℃、2時間の焼成を行い、引き続き窒素流通下で600℃、6時間の焼成を行った。
焼成したサンプルについてX線回折(Cu−Kα線を使用)を行った結果を図2に示す。得られた固形物は、2θ値で22.2°、28.2°、36.2°(各±0.3°)の六方晶相を多く含む複合金属酸化物であることを確認した。また得られた固形物につきプラズマ発光分析により組成を分析した結果、Mo1.6Te0.9Nb0.04(酸素を除く)であった。
Comparative Example 1
The solution part separated after standing for 24 hours in Example 1 was dried by an evaporator to obtain a solid. The solid was calcined at 300 ° C. for 2 hours in an air atmosphere, and subsequently calcined at 600 ° C. for 6 hours under a nitrogen flow.
FIG. 2 shows the result of X-ray diffraction (using Cu—Kα ray) for the fired sample. It was confirmed that the obtained solid was a complex metal oxide containing a lot of hexagonal phases of 22.2 °, 28.2 °, and 36.2 ° (each ± 0.3 °) in terms of 2θ values. The results for each resulting solid was analyzed composition by plasma emission analysis, was Mo 6 V 1.6 Te 0.9 Nb 0.04 ( excluding oxygen).

比較例2
実施例1で調合したゲル状スラリー全量をすぐにエバポレーターで蒸発乾固して固体を得た。その固体を空気雰囲気下で300℃、2時間の焼成を行い、引き続き窒素流通下で600℃、6時間の焼成を行った。
焼成したサンプルについてX線回折(Cu−Kα線を使用)を行った結果を図3に示す。
得られた固形物は、2θ値で6.6°、7.8°、9.0°、22.2°(各±0.3°)の斜方晶相、及び2θ値で22.2°、28.2°、36.2°(各±0.3°)の六方晶相の両結晶相を含む複合金属酸化物であることを確認した。また得られた固形物につきプラズマ発光分析により組成を分析した結果、Mo1.7Te1.3Nb0.7(酸素を除く)であった。
Comparative Example 2
The entire gel slurry prepared in Example 1 was immediately evaporated to dryness with an evaporator to obtain a solid. The solid was calcined at 300 ° C. for 2 hours in an air atmosphere, and subsequently calcined at 600 ° C. for 6 hours under a nitrogen flow.
FIG. 3 shows the result of X-ray diffraction (using Cu—Kα ray) for the fired sample.
The obtained solid had an orthorhombic phase of 6.6 °, 7.8 °, 9.0 °, 22.2 ° (each ± 0.3 °) in 2θ value, and 22.2 in 2θ value. It was confirmed to be a composite metal oxide containing both hexagonal crystal phases of °, 28.2 °, and 36.2 ° (each ± 0.3 °). As a result of analyzing the composition of the obtained solid by plasma emission analysis, it was Mo 6 V 1.7 Te 1.3 Nb 0.7 (excluding oxygen).

試験例
固定床流通式反応装置を使用し、内径12mmの耐熱ガラス管に充分に粉砕した実施例1、比較例1〜2で得られた各複合金属酸化物(触媒)1.2mlを炭化ケイ素粉末3.6mlで希釈しそれぞれ充填し、プロパン/酸素/水蒸気/窒素=4.5/10.1/31.5/23.6(ml/min)からなる原料混合ガスを流しながら、反応温度400℃で反応試験を行った。反応生成物はガスクロマトグラフィーで分析した。結果を下記に示す。
Test Example Using a fixed bed flow type reactor, 1.2 ml of each composite metal oxide (catalyst) obtained in Example 1 and Comparative Examples 1 and 2 sufficiently ground in a heat-resistant glass tube having an inner diameter of 12 mm was silicon carbide. While being diluted with 3.6 ml of powder and filled with each, a raw material mixed gas consisting of propane / oxygen / water vapor / nitrogen = 4.5 / 10.1 / 31.5 / 23.6 (ml / min) is flowed, A reaction test was conducted at 400 ° C. The reaction product was analyzed by gas chromatography. The results are shown below.

