JP2005185143A - Prostatic cancer, method for determining its risk or its early contraction - Google Patents

Prostatic cancer, method for determining its risk or its early contraction Download PDF

Info

Publication number
JP2005185143A
JP2005185143A JP2003429300A JP2003429300A JP2005185143A JP 2005185143 A JP2005185143 A JP 2005185143A JP 2003429300 A JP2003429300 A JP 2003429300A JP 2003429300 A JP2003429300 A JP 2003429300A JP 2005185143 A JP2005185143 A JP 2005185143A
Authority
JP
Japan
Prior art keywords
seq
dna
methylation
cytosine
prostate cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003429300A
Other languages
Japanese (ja)
Other versions
JP4537050B2 (en
Inventor
Masatoshi Watanabe
昌俊 渡辺
Yoko Takagi
陽光 高木
Taizo Shiraishi
泰三 白石
Taiji Yamada
泰司 山田
Minoru Toyoda
実 豊田
Takeshi Matsuzaki
健 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
Mie University NUC
Original Assignee
Yakult Honsha Co Ltd
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd, Mie University NUC filed Critical Yakult Honsha Co Ltd
Priority to JP2003429300A priority Critical patent/JP4537050B2/en
Publication of JP2005185143A publication Critical patent/JP2005185143A/en
Application granted granted Critical
Publication of JP4537050B2 publication Critical patent/JP4537050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a medicine for diagnosing the contraction risk of prostatic cancer by finding a DNA methylated domain having high specificity for prostatic cancer patients and low specificity for prostatic hypertrophy patients and then measuring the methylation frequency of the DNA. <P>SOLUTION: The subject method for determining the prostatic cancer, its risk or its early contraction comprises measuring a methylation frequency in one or more base sequences selected from base sequences represented by sequence number 1, sequence number 2, and sequence number 3 in the gene of a specimen separated from a living body, or an index value having a relative relation to the methylation frequency. The medicine for diagnosing the prostatic cancer, its risk or its early contraction contains a primer capable of examining a methylation frequency in one or more base sequences selected from base sequences represented by the sequence number 1, the sequence number 2, and the sequence number 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、前立腺癌、そのリスク又はその初期罹患の判定法及び診断薬に関する。   The present invention relates to a method for determining prostate cancer, its risk, or its early morbidity, and a diagnostic agent.

前立腺癌は男性ホルモンであるアンドロゲンに対して感受性を有する癌であり、一般的に発症年齢が高く、癌の発育速度も比較的穏やかなため、癌の憎悪前に患者が寿命を迎える症例がある反面、発見が遅れると骨髄転移を始め全身に転移し、患者を死に至らしめる疾患でもある。また、高齢者では治療後の尿排泄の障害など、身体的心理的にも生活質(quality of life:QOL)を悪化させている。   Prostate cancer is a cancer that is sensitive to androgen, a male hormone, and is generally older and has a relatively mild growth rate. On the other hand, if the discovery is delayed, it can also metastasize to the whole body including bone marrow metastasis, resulting in death of the patient. Elderly people also deteriorate their quality of life (QOL) in terms of physical and psychology, such as urinary excretion after treatment.

欧米では、前立腺癌は発生率・死亡率ともに男性の悪性腫瘍の第1〜3位を占め、米国人男性では最も診断例の多い癌である。また、欧米における癌死亡率の約20%を占めている。一方、わが国での前立腺癌の死亡率は、これまで約3.5%と比較的少ない癌であった。しかし近年、食生活の欧米化及び高年齢化社会を背景に、前立腺癌の発症頻度は急増中である。   In Europe and the United States, prostate cancer accounts for the first to third ranks of male malignancies in terms of both incidence and mortality, and is the most diagnosed cancer among American men. It also accounts for about 20% of cancer mortality in the West. On the other hand, the mortality rate of prostate cancer in Japan has been relatively low, about 3.5%. However, in recent years, the incidence of prostate cancer has been rapidly increasing against the background of the westernization of eating habits and an aging society.

前立腺癌の診断方法としては、直腸指診、経直腸的な超音波検査、血液中の前立腺特異抗体(prostatic specific antigen :PSA)の測定の3種の診断方法が用いられ、疾患の疑いが診断された後、生検によって採取した組織の病理診断によって確定診断されるといった方法が用いられていた。   Three types of diagnostic methods are used to diagnose prostate cancer: digital rectal examination, transrectal ultrasonography, and measurement of prostate specific antibody (PSA) in the blood. After that, a method has been used in which a definitive diagnosis is made by pathological diagnosis of tissue collected by biopsy.

また、前立腺癌はホルモン依存性癌であることから、最も基本的な治療法はとしてはアンドロゲン除去を目的とした去勢術(両側精巣摘除)や下垂体からの黄体形成ホルモン放出ホルモンに対するアゴニスト徐放剤の投与が挙げられる(アンドロゲン除去法)。また現在では、これらアンドロゲン除去法に加え、副腎からの残存アンドロゲン除去を目的としたアンチアンドロゲン剤を併用するmaximum androgen blockade(MAB)療法が積極的に行われている。しかしながら、これらのホルモン療法は男性機能の喪失や、アンドロゲンの除去による副作用等、患者にかける負担が大きい。また、去勢術等の外科療法の手術は、全身麻酔で5〜6時間かかるため、患者はかなりの体力を必要とし、高齢者には負担が大きい。また、癌が前立腺内に限局している場合は、外科療法と放射線治療の局所治療も行われる。   In addition, since prostate cancer is a hormone-dependent cancer, the most basic treatments are castration for the removal of androgen (bilateral orchiectomy) and sustained release of agonists against luteinizing hormone-releasing hormone from the pituitary gland. Administration of an agent (androgen removal method). At present, in addition to these androgen removal methods, maximum androgen blockade (MAB) therapy using an antiandrogen agent for the purpose of removing residual androgen from the adrenal gland is being actively performed. However, these hormonal therapies have a heavy burden on patients such as loss of male function and side effects due to androgen removal. In addition, since surgical operations such as castration require 5 to 6 hours for general anesthesia, patients require considerable physical strength and are burdensome for the elderly. In addition, if cancer is confined to the prostate, surgical treatment and local treatment such as radiotherapy are also performed.

更に、癌細胞の悪性化に伴い、その増殖にアンドロゲンが不要となるため、ホルモン療法が効果を示さなくなるといった弊害があった。このような場合はエチルエストラジオール等のホルモンや、イフォスアミド(Ifosamide,IFO;アルキル化剤)、テガフール・ウラシル(Tegafur uracil,UFT;代謝拮抗剤)、硫酸ペプロマイシン(Peplomycin sulfate,PEP;抗癌抗生物質)、シスプラチン(Cisplatin,CDDP;白金系抗悪性腫瘍剤)などを用いる化学療法が行われるが、副作用が重篤であるだけでなく、効果の続く時間が短く、奏効の期待ができないといった問題が生じている。従って、集団検診等における、前立腺発癌の早期診断・早期発見が重要である。   Furthermore, with the malignant transformation of cancer cells, androgen is no longer necessary for their growth, which has the detrimental effect that hormone therapy is not effective. In such cases, hormones such as ethylestradiol, ifosamide (IFO; alkylating agent), tegafur uracil (UFT; antimetabolite), peplomycin sulfate (PEP; anticancer antibiotic) Chemotherapy using cisplatin (CDP; platinum antineoplastic agent), etc. is performed, but not only the side effects are serious, but the duration of the effect is short and the response cannot be expected. ing. Therefore, early diagnosis and early detection of prostate carcinogenesis is important in mass screening and the like.