サンプル プロパン転化率(%) アクリル酸選択率(%)
実施例1 44.9 52.4
比較例1 1.7 0.0
比較例2 33.6 41.7
Sample Propane conversion (%) Acrylic acid selectivity (%)
Example 1 44.9 52.4
Comparative Example 1 1.7 0.0
Comparative Example 2 33.6 41.7

試験結果から、本発明で得られた触媒は斜方晶相を主成分とするためプロパン転化率、アクリル酸選択率共に優れるが、六方晶相を主成分とする比較例1の触媒はプロパン転化率が非常に低く触媒としての機能が低く、目的物も全く生成していないため、触媒として使用できないことは明らかである。   From the test results, the catalyst obtained in the present invention has an orthorhombic phase as a main component and thus is excellent in both propane conversion and acrylic acid selectivity, but the catalyst of Comparative Example 1 having a hexagonal phase as a main component is propane conversion. The rate is very low, the function as a catalyst is low, and the target product is not produced at all, so it is clear that it cannot be used as a catalyst.

実施例1で得られた触媒のX線回折スペクトルX-ray diffraction spectrum of the catalyst obtained in Example 1 比較例1で得られた触媒のX線回折スペクトルX-ray diffraction spectrum of the catalyst obtained in Comparative Example 1 比較例2で得られた触媒のX線回折スペクトル図1〜3において横軸は回折角度(°)を、また、縦軸は強度(cps)をそれぞれ表す。X-ray diffraction spectra of the catalyst obtained in Comparative Example 2 In FIGS. 1 to 3, the horizontal axis represents the diffraction angle (°), and the vertical axis represents the intensity (cps).

Claims (5)

(a)Mo含有化合物、V含有化合物
並びに
(b)X含有化合物(Xは、TeまたはSbを示す。)及び/またはY含有化合物(YはNb、W、ZrまたはTiを示す。)
と水との混合物を調製し、得られた混合物をゲル部と溶液部に分離し、該ゲル部を焼成処理することを特徴とする
下記一般式(1)
Mo(1)
(式中Mo及びVはそれぞれモリブデン、バナジウムを、XはTeまたはSbを、YはNb、W、ZrまたはTiをそれぞれ表す。a〜dは各元素の組成比を表し、0.1<a<6、0≦b<6、0≦c<6の正数であるが、bとcが同時に0となることはない。また、dは他の元素の酸化状態により変化する数である。)
で表される斜方晶相複合金属酸化物触媒の製造方法。
(A) Mo-containing compound, V-containing compound and (b) X-containing compound (X represents Te or Sb) and / or Y-containing compound (Y represents Nb, W, Zr or Ti).
A mixture of water and water is prepared, the obtained mixture is separated into a gel part and a solution part, and the gel part is subjected to a baking treatment, and the following general formula (1)
Mo 6 V a X b Y c O d (1)
(Wherein Mo and V are molybdenum and vanadium, X is Te or Sb, Y is Nb, W, Zr or Ti, respectively, ad represents the composition ratio of each element, and 0.1 <a <6, 0 ≦ b <6, 0 ≦ c <6, but b and c are not 0 at the same time, and d is a number that varies depending on the oxidation state of other elements. )
The manufacturing method of the orthorhombic phase complex metal oxide catalyst represented by these.
aが0.9以上、1.5以下、bが1以上、2以下、cが0.5以上、1.5以下である請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein a is 0.9 or more and 1.5 or less, b is 1 or more and 2 or less, and c is 0.5 or more and 1.5 or less. Y含有化合物を蓚酸イオンを含む状態で使用する請求項1または2記載の製造方法。 The manufacturing method of Claim 1 or 2 which uses a Y containing compound in the state containing an oxalate ion. Te含有化合物とNb含有化合物を使用する請求項1〜3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein a Te-containing compound and an Nb-containing compound are used. 斜方晶相複合金属酸化物触媒が、プロパンまたはブタンから気相接触反応によりアクロレイン及びアクリル酸、またはメタクロレイン及びメタクリル酸を製造するための触媒である請求項1〜4のいずれか1項に記載の製造方法。 The orthorhombic phase complex metal oxide catalyst is a catalyst for producing acrolein and acrylic acid, or methacrolein and methacrylic acid from propane or butane by a gas phase catalytic reaction. The manufacturing method as described.
JP2003431778A 2003-12-26 2003-12-26 Method for manufacturing mixed metal oxide catalyst Pending JP2005185977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431778A JP2005185977A (en) 2003-12-26 2003-12-26 Method for manufacturing mixed metal oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431778A JP2005185977A (en) 2003-12-26 2003-12-26 Method for manufacturing mixed metal oxide catalyst

Publications (1)

Publication Number Publication Date
JP2005185977A true JP2005185977A (en) 2005-07-14

Family

ID=34789676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431778A Pending JP2005185977A (en) 2003-12-26 2003-12-26 Method for manufacturing mixed metal oxide catalyst