しかしながら、同じ組織における疾患である前立腺肥大症の診断も、問診による自覚症状の確認や平均尿流量の測定、触診、或いは超音波による前立腺の大きさの測定などを組み合わせて行われており、また近年では、PSA量を前立腺の大きさで割った値、PSA密度を指標とした前立腺肥大症の鑑別も行われている。したがって、従来の前立腺癌の診断方法では、前立腺肥大症も陽性に判定してしまうという問題があった。また偽陽性判定の発生も免れず、前立腺癌罹患の疑いがある場合は、最終的に生検によって採取した組織の病理診断によって確定診断していたが、患者に対する負担が大きいという問題も生じていた。さらに、これらの診断方法では、また組織の肥大を伴わない早期の癌を見逃す恐れがあることも指摘されていた。   However, the diagnosis of benign prostatic hyperplasia, which is a disease in the same tissue, is also performed by a combination of confirmation of subjective symptoms by inquiry, measurement of mean urine flow rate, palpation, or measurement of prostate size by ultrasound, etc. In recent years, prostatic hypertrophy has been differentiated using a value obtained by dividing the amount of PSA by the size of the prostate and the PSA density as an index. Therefore, the conventional method for diagnosing prostate cancer has a problem that prostatic hypertrophy is also judged positive. In addition, the occurrence of false-positive judgments is unavoidable, and when there is a suspicion of developing prostate cancer, the final diagnosis was made by pathological diagnosis of the tissue collected by biopsy, but there is also a problem that the burden on the patient is heavy. It was. Furthermore, it has been pointed out that these diagnostic methods may also miss early cancers without tissue hypertrophy.

このように、前立腺癌および前立腺肥大症患者には男性機能喪失等の身体にかかる負担の大きい治療を強いることになっており、負担の改善のためにも、できるだけ早期の発見が必務となっていた。しかしながら、従来の方法はいずれも前立腺組織がある程度大きくならないと確定診断を下すことは不可能であり、初期段階での診断は不可能であった。
発明者等は既に、初期段階の罹患を発見する診断方法、又は罹患リスクを診断方法として、HPC2/ELAC2遺伝子の遺伝子多型の同定により罹患リスクを診断する方法を報告しているが(特願2002−334941)、当該診断方法もまた、前立腺肥大症を陽性判定してしまい、前立腺癌を特異的に診断する方法としては十分ではなかった。したがって、集団検診等でも実施可能で、前立腺癌に特異性が高く、また早期発見に有用な診断法が求められていた。
In this way, patients with prostate cancer and benign prostatic hyperplasia are forced to undergo treatment that places a heavy burden on the body, such as loss of male function, and in order to improve the burden, detection as early as possible is necessary. It was. However, in any of the conventional methods, it is impossible to make a definitive diagnosis unless the prostate tissue becomes large to some extent, and diagnosis in the initial stage is impossible.
The inventors have already reported a method for diagnosing morbidity risk by identifying a polymorphism of the HPC2 / ELAC2 gene as a diagnostic method for detecting morbidity at an early stage or diagnosing the morbidity risk (patent application). 2002-334941), the diagnostic method is also not sufficient as a method for specifically diagnosing prostate cancer because it positively determines prostatic hypertrophy. Therefore, there has been a demand for a diagnostic method that can be carried out by mass screening, has high specificity for prostate cancer, and is useful for early detection.

本発明者等は、上記課題を解決すべく鋭意研究を行った結果、前立腺癌患者に特異性が高く、前立腺肥大症患者には特異性の低いDNAのメチル化領域を見出した。また、該DNAのメチル化頻度を測定することで、発病前に前立腺癌の罹患リスクが診断できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found a DNA methylation region that is highly specific for prostate cancer patients and low in specificity for prostatic hypertrophy patients. Further, the present inventors have found that the risk of prostate cancer can be diagnosed before the onset of disease by measuring the methylation frequency of the DNA, thereby completing the present invention.

すなわち、本発明は、生体から分離した試料中の遺伝子における、配列番号1(以下、「MFPC3」と称することもある)、配列番号2(以下、MFPC68と称することもある)及び配列番号3(以下、MFPC138と称することもある)で示される塩基配列から選ばれる1又は2以上の塩基配列中のメチル化頻度又は当該メチル化頻度に相関関係がある指標値を測定することを特徴とする前立腺癌、そのリスク又はその初期罹患の判定方法を提供するものである。
また、本発明は、配列番号1、配列番号2及び配列番号3で示される塩基配列から選ばれる1又は2以上の塩基配列中のメチル化頻度を検討し得るプライマーを含有することを特徴とする前立腺癌、そのリスク又はその初期罹患の診断薬を提供するものである。
That is, the present invention relates to SEQ ID NO: 1 (hereinafter sometimes referred to as “MFPC3”), SEQ ID NO: 2 (hereinafter sometimes referred to as MFPC68), and SEQ ID NO: 3 (hereinafter also referred to as “MFPC68”) in a gene isolated from a living body. (Hereinafter, also referred to as MFPC138). A prostate that measures a methylation frequency or an index value correlated with the methylation frequency in one or more base sequences selected from the base sequences represented by A method for determining cancer, its risk, or its initial morbidity is provided.
The present invention also includes a primer capable of examining the methylation frequency in one or more base sequences selected from the base sequences represented by SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3. It provides a diagnostic agent for prostate cancer, its risk or its early morbidity.

本発明の配列番号1〜3のメチル化は癌において見つかっておらず、そのメチル化状態は前立腺肥大症とは全く異なっていたことから前立腺癌特異的な遺伝子修飾である。したがって、本発明の配列番号1〜3のメチル化解析を用いることにより、既知の方法では診断できなかった、前立腺肥大症を含まない前立腺癌、その罹患リスク及びその初期罹患を簡便に診断することが出来る。   Since the methylation of SEQ ID NOs: 1 to 3 of the present invention has not been found in cancer, and the methylation state is completely different from that of prostatic hypertrophy, it is a genetic modification specific to prostate cancer. Therefore, by using the methylation analysis of SEQ ID NOs: 1 to 3 of the present invention, it is possible to easily diagnose prostate cancer that does not include prostatic hypertrophy, its risk of morbidity, and its initial morbidity that could not be diagnosed by a known method. I can do it.

哺乳動物では、遺伝子(ゲノムDNA)を構成する4種類の塩基のうち、シトシンのみがメチル化されるという現象がある。そして、DNAのメチル化修飾は、5'-CG-3'で示される塩基配列(Cはシトシンを表し、Gはグアニンを表す。以下、当該塩基配列をCpGと記すこともある。)中のシトシンに限られる。シトシンにおいてメチル化される部位は、その5位である。細胞分裂に先立つDNA複製に際して、複製直後は鋳型鎖のCpG中のシトシンのみがメチル化された状態となるが、メチル基転移酵素の働きにより即座に新生鎖のCpG中のシトシンもメチル化される。従って、DNAのメチル化の状態は、DNA複製後も、新しい2組のDNAにそのまま引き継がれることになる。   In mammals, there is a phenomenon in which only cytosine is methylated out of four types of bases constituting a gene (genomic DNA). The DNA methylation modification is performed in a base sequence represented by 5′-CG-3 ′ (C represents cytosine and G represents guanine. Hereinafter, the base sequence may be referred to as CpG). Limited to cytosine. The site that is methylated in cytosine is at position 5. During DNA replication prior to cell division, only cytosine in CpG of the template strand is methylated immediately after replication, but cytosine in CpG of the nascent strand is also methylated immediately by the action of methyltransferase. . Therefore, the DNA methylation state is inherited as it is by two new sets of DNA even after DNA replication.

本発明で用いた試料中の遺伝子における、配列番号1、配列番号2又は配列番号3で示される塩基配列中のメチル化頻度が高い場合、その遺伝子を有する対象者は前立腺癌患者発症リスクを有する患者又は初期罹患患者であると判定できる。当該メチル化頻度の高発現は、前立腺肥大症患者では認められない。   When the methylation frequency in the base sequence represented by SEQ ID NO: 1, SEQ ID NO: 2 or SEQ ID NO: 3 is high in the gene in the sample used in the present invention, the subject having the gene has a risk of developing prostate cancer patients It can be determined that the patient or an early affected patient. High expression of the methylation frequency is not observed in patients with benign prostatic hyperplasia.

本発明の判定方法は、これらの塩基配列の内、一つ以上の5'-CG-3'で示される塩基配列中のシトシンのメチル化頻度を指標として行なうことができ、特にメチル化したシトシンが密集する領域(CpGアイランド)におけるシトシンのメチル化頻度を指標として行なうことが好ましい。このようなCpGアイランドは、配列番号1内の塩基番号3173〜3844、配列番号2内の塩基番号36768〜37234、配列番号3内の塩基番号109344〜109768で示される。   The determination method of the present invention can be performed using the methylation frequency of cytosine in one or more base sequences represented by 5′-CG-3 ′ among these base sequences as an index, and in particular, methylated cytosine. It is preferable to use as an index the cytosine methylation frequency in a region where Cd is dense (CpG island). Such a CpG island is represented by nucleotide numbers 3173 to 3844 in SEQ ID NO: 1, nucleotide numbers 36768 to 37234 in SEQ ID NO: 2, and nucleotide numbers 109344 to 109768 in SEQ ID NO: 3.

メチル化頻度は、調査対象となるCpG中のシトシンのメチル化の有無を複数のハプロイドについて調べたときの、当該シトシンがメチル化されているハプロイドの割合で表される。また、メチル化頻度に相関関係がある指標値とは、例えば、配列番号1〜3で示される塩基配列の遺伝子の発現産物の量、より具体的には、当該遺伝子の転写産物の量や、当該遺伝子の翻訳産物の量等を挙げることができる。このような発現産物の量の場合には、上記メチル化頻度が高くなればそれに伴い減少するような負の相関関係が存在する。   The methylation frequency is represented by the ratio of haploids in which the cytosine is methylated when the presence or absence of methylation of cytosine in CpG to be investigated is examined for a plurality of haploids. The index value correlated with the methylation frequency is, for example, the amount of the gene expression product of the nucleotide sequence represented by SEQ ID NO: 1 to 3, more specifically, the amount of the transcription product of the gene, Examples include the amount of translation product of the gene. In the case of the amount of such an expression product, there is a negative correlation that decreases as the methylation frequency increases.

本発明で用いる試料としては、生体から分離した試料であって、DNAを含む試料であればよく、例えば、前立腺癌細胞等の癌細胞若しくはそれを含む組織、及び、前立腺癌細胞等の癌細胞由来のDNAが含まれる可能性のある、細胞、それを含む組織(ここでの組織とは、血液、血漿、血清、リンパ液等の体液、リンパ節等を含む広義の意味である。)若しくは体分泌物(尿や乳汁等)等の生体試料を挙げることができる。これらの生体試料はそのまま検体として用いてもよく、また、かかる生体試料から分離、分画、固定化等の種々の操作により調製されたDNA含有画分を試料として用いてもよい。試料が血液である場合には、定期健康診断や簡便な検査等での本発明判定方法の利用が期待できるが、この場合において偽判定率を低く抑えながら有効に利用するには55歳未満のヒト由来の血液であることが好ましい。   The sample used in the present invention is a sample separated from a living body and may be a sample containing DNA. For example, cancer cells such as prostate cancer cells or tissues containing the same, and cancer cells such as prostate cancer cells Cells that may contain DNA derived from them, tissues containing them (the tissues here have a broad meaning including body fluids such as blood, plasma, serum, and lymph, lymph nodes, etc.) or bodies. Biological samples such as secretions (urine, milk, etc.) can be mentioned. These biological samples may be used as specimens as they are, or DNA-containing fractions prepared by various operations such as separation, fractionation, and immobilization from such biological samples may be used as samples. When the sample is blood, it can be expected to use the determination method of the present invention in periodic health examinations and simple tests. In this case, in order to use it effectively while keeping the false determination rate low, it is under 55 years old. Human blood is preferable.

これらの試料から、例えば、市販のDNA抽出用キット等を用いてDNAを抽出する。因みに、血液を検体として用いる場合には、血液から通常の方法に準じて血漿又は血清を調製し、調製された血漿又は血清を検体としてその中に含まれる遊離DNA(前立腺癌細胞由来のDNAが含まれる)を分析すると、血球由来のDNAを避けて前立腺癌細胞由来のDNAを解析することができ、癌細胞、それを含む組織等を検出でき、感度を向上させることができる。次いで、抽出されたDNAを、非メチル化シトシンを修飾する試薬と接触させた後、配列番号1〜3で示される塩基配列のプロモーター領域又はコーディング領域の塩基配列中に存在する一つ以上のCpGで示される塩基配列中のシトシンを含むDNAを、解析対象とするシトシンのメチル化の有無を識別可能なプライマーを用いてポリメラーゼチェイン反応(以下、PCRと記す)で増幅し、得られる増幅産物の量を調べる。ここで、配列番号1〜3で示される塩基配列のプロモーター領域又はコーディング領域の塩基配列中に存在する一つ以上のCpGで示される塩基配列としては、例えば、配列番号1〜3で示される塩基配列のエクソン領域と、その5'上流に位置するプロモーター領域とが含まれるゲノムDNAの塩基配列を挙げることができ、特に、配列番号1内の塩基番号3173〜3844、配列番号2内の塩基番号36768〜37234、配列番号3内の塩基番号109344〜109768が挙げられる。これらのCpGが密に存在する領域中に存在するCpG中のシトシンは、癌細胞において高いメチル化頻度(即ち、高メチル化状態(hypermethylation))を示す。   DNA is extracted from these samples using, for example, a commercially available DNA extraction kit. Incidentally, when blood is used as a specimen, plasma or serum is prepared from blood according to a normal method, and the prepared plasma or serum is used as a specimen for free DNA (DNA derived from prostate cancer cells). Analysis), DNA derived from prostate cancer cells can be analyzed while avoiding DNA derived from blood cells, cancer cells, tissues containing the same can be detected, and sensitivity can be improved. Then, after the extracted DNA is contacted with a reagent that modifies unmethylated cytosine, one or more CpGs present in the promoter sequence of the base sequence represented by SEQ ID NOs: 1 to 3 or the base sequence of the coding region Amplification of DNA containing cytosine in the base sequence shown by the polymerase chain reaction (hereinafter referred to as PCR) using primers capable of discriminating the presence or absence of cytosine methylation to be analyzed. Check the amount. Here, as the base sequence represented by one or more CpGs present in the base sequence of the promoter sequence or coding region of the base sequence represented by SEQ ID NO: 1 to 3, for example, the base represented by SEQ ID NO: 1 to 3 The base sequence of the genomic DNA containing the exon region of the sequence and the promoter region located 5 ′ upstream thereof can be mentioned. In particular, base numbers 3173 to 3844 in SEQ ID NO: 1 and base numbers in SEQ ID NO: 2 36768 to 37234, and base numbers 109344 to 109768 in SEQ ID NO: 3 can be mentioned. Cytosine in CpG present in a region where these CpGs are densely present exhibits a high methylation frequency (ie, hypermethylation) in cancer cells.

非メチル化シトシンを修飾する試薬としては、例えば、亜硫酸水素ナトリウム等の重亜硫酸塩(bisulfite)等を用いることができる。   As a reagent for modifying unmethylated cytosine, for example, bisulfite such as sodium bisulfite can be used.