Country Status (1)

Country Link
JP (1) JP2005185977A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208445B2 (en) * 2001-04-25 2007-04-24 Rohm And Haas Company Single crystalline phase catalyst
JP2007216222A (en) * 2006-01-31 2007-08-30 Rohm & Haas Co Regenerated mixed metal oxide catalyst
JP2009523609A (en) * 2006-01-17 2009-06-25 サウディ ベーシック インダストリーズ コーポレイション Process for producing mixed metal oxide catalysts for producing unsaturated aldehydes from olefins
JP2009183897A (en) * 2008-02-07 2009-08-20 Asahi Kasei Chemicals Corp Method of manufacturing compound oxide and method of manufacturing unsaturated acid or nitrile
JP2015120133A (en) * 2013-12-25 2015-07-02 株式会社日本触媒 Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP2018043197A (en) * 2016-09-15 2018-03-22 日本化薬株式会社 Catalyst for manufacturing acrylic acid
CN112439441A (en) * 2019-09-05 2021-03-05 中石油吉林化工工程有限公司 Preparation method of catalyst for preparing acrylic acid by acrolein oxidation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208445B2 (en) * 2001-04-25 2007-04-24 Rohm And Haas Company Single crystalline phase catalyst
US7326668B2 (en) 2001-04-25 2008-02-05 Rohm And Haas Company Single crystalline phase catalyst
JP2009523609A (en) * 2006-01-17 2009-06-25 サウディ ベーシック インダストリーズ コーポレイション Process for producing mixed metal oxide catalysts for producing unsaturated aldehydes from olefins
JP2007216222A (en) * 2006-01-31 2007-08-30 Rohm & Haas Co Regenerated mixed metal oxide catalyst
JP2009183897A (en) * 2008-02-07 2009-08-20 Asahi Kasei Chemicals Corp Method of manufacturing compound oxide and method of manufacturing unsaturated acid or nitrile
JP2015120133A (en) * 2013-12-25 2015-07-02 株式会社日本触媒 Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP2018043197A (en) * 2016-09-15 2018-03-22 日本化薬株式会社 Catalyst for manufacturing acrylic acid
CN112439441A (en) * 2019-09-05 2021-03-05 中石油吉林化工工程有限公司 Preparation method of catalyst for preparing acrylic acid by acrolein oxidation

Similar Documents

Publication Publication Date Title
JP4794727B2 (en) Useful catalysts for alkane oxidation
US6610629B2 (en) Process for producing an oxide catalyst for oxidation or ammoxidation
JP6038169B2 (en) Dual function partial oxidation catalyst for converting propane to acrylic acid and process for its production
EP1871522B1 (en) Process for preparing improved catalysts for selective oxidation of propane into acrylic acid
EP1937617B1 (en) Process for preparing partial oxidation products of lower alcohols by direct oxidation of a lower alcohol and catalysts for use in that process
JP4317211B2 (en) Catalyst for gas phase partial oxidation reaction and method for producing the same
JP5483818B2 (en) Fluid bed catalyst for acrylonitrile production and process for producing acrylonitrile
US6291393B1 (en) Catalyst for the production of acrylic acid
US7229945B2 (en) Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP2004298873A (en) Mixed metal oxide catalyst for producing unsaturated aldehyde from olefin
KR100809463B1 (en) Alkane oxidation catalyst, process for producing the same, and process for producing oxygen-containing unsaturated compound
JP4081824B2 (en) Acrylic acid production method
EP1503856A1 (en) Method for preparing a catalyst for partial oxidation of propylene
JP2005185977A (en) Method for manufacturing mixed metal oxide catalyst
JP2000070714A (en) Production of catalyst for production of unsaturated nitrile
JP4049363B2 (en) Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound
US7232788B2 (en) Mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP4319544B2 (en) Ethane oxidation catalyst and method of using the catalyst
US20070004584A1 (en) Catalyst for oxidation of alkane, process for preparing thereof and process for producing unsaturated oxygen-containing compound
JP2011120990A (en) Composite metal oxide catalyst and method of producing the same
JP4666334B2 (en) Method for producing oxide catalyst for oxidation or ammoxidation
JP2010207696A (en) Method of manufacturing catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid
JPH11285637A (en) Catalyst for production of acrylic acid, its production and production of acrylic acid using the same
JP4566056B2 (en) Method for producing composite metal oxide catalyst
JP4278035B2 (en) Composite metal oxide catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100215