非メチル化シトシンを修飾する試薬に抽出されたDNAを接触させるには、例えば、まず当該DNAをアルカリ溶液(pH9〜14)中で亜硫酸水素ナトリウム等の重亜硫酸塩(bisulfite)(溶液中の濃度:例えば、終濃度3M)等で約10〜16時間程度、55℃で処理する。この場合、メチル化されていないシトシンはウラシルに変換され、一方、メチル化されているシトシンはウラシルに変換されず、シトシンのままである。次いで、重亜硫酸塩等で処理されたDNAを鋳型とし、かつ、メチル化されたシトシンが含まれる場合の塩基配列[メチル化される位置のシトシン(CpG中のシトシン)はシトシンのままであり、メチル化されていないシトシン(CpGに含まれないシトシン)はウラシルとなった塩基配列]とかかる塩基配列に対して相補的な塩基配列からそれぞれ選ばれる一対のメチル化特異的プライマーを用いるPCR(以下、メチル化特異的PCRとも記すこともある。)と、重亜硫酸塩等で処理されたDNAを鋳型とし、かつ、シトシンがメチル化されていない場合の塩基配列(全てのシトシンがウラシルとなった塩基配列)とかかる塩基配列に対して相補的な塩基配列からそれぞれ選ばれる一対の非メチル化特異的プライマーを用いるPCR(以下、非メチル化特異的PCRとも記すこともある。)とを行う。上記PCRにおいて、メチル化特異的プライマーを用いるPCRの場合(前者)には、解析対象とするシトシンがメチル化されているDNAが増幅され、一方、非メチル化特異的プライマーを用いるPCRの場合(後者)には、解析対象とするシトシンがメチル化されていないDNAが増幅される。これらの増幅産物の量を比較することにより、対象となるシトシンのメチル化の有無を調べる。このようにしてメチル化頻度を測定することができる。   In order to contact the extracted DNA with a reagent that modifies unmethylated cytosine, for example, the DNA is first bisulphite such as sodium bisulfite (concentration in the solution) in an alkaline solution (pH 9 to 14). : For example, the final concentration is 3 M) and the like, and the treatment is performed at 55 ° C. for about 10 to 16 hours. In this case, unmethylated cytosine is converted to uracil, while methylated cytosine is not converted to uracil and remains cytosine. Next, when DNA treated with bisulfite or the like is used as a template and methylated cytosine is included, the base sequence [cytosine at the methylated position (cytosine in CpG) remains cytosine, PCR using a pair of methylation-specific primers each selected from a non-methylated cytosine (a cytosine not included in CpG is a uracil base sequence) and a base sequence complementary to the base sequence , And may also be referred to as methylation-specific PCR.) And nucleotide sequences when DNA treated with bisulfite or the like is used as a template and cytosine is not methylated (all cytosines became uracil) PCR using a pair of unmethylated specific primers each selected from a base sequence) and a base sequence complementary to such base sequence (hereinafter also referred to as unmethylated specific PCR) Succoth is also there.) And perform. In the above PCR, in the case of PCR using methylation specific primers (the former), DNA in which cytosine to be analyzed is methylated is amplified, while in the case of PCR using unmethylation specific primers ( In the latter case, DNA in which cytosine to be analyzed is not methylated is amplified. By comparing the amounts of these amplified products, the presence or absence of methylation of the target cytosine is examined. In this way, the methylation frequency can be measured.

ここで、メチル化特異的プライマーは、メチル化を受けていないシトシンがウラシルに変換され、かつ、メチル化を受けているシトシンはウラシルに変換されないことを考慮して、メチル化を受けているシトシンを含む塩基配列に特異的なPCRプライマー(メチル化特異的プライマー)を設計し、また、メチル化を受けていないシトシンを含む塩基配列に特異的なPCRプライマー(非メチル化特異的プライマー)を設計する。重亜硫酸塩処理により化学的に変換され相補的ではなくなったDNA鎖を基に設計することから、元来二本鎖であったDNAのそれぞれの鎖を基に、それぞれからメチル化特異的プライマーと非メチル化特異的プライマーとを作製することもできる。かかるプライマーは、メチル、非メチルの特異性を高めるために、プライマーの3'末端近傍にCpG中のシトシンを含むように設計することが好ましい。また、解析を容易にするために、プライマーの一方を標識してもよい。   Here, the methylation-specific primer is a cytosine that has undergone methylation in consideration that cytosine that has not been methylated is converted to uracil, and that cytosine that has undergone methylation is not converted to uracil. Design PCR primers (methylation specific primers) specific to nucleotide sequences containing, and PCR primers (non-methylation specific primers) specific to nucleotide sequences containing unmethylated cytosine To do. Since it is designed based on DNA strands that have been chemically converted by bisulfite treatment and are no longer complementary, based on each strand of DNA that was originally double-stranded, a methylation-specific primer and Unmethylated specific primers can also be made. Such a primer is preferably designed to contain cytosine in CpG in the vicinity of the 3 ′ end of the primer in order to increase the specificity of methyl and non-methyl. Further, in order to facilitate analysis, one of the primers may be labeled.

かかるプライマーのうち、非メチル化特異的プライマーの例を表1に示す。   Among such primers, examples of unmethylated specific primers are shown in Table 1.

Figure 2005185143
Figure 2005185143

メチル化特異的プライマーの例としては、後記表3記載のプライマーにおいて、YがC又はRがGである場合のプライマーが挙げられる。   As an example of a methylation specific primer, the primer in case Y is C or R is G in the primer of Table 3 mentioned later is mentioned.

メチル化特異的PCRにおける反応液としては、例えば、鋳型とするDNAを20ngと、30pmol/μlの各プライマー溶液を各1μlと、2mM dNTPを3μlと、10×緩衝液(100mM Tris-HCl pH8.3、500mM KCl、20mM MgCl2 )を3μlと、耐熱性DNAポリメラーゼ5U/μlを0.2μlとを混合し、これに滅菌超純水を加えて液量を30μlとした反応液をあげることができる。反応条件としては、例えば、前記のような反応液を、94℃にて10分間保温した後、94℃にて30秒間次いで55〜65℃にて60秒間さらに72℃にて45秒間を1サイクルとする保温を40サイクル行う条件があげられる。かかるPCRを行った後、得られた増幅産物の量を比較する。例えば、メチル化特異的プライマーを用いたPCRと非メチル化特異的プライマーを用いたPCRで得られた各々の増幅産物の量を比較することができる分析方法(変性ポリアクリルアミドゲル電気泳動やアガロースゲル電気泳動)である場合には、電気泳動後のゲルをDNA染色して増幅産物のバンドを検出し、検出されたバンドの濃度を比較する。ここでDNA染色の代わりに予め標識されたプライマーを使用してその標識を指標としてバンドの濃度を比較することもできる。
このような方法は、一般にメチル化特異的PCRとも呼ばれ、Herman等(Herman et al.,Proc.Natl.Acad.Sci USA,93,9821-9826,1996)等により報告されている方法であって、シトシンと5-メチルシトシンとの化学的性質の違いを利用する方法である。
As a reaction solution in methylation-specific PCR, for example, 20 ng of DNA as a template, 1 μl of each primer solution of 30 pmol / μl, 3 μl of 2 mM dNTP, 10 × buffer (100 mM Tris-HCl pH 8. 3, 500 mM KCl, 20 mM MgCl 2) and 3 μl of heat-resistant DNA polymerase 5 U / μl are mixed with 0.2 μl, and sterilized ultrapure water is added thereto to make the reaction volume 30 μl. As the reaction conditions, for example, the above reaction solution is kept at 94 ° C. for 10 minutes, then at 94 ° C. for 30 seconds, then at 55 to 65 ° C. for 60 seconds, and further at 72 ° C. for 45 seconds for one cycle. The conditions for carrying out 40 cycles of heat insulation are mentioned. After performing such PCR, the amount of amplification product obtained is compared. For example, an analytical method (denaturing polyacrylamide gel electrophoresis or agarose gel) that can compare the amount of each amplification product obtained by PCR using a methylation specific primer and PCR using an unmethylated specific primer. In the case of electrophoresis, the gel after electrophoresis is stained with DNA to detect the band of the amplification product, and the concentration of the detected band is compared. Here, instead of DNA staining, a pre-labeled primer can be used to compare the band concentrations using the label as an index.
Such a method is generally called methylation-specific PCR, and is a method reported by Herman et al. (Herman et al., Proc. Natl. Acad. Sci USA, 93, 9821-9826, 1996). Thus, this method utilizes the difference in chemical properties between cytosine and 5-methylcytosine.

一方、異常、正常を問わず、まずPCRで増幅し、その後増幅された配列を制限酵素で切断し、電気泳動により得られるバンドが1本のままか、2本に分かれるかにより診断することもできる。メチル化シトシンがある場合は、2本に分かれる。この方法の場合には、非メチル化特異的プライマーとメチル化特異プライマー及び/又は表3のうちYがT、RがAのプライマーとを混ぜてPCRを行えばよい。全ての遺伝子を増幅した後、増幅物を制限酵素で切断して、バンドの位置を確認すればよい。   On the other hand, regardless of whether it is abnormal or normal, first amplification is performed by PCR, then the amplified sequence is cleaved with a restriction enzyme, and diagnosis can be made based on whether the bands obtained by electrophoresis remain one or two. it can. When there is methylated cytosine, it is divided into two. In the case of this method, PCR may be performed by mixing an unmethylated specific primer and a methylated specific primer and / or a primer having Y in T and R in A in Table 3. After amplifying all the genes, the amplified product may be cleaved with a restriction enzyme to confirm the position of the band.

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

実施例1 DNAの調製
DNAの抽出源としては、血清や前立腺組織より剥離して尿中へ混在する前立腺細胞あるいは生検組織または外科適切除組織などが用いられる。即ち、採取した細胞または組織片にプロテイナーゼKを最終濃度500μg/ml、硫酸ドデシルナトリウム(SDS)を0.5%になるよう添加し、54℃で撹拌放置した。24時間ごとに同量のプロテイナーゼKを添加し、組織片が完全に消化され液の混濁がなくなるまで消化を行った。得られた消化液に等量のフェノールを加え撹拌の後、15,000rpmで5分間遠心処理した。遠心後、3層に分離した最上層を除去し、残りの消化液に等量のフェノール・クロロホルム(1:1)混合液を加え、同様の操作を行った。遠心後、同様に最上層を除去し、残りの消化液に等量のクロロホルムを加え同様の操作を行った。遠心後、同様に最上層を除去した後、残りの消化液に2.2倍量の100%エタノールと0.1倍量の3Mの酢酸ナトリウム(pH5.2)を加えた。混合液を穏やかに撹拌し、-20℃下で2時間以上放置した後、4℃、15,000rpmで20分間遠心処理をした。遠心後上清を廃棄し、残存エタノールを除去しながら風乾して、DNAを得た。
Example 1 Preparation of DNA
As a DNA extraction source, prostate cells, biopsy tissue, or surgically appropriate tissue removed from serum or prostate tissue and mixed in urine are used. That is, proteinase K was added to the collected cells or tissue pieces to a final concentration of 500 μg / ml and sodium dodecyl sulfate (SDS) to 0.5%, and the mixture was left stirring at 54 ° C. The same amount of proteinase K was added every 24 hours, and digestion was carried out until the tissue pieces were completely digested and the turbidity of the liquid disappeared. An equal amount of phenol was added to the obtained digestive juice and stirred, followed by centrifugation at 15,000 rpm for 5 minutes. After centrifugation, the uppermost layer separated into three layers was removed, and an equivalent amount of a phenol / chloroform (1: 1) mixed solution was added to the remaining digested solution, and the same operation was performed. After centrifugation, the top layer was similarly removed, and the same operation was performed by adding an equal amount of chloroform to the remaining digestive juice. After centrifugation, the uppermost layer was similarly removed, and then 2.2 times 100% ethanol and 0.1 times 3M sodium acetate (pH 5.2) were added to the remaining digested solution. The mixture was gently stirred and allowed to stand at −20 ° C. for 2 hours or longer, and then centrifuged at 4 ° C. and 15,000 rpm for 20 minutes. After centrifugation, the supernatant was discarded and air-dried while removing residual ethanol to obtain DNA.

実施例2 メチル化されたCpG部位の同定
試験に用いるDNAは実施例1で調製したものを用い、DNA中のCpG部位をMCA/RDA(methylated CpG island amplification-representational difference analysis)法を用いて同定した。MCA‐RDA法は既報(Toyota M, et al. Cancer Res., 59. 2307(1999))に従って実施した。即ち、5μgのDNAを100 unitのSmaIと20 unitのXmaI(各制限酵素は共にNew England Biolabsより購入)の順番で消化した。処理後、メチル化DNA部位は突出末端(sticky end)となる。制限酵素処理されたDNA断片にRMCA アダプター(ユニバーサルなアダプター)をT4 DNA リガーゼ(New England Biolabs)を用いて結合させ、そのアダプターに対応するプライマーにてPCRを行った(PCR条件:3μLのRMCA アダプター結合物を100μLの反応液(10 mM Tris-HCl (pH8.3), 1.5 mM MgCl2, 50 mM KCl, 0.5 M ベタイン, 2% DMSO, 200 μM 各dNTP混合物, 100 pmol のRMCA , 24 mer プライマー,15 units の Taq ポリメラーゼ)中にてPCRを行った(PCRサイクル:72℃、5分の次に95℃、3分続いて95℃,1分。更に95℃、1分の次に77℃、3分を25サイクル実施し、最後に77℃,10分反応))。表2に、前立腺癌細胞株DU145由来のMCA増幅配列をRDA(表出される差異の解析)をテスターとして、独立した3症例の前立腺肥大症由来のMCA(メチル化CpGアイランド増幅物)全PCR産物(アンプリコンと呼ぶ)をRDAのドライバーとして使用した際のMCA-RDA解析の結果を示した。
Example 2 Identification of methylated CpG site The DNA used in the test was prepared in Example 1, and the CpG site in the DNA was identified using MCA / RDA (methylated CpG island amplification-representational difference analysis) method. did. The MCA-RDA method was performed according to a previous report (Toyota M, et al. Cancer Res., 59. 2307 (1999)). That is, 5 μg of DNA was digested in the order of 100 units of SmaI and 20 units of XmaI (each restriction enzyme was purchased from New England Biolabs). After treatment, the methylated DNA site becomes a sticky end. An RMCA adapter (universal adapter) was bound to the restriction enzyme-treated DNA fragment using T4 DNA ligase (New England Biolabs), and PCR was performed with primers corresponding to the adapter (PCR condition: 3 μL RMCA adapter) 100 μL of reaction mixture (10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl 2 , 50 mM KCl, 0.5 M betaine, 2% DMSO, 200 μM each dNTP mixture, 100 pmol RMCA, 24 mer primer , 15 units Taq polymerase) (PCR cycle: 72 ° C, 5 minutes, then 95 ° C, 3 minutes, then 95 ° C, 1 minute, 95 ° C, 1 minute, then 77 ° C) , 3 minutes 25 cycles, and finally the reaction at 77 ° C for 10 minutes)). Table 2 shows MCA amplification sequences derived from prostate cancer cell line DU145, RDA (analysis of expressed differences) as testers, and MCA (methylated CpG island amplification products) total PCR products derived from 3 independent cases of prostate hypertrophy The result of MCA-RDA analysis when using amplicon (called amplicon) as an RDA driver is shown.

Figure 2005185143
Figure 2005185143

表2に記載のように、合計8クローンが単離・同定された。CpGアイランド(密集したCpG部位)の確定判定の基準(長さ,>200bp;GC含量,>50%;CpGスコア;>0.6,Gradiner GM, and Frommer M. J. Mol. Biol., 196,261-282(1987))に基づき、単離されたCpG部位のうち、MFPC3、Flamingo1、MFPC68、MFPC138における領域をCpGアイランドと同定した。これらのMCAアンプリコンを用いて、JMCA、NMCA、JMCAアダプターの順番で更に3回、RDAを実施した。増幅されたRDA産物はpBluescriptIIプラスミドベクター(Stratagene)へクローン化した。クローン化されたDNA断片は常法にて配列決定し、BLASTデータベースを用いて、ゲノム上の位置を同定した(図1)。図1には、表2で同定されたMFPC3、MFPC68、MFPC138のCpG配列を縦棒で、MCA-RDA解析にて単離された領域と、以降の解析で配列解析した領域を矢印で示した。   As described in Table 2, a total of 8 clones were isolated and identified. Criterion for deterministic determination of CpG islands (concentrated CpG sites) (length,> 200bp; GC content,> 50%; CpG score;> 0.6, Gradiner GM, and Frommer MJ Mol. Biol., 196, 261-282 (1987) ), The regions in MFPC3, Flamingo1, MFPC68, and MFPC138 among the isolated CpG sites were identified as CpG islands. Using these MCA amplicons, RDA was performed three more times in the order of JMCA, NMCA, and JMCA adapter. The amplified RDA product was cloned into the pBluescriptII plasmid vector (Stratagene). The cloned DNA fragment was sequenced by a conventional method, and the position on the genome was identified using the BLAST database (FIG. 1). In FIG. 1, the CpG sequences of MFPC3, MFPC68, and MFPC138 identified in Table 2 are indicated by vertical bars, and the regions isolated by MCA-RDA analysis and the regions analyzed by subsequent analysis are indicated by arrows. .

実施例3 同定されたCpGアイランドの前立腺組織におけるDNAメチル化状態の解析(1:ビスルファイト シークエンス法)
一本鎖DNAを重亜硫酸(亜硫酸水素ナトリウム, bisulfite)処理すると、スルホン化・加水脱アミノ化反応が起こる。引き続き、脱スルホン化すると、シトシンはウラシルに変換される。一方、メチル化シトシンでは、スルホン化の反応速度が非常に遅いため、ウラシルは変換されずにメチル化シトシンのままであるが、非メチル化シトシンはチミンに置換される(Frommer M, et al, Proc. Natl. Acad. Sci. USA, 891827-1831, (1992). Clark SJ, et al. Nucleic Acids Res., 22, 2990 (1994))。この配列の違い(CとT)を利用してメチル化状態が解析でき、この方法をビスルファイト処理法と呼ぶ。ビスルファイト処理を利用した、より具体的な実験法にはビスルファイト シークエンス法(Clark SJ, et al. Nucleic Acids Res., 22, 2990 (1994))やcombined bisulfite restriction analysis(COBRA)法(Xiong Z & Laird PW. COBRA: A sensitive and quantitative DNA methylation assay.Nucleic Acids Res., 25, 2532 (1997))を初めてとして複数の実験法があり、解析目的に適応した実験法の選択が可能である。
Example 3 Analysis of DNA methylation status in prostate tissue of identified CpG island (1: Bisulfite sequence method)
When single-stranded DNA is treated with bisulfite (sodium bisulfite, bisulfite), sulfonation and hydroamination reactions occur. Subsequent desulfonation converts cytosine to uracil. On the other hand, in methylated cytosine, the reaction rate of sulfonation is so slow that uracil is not converted and remains methylated cytosine, but unmethylated cytosine is replaced by thymine (Frommer M, et al, Proc. Natl. Acad. Sci. USA, 891827-1831, (1992). Clark SJ, et al. Nucleic Acids Res., 22, 2990 (1994)). Using this sequence difference (C and T), the methylation state can be analyzed, and this method is called a bisulfite treatment method. More specific experimental methods using bisulfite treatment include the bisulfite sequencing method (Clark SJ, et al. Nucleic Acids Res., 22, 2990 (1994)) and the combined bisulfite restriction analysis (COBRA) method (Xiong Z & Laird PW. COBRA: Nucleic Acids Res., 25, 2532 (1997)) for the first time, there are several experimental methods, and it is possible to select an experimental method suitable for the purpose of analysis.

ビスルファイト処理は以下の様に行う。即ち、2μgの染色体DNAを0.3 M NaOH中にて37℃、15分間変性させる。続いて、亜硫酸水素ナトリウムを終濃度3.1M、ヒドロキノンを終濃度0.5mMを加える。55℃にて16時間反応させる。反応液はWizard DNA purification (Promega,Medison, Wisconsin)を用いて脱塩する。ビスルファイト処理は0.3 M NaOH中にて37℃、15分間反応で完了する。修飾されたDNAはエタノール沈殿とそれに続く70%エタノールにての洗浄の後、乾燥させ、最後に50μLの蒸留水に溶解させる。   Bisulfite treatment is performed as follows. That is, 2 μg of chromosomal DNA is denatured in 0.3 M NaOH at 37 ° C. for 15 minutes. Subsequently, sodium bisulfite is added to a final concentration of 3.1 M, and hydroquinone is added to a final concentration of 0.5 mM. React at 55 ° C for 16 hours. The reaction solution is desalted using Wizard DNA purification (Promega, Medison, Wisconsin). The bisulfite treatment is completed by reaction in 0.3 M NaOH at 37 ° C for 15 minutes. The modified DNA is dried after ethanol precipitation and subsequent washing with 70% ethanol, and finally dissolved in 50 μL of distilled water.

Figure 2005185143
Figure 2005185143

表3にはMFPC3、Flamingo1、MFPC68、MFPC138のメチル化状態をビスルファイト シークエンス法にて解析した際の実験条件を示した。即ち、3種類の前立腺癌細胞株(LNCaP、DU145、PC-3)由来でビスルファイト処理されたDNAの2μLと、表2にて使用した3種類の独立した前立腺肥大症組織由来でビスルファイト処理されたDNAの2μLを、表3に示した条件にてPCR増幅した。PCR産物はTOPO TA クレーニング ベクター(Invitrogen, San Diego, California)にサブクローン化し、各産物につき10クローンをBig Dye terminator 法にて配列決定した。各CpG部位におけるメチル化の平均レベルは5段階に類別された:0-19%, 20-39%, 40-59%, 60-79%, 80-100%(図2及び図3(図3は図2のつづき))。   Table 3 shows the experimental conditions when the methylation states of MFPC3, Flamingo1, MFPC68, and MFPC138 were analyzed by the bisulfite sequence method. That is, 2 μL of bisulfite-treated DNA derived from three types of prostate cancer cell lines (LNCaP, DU145, PC-3) and bisulfite-treated from the three independent prostate hypertrophy tissues used in Table 2 2 μL of the obtained DNA was subjected to PCR amplification under the conditions shown in Table 3. PCR products were subcloned into TOPO TA creening vectors (Invitrogen, San Diego, California), and 10 clones for each product were sequenced by the Big Dye terminator method. The average level of methylation at each CpG site was categorized into 5 levels: 0-19%, 20-39%, 40-59%, 60-79%, 80-100% (Figures 2 and 3 (Figure 3 Is a continuation of FIG. 2)).

図2及び図3より、MFPC3には2箇所のCpGアイランドが同定され、総計5箇所のCpGアイランドを解析した。MFPC3は両CpGアイランドともに、全ての前立腺癌細胞株において高メチル化されており、前立腺肥大症組織では低メチル化されていた。MFPC68は全ての前立腺癌細胞株においてメチル化されており、前立腺肥大症組織ではメチル化されていなかった。MFPC138はDU145細胞株でのみメチル化されており、他の前立腺癌細胞株と前立腺肥大症組織ではメチル化されていなかった。Flamingo1は全ての前立腺癌細胞株と全ての前立腺肥大症組織においてメチル化されていた。MFPC3、MFPC68、MFPC138は癌組織特異的にメチル化されていると考えられた。Flamingo1は前立腺癌のみならず前立腺疾患でメチル化される可能性がある。以降、MFPC3、MFPC68、MFPC138を癌特異的なDNA修飾の対象領域とした。   2 and 3, two CpG islands were identified in MFPC3, and a total of five CpG islands were analyzed. MFPC3 was hypermethylated in all prostate cancer cell lines on both CpG islands and hypomethylated in benign prostatic hyperplasia tissue. MFPC68 was methylated in all prostate cancer cell lines and was not methylated in benign prostatic hyperplasia tissue. MFPC138 was only methylated in the DU145 cell line and not methylated in other prostate cancer cell lines and benign prostatic hyperplasia. Flamingo1 was methylated in all prostate cancer cell lines and all benign prostatic hyperplasia tissues. MFPC3, MFPC68, and MFPC138 were considered to be methylated specifically in cancer tissues. Flamingo1 may be methylated not only in prostate cancer but also in prostate disease. Hereinafter, MFPC3, MFPC68, and MFPC138 were used as target regions for cancer-specific DNA modification.

実施例4 同定されたCpGアイランドの前立腺癌組織におけるDNAメチル化状態の解析(2:COBRA法)
前立腺癌組織におけるMFPC3、MFPC68、MFPC138のメチル化状態の解析を、より簡便にDNAメチル化を検出できるCOBRA法を用いて解析した。また、同領域のメチル化状態を前立腺癌細胞株、前立腺肥大症組織と比較した。即ち、ビスルファイト シークエンス法と同じプライマーとPCR条件を用いてビスルファイト処理したDNAをPCR増幅した。PCR産物は以下の制限酵素(New England Biolabs.)と反応条件で消化した:MFPC3とMFPC68はTaqIにて65℃、4時間、MFPC138はRsaIにて37℃、4時間。消化されたDNA断片を4%アガロースゲル(Seakem GTG agarose gels. BMA, Rockland, ME)にて電気泳動の後、エチジウムブロマイド染色した。DNA断片の消化が検出された場合、DNAはメチル化されていたと判定できる(図4)。図4から、DNAメチル化の有無を簡便に可視化でき、また擬陽性なしに容易かつ明確に判定できることがわかった。
Example 4 Analysis of DNA methylation status in prostate cancer tissue of identified CpG island (2: COBRA method)
Analysis of the methylation status of MFPC3, MFPC68, and MFPC138 in prostate cancer tissues was analyzed using the COBRA method, which can more easily detect DNA methylation. In addition, the methylation status of the same region was compared with prostate cancer cell lines and benign prostatic hyperplasia tissue. That is, DNA subjected to bisulfite treatment was PCR amplified using the same primers and PCR conditions as in the bisulfite sequencing method. The PCR products were digested with the following restriction enzymes (New England Biolabs.) Under the reaction conditions: MFPC3 and MFPC68 were TaqI at 65 ° C. for 4 hours, and MFPC138 was RsaI at 37 ° C. for 4 hours. The digested DNA fragment was electrophoresed on 4% agarose gel (Seakem GTG agarose gels. BMA, Rockland, ME) and then stained with ethidium bromide. If digestion of the DNA fragment is detected, it can be determined that the DNA has been methylated (FIG. 4). From FIG. 4, it was found that the presence or absence of DNA methylation can be easily visualized and can be easily and clearly determined without false positives.

図4の結果を表4にまとめた。その結果、MFPC3、MFPC68、MFPC138は、癌組織で特異的にメチル化修飾されていた。前立腺肥大症組織においては、MFPC68とMFPC138ではメチル化は検出されず、MFPC3は1例でのみメチル化が検出された。前立腺癌細胞株においては、MFPC3とMFPC68は全てにおいてメチル化が検出され、MFPC138ではメチル化は1細胞株で検出された。3領域の組み合わせによる検出がより感度を高めることが示された。   The results of FIG. 4 are summarized in Table 4. As a result, MFPC3, MFPC68, and MFPC138 were specifically methylated in cancer tissues. In benign prostatic tissue, methylation was not detected in MFPC68 and MFPC138, and methylation was detected in MFPC3 only in one case. In prostate cancer cell lines, methylation was detected in all of MFPC3 and MFPC68, and methylation was detected in one cell line in MFPC138. It was shown that detection by the combination of the three regions increases the sensitivity.

Figure 2005185143
Figure 2005185143

実施例5 メチル化により発現していないMFPC3遺伝子の脱メチル化処理による再発現の確認
MFPC3遺伝子のサイレンシング(不活化、非発現)が、遺伝子の上流領域のメチル化に依存しているのか否かを、MFPC3遺伝子を発現していない前立腺癌細胞株に対する脱メチル化処理によって検討した。即ち、脱メチル化処理によるMFPC3遺伝子の発現回復を確認した。前立腺癌細胞株(LNCaP、DU145、PC-3)を5-アザ-2'-デオキシシチジン (Sigma Chemical Co., St. Louis, Missouri)単独あるいはトリコスタチン A (Sigma Chemical Co.)併用処理した。Total RNAをイソジェン(Nippon Gene, Tokyo, Japan)にて抽出した。Superscript Reverse transcriptase (GIBCO BRL, Gaithersburg, Maryland)を用いて、1μgのtotal RNAからcDNAを調製した。RT-PCRにてMFPC3遺伝子を増幅した。対照はGAPDH遺伝子とし、PCR条件は以下を用いた:forward primer; AGT CCA GAC ACT CAG GAT TTG TAC, reverse primer, CTC CGT GTG ATT GGT AAC ATG. 増幅条件;95℃30秒、64℃30秒、72℃1分間を30サイクル。PCR産物を2.0%アガロースゲルにて電気泳動しエチジウムブロマイド染色して増幅の有無を確認した(図5)。その結果、脱メチル化処理によって、LNCaP、DU145、におけるMFPC3遺伝子の再発現が確認され、またその程度は5-アザ-2'-デオキシシチジン濃度の上昇に依存して増強した。PC-3におけるMFPC3遺伝子の発現程度は脱メチル化処理により変化しなかった。
Example 5 Confirmation of re-expression of MFPC3 gene not expressed by methylation by demethylation treatment
We examined whether silencing (inactivation or non-expression) of the MFPC3 gene depends on methylation in the upstream region of the gene by demethylation treatment for prostate cancer cell lines not expressing the MFPC3 gene . That is, the recovery of MFPC3 gene expression by demethylation treatment was confirmed. Prostate cancer cell lines (LNCaP, DU145, PC-3) were treated with 5-aza-2′-deoxycytidine (Sigma Chemical Co., St. Louis, Missouri) alone or in combination with trichostatin A (Sigma Chemical Co.). Total RNA was extracted with isogen (Nippon Gene, Tokyo, Japan). CDNA was prepared from 1 μg of total RNA using Superscript Reverse transcriptase (GIBCO BRL, Gaithersburg, Maryland). The MFPC3 gene was amplified by RT-PCR. The control was GAPDH gene, and PCR conditions were as follows: forward primer; AGT CCA GAC ACT CAG GAT TTG TAC, reverse primer, CTC CGT GTG ATT GGT AAC ATG. Amplification condition: 95 ° C 30 seconds, 64 ° C 30 seconds, 30 cycles of 72 ° C for 1 minute. PCR products were electrophoresed on a 2.0% agarose gel and stained with ethidium bromide to confirm the presence or absence of amplification (FIG. 5). As a result, re-expression of the MFPC3 gene in LNCaP and DU145 was confirmed by the demethylation treatment, and the degree thereof was enhanced depending on the increase in 5-aza-2′-deoxycytidine concentration. The expression level of MFPC3 gene in PC-3 was not changed by demethylation treatment.

RDA産物上のCpGアイランドの地図を示す図である。FIG. 3 is a diagram showing a map of CpG islands on RDA products. ビスルファイト シークエンスの結果を示す図である。It is a figure which shows the result of a bisulfite sequence. ビスルファイト シークエンスの結果を示す図である(図2のつづき)。It is a figure which shows the result of a bisulfite sequence (continuation of FIG. 2). COBRA法の解析結果(アガロースゲル電気泳動像)を示す図である。It is a figure which shows the analysis result (agarose gel electrophoresis image) of COBRA method. MFPC3遺伝子の脱メチル化処理による再発現の確認結果を示す図である。It is a figure which shows the confirmation result of the reexpression by the demethylation process of MFPC3 gene.

Claims (4)

生体から分離した試料中の遺伝子における、配列番号1、配列番号2及び配列番号3で示される塩基配列から選ばれる1又は2以上の塩基配列中のメチル化頻度又は当該メチル化頻度に相関関係がある指標値を測定することを特徴とする前立腺癌、そのリスク又はその初期罹患の判定方法。   There is a correlation with the methylation frequency or the methylation frequency in one or more base sequences selected from the base sequences represented by SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3 in genes in a sample isolated from a living body A method for determining prostate cancer, its risk, or its initial morbidity, characterized by measuring a certain index value. 前記メチル化頻度が、メチル化したシトシンが密集する領域(CpGアイランド)中のシトシンのメチル化頻度である請求項1記載の判定方法。   The determination method according to claim 1, wherein the methylation frequency is a methylation frequency of cytosine in a region (CpG island) where methylated cytosines are densely packed. 配列番号1のCpGアイランドが塩基番号3173〜3844の領域であり、配列番号2のCpGアイランドが配列番号36768〜37234の領域であり、配列番号3のCpGアイランドが配列番号109344〜109768の領域である、請求項2記載の判定方法。   The CpG island of SEQ ID NO: 1 is the region of base numbers 3173-3844, the CpG island of SEQ ID NO: 2 is the region of SEQ ID NOs: 36768-37234, and the CpG island of SEQ ID NO: 3 is the region of SEQ ID NOs: 109344-109768 The determination method according to claim 2. 配列番号1、配列番号2及び配列番号3で示される塩基配列から選ばれる1又は2以上の塩基配列中のメチル化頻度を検出し得るプライマーを含有することを特徴とする前立腺癌、そのリスク又はその初期罹患の診断薬。   A prostate cancer comprising a primer capable of detecting a methylation frequency in one or more base sequences selected from the base sequences represented by SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3, A diagnostic for its initial morbidity.
JP2003429300A 2003-12-25 2003-12-25 Method for determining prostate cancer, its risk or its initial morbidity Expired - Lifetime JP4537050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429300A JP4537050B2 (en) 2003-12-25 2003-12-25 Method for determining prostate cancer, its risk or its initial morbidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003429300A JP4537050B2 (en) 2003-12-25 2003-12-25 Method for determining prostate cancer, its risk or its initial morbidity

Publications (2)

Publication Number Publication Date
JP2005185143A true JP2005185143A (en) 2005-07-14
JP4537050B2 JP4537050B2 (en) 2010-09-01

Family

ID=34788009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429300A Expired - Lifetime JP4537050B2 (en) 2003-12-25 2003-12-25 Method for determining prostate cancer, its risk or its initial morbidity

Country Status (1)

Country Link
JP (1) JP4537050B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044232A1 (en) * 2001-11-16 2003-05-30 The Johns Hopkins University School Of Medicine Method of detection of prostate cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044232A1 (en) * 2001-11-16 2003-05-30 The Johns Hopkins University School Of Medicine Method of detection of prostate cancer

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6009061080, 第91回日本泌尿器科学会総会,2003年 2月15日,p.356(PP−638) *
JPN6009061082, Int.J.Cancer,Vol.106(Sept.2003)p.382−387 *
JPN6009061085, Cancer Sci.,Vol.94,No.6(Jun.2003)p.536−539 *
JPN6009061088, 第91回日本病理学会総会(2002)p.193(3−E−1) *
JPN6009061091, Mod.Pathol.,Vol.16,No.1(Jan.2003)p.156A *
JPN6009061095, BBRC,Vol.290(2002)p.1054−1065 *

Also Published As

Publication number Publication date
JP4537050B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US10435754B2 (en) Diagnostic method
JP5378687B2 (en) Method for detecting liver cancer, liver cancer risk, liver cancer recurrence risk, liver cancer malignancy and liver cancer progression over time using methylated cytosine in BASP1 gene and / or SRD5A2 gene
Goebel et al. Circulating nucleic acids in plasma or serum (CNAPS) as prognostic and predictive markers in patients with solid neoplasias
KR101569498B1 (en) Method for Detecting Gastric Polyp and Gastric Cancer Using Gastric Polyp and Gastric Cancer Specific Methylation Marker Gene
JP3522690B2 (en) GST-Pi gene methylation assay
JP2010517582A (en) Methods for early detection and prognosis of colon cancer
JP6085603B2 (en) DNA methylation in colorectal and breast cancer diagnostics
EP2576832B1 (en) Compositions and methods for detecting a neoplasia
KR101255769B1 (en) Method for Detecting Methylation of Colorectal Cancer Specific Methylation Marker Gene for Colorectal Cancer Diagnosis
WO2007047847A2 (en) Methods for diagnosing cancer based on dna methylation status in nbl2
WO2015013885A1 (en) Method for determining nucleic acid composition of nucleic acid mixture
JP2002543855A (en) Method for detecting colorectal disease by performing an assay for detecting mutations at the BAT-26 locus
EP2304057A2 (en) Method for the detection of ovarian cancer
EP3950954A1 (en) Method for determining prognosis of endometrial cancer
JP5602355B2 (en) Treatment selection method and prognosis after surgical operation for cancer patients
JP4537050B2 (en) Method for determining prostate cancer, its risk or its initial morbidity
KR101145406B1 (en) Method for Detecting Methylation of Colorectal Cancer Specific Methylation Marker Gene for Colorectal Cancer Diagnosis
CN101076605B (en) Method of detecting gene methylation and method of examining neoplasm by detecting methylation
WO2006064737A1 (en) Method of detecting gene methylation and method of examining neoplasm by detecting methylation
JP6877704B2 (en) Methods and kits for detecting pancreatic cancer
EP1584629B1 (en) An in vitro method for the diagnosis of neoplastic diseases by methylation analysis of the CDH4 gene, oligonucleotides and kits useful in such method
KR101637338B1 (en) Method for detecting methylation of HBD-2 promoter and composition for diagnosing cancer using thereof
KR20240104309A (en) Method for detection of lung cancer using lung cancer-specific methylation marker gene
KR20240104310A (en) Method for detection of lung cancer using lung cancer-specific methylation marker gene
KR101136505B1 (en) Method for Detecting Methylation of Colorectal Cancer Specific Methylation Marker Gene for Colorectal Cancer Diagnosis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070118

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4537050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term