JP2005184956A - Electric feeder line protection method and device - Google Patents

Electric feeder line protection method and device Download PDF

Info

Publication number
JP2005184956A
JP2005184956A JP2003420806A JP2003420806A JP2005184956A JP 2005184956 A JP2005184956 A JP 2005184956A JP 2003420806 A JP2003420806 A JP 2003420806A JP 2003420806 A JP2003420806 A JP 2003420806A JP 2005184956 A JP2005184956 A JP 2005184956A
Authority
JP
Japan
Prior art keywords
transmission line
phase current
current
protection
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003420806A
Other languages
Japanese (ja)
Inventor
Kazuaki Kumagai
和秋 熊谷
Takashi Kikuchi
孝 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003420806A priority Critical patent/JP2005184956A/en
Publication of JP2005184956A publication Critical patent/JP2005184956A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately discriminate an accident in a protected section at high speed in a power station without a transmission path exclusive for a relay. <P>SOLUTION: The general-purpose transmission path 24 such as 9.6 kbps or 64 kbps is provided between protection devices 31, 32 of the power station. The presence or the absence of a short circuit accident in a protected section is discriminated by transmitting/receiving a positive phase current between opposite terminals in a normal state after detecting a bus bar voltage and a current by a voltage transformer 41 and current transformers 43, 44 in the protection device 31(32). A ground fault current instead of the positive phase current is transmitted during the occurrence of a ground fault accident. A differential current protection system having high section discriminating capability is applicable. It is possible to protect an electric feeder line at high speed and with excellent accuracy during the occurrence of an electric feeder line accident. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、送電線の保護装置に関し、送電線路の故障時に汎用伝送路を用いて正規応動可能となる保護方式に関する。   The present invention relates to a protection device for a transmission line, and relates to a protection method that enables normal response using a general-purpose transmission line when a transmission line fails.

従来の送電線保護リレーは、リレー専用伝送路(例:54kbps)を用いて、自端の各相電流及び零相電流と相手端の各相電流及び零相電流により差電流演算を行う。差電流が一定の値(整定値)以上になると、区間内事故を検出し当該送電線の遮断器を遮断する差電流保護方式を実施している。   A conventional power transmission line protection relay uses a relay-dedicated transmission line (for example, 54 kbps) to perform a differential current calculation using each phase current and zero phase current at its own end and each phase current and zero phase current at the other end. When the difference current exceeds a certain value (settling value), a differential current protection method is implemented in which an accident in the section is detected and the circuit breaker of the transmission line is cut off.

しかし、最近ではリレー専用伝送路を持たない送電系統が増加し、また、通信装置の設備投資の抑制などから、上記差電流保護方式を適用する為の伝送路の整備が滞っており、保護区間判別能力の高い保護方式であるにもかかわらず適用が困難になっている。   Recently, however, the number of power transmission systems that do not have a dedicated relay transmission line has increased, and the transmission line for applying the above-mentioned differential current protection method has been stagnant due to the restrained capital investment of communication equipment. Despite being a protection method with high discrimination ability, it is difficult to apply.

本発明の目的は、リレー専用の通信設備の無い電気所間において9.6kbpsや64kbpsなどの汎用伝送路を用いて、保護区間内事故を高速に精度よく判別する送電線保護装置を提供することにある。   An object of the present invention is to provide a power transmission line protection device for accurately and quickly discriminating an accident in a protection section using a general-purpose transmission line such as 9.6 kbps and 64 kbps between electric stations without communication equipment dedicated for relays. It is in.

上記目的を達成するための本発明は、差電流保護方式によって送電線の事故を検出し、該当保護区間を保護する送電線保護方法において、自端の保護装置は相手端の保護装置との間で、常時、正相電流の隣接する2瞬時値による伝送データを送受し、該当保護区間の短絡を判定した場合にその遮断器を開放することを特徴とする。前記データの伝送は9.6kbpsや64kbpsなどの汎用伝送路による。   In order to achieve the above object, the present invention provides a power transmission line protection method for detecting a power transmission line accident using a differential current protection method and protecting the corresponding protection section. Thus, the transmission data based on the two instantaneous values adjacent to each other in the positive phase current is always transmitted and received, and when the short circuit of the corresponding protection section is determined, the circuit breaker is opened. The data is transmitted through a general-purpose transmission line such as 9.6 kbps or 64 kbps.

また、地絡を検出した場合は前記正相電流に代えて零相電流を送受し、該当保護区間の遮断器を開放することを特徴とする。   In addition, when a ground fault is detected, a zero-phase current is transmitted and received instead of the positive-phase current, and the circuit breaker in the corresponding protection section is opened.

前記2瞬時値の伝送データはa−Law方式で圧縮される。また前記伝送データはCRC検定方式により検定される。   The transmission data of the two instantaneous values is compressed by the a-Law method. The transmission data is verified by a CRC verification method.

本発明の送電線保護装置は、送電系統の保護区間毎に遮断器と保護装置を設け、差電流保護方式によって送電系統の事故を検出して送電線を保護するものであって、自端と他端の保護装置間に汎用伝送路と、前記保護装置に常時は正相電流による伝送データを送受する通信手段を設け、短絡差電流演算を実施することを特徴とする。前記正相電流は隣合せの60度間隔の2瞬時値である。   The power transmission line protection device of the present invention is provided with a circuit breaker and a protection device for each protection section of the power transmission system, detects a power transmission system fault by a differential current protection method, and protects the power transmission line. A general-purpose transmission line is provided between the protection devices at the other end, and a communication means for transmitting and receiving transmission data based on a positive phase current is provided in the protection device at all times, and short-circuit difference current calculation is performed. The positive phase current is two instantaneous values at 60 degree intervals adjacent to each other.

前記保護装置は地絡事故を検出した場合、前記正相電流を零相電流に切り替えて伝送するための切替手段を設ける。この際、地絡過渡応答時限を満足するための過渡応答タイマーを設ける。   When the protective device detects a ground fault, the protective device is provided with switching means for switching the positive phase current to a zero phase current for transmission. At this time, a transient response timer is provided to satisfy the ground fault transient response time limit.

本発明によれば、少ない伝送量(電流情報)で保護区間内事故を検出する。常時には、IA+aIB+aICの演算結果である正相電流を伝送する(a:ベクトルパラメータ)。短絡事故時は、正相電流の伝送を継続し内外部(自端、他端)の事故判別を実施する。電圧リレー等により短絡事故か地絡事故かを常時判別し、地絡検出時は正相電流伝送を零相電流に切り替えて伝送する。 According to the present invention, an accident in a protection zone is detected with a small transmission amount (current information). At all times, the positive phase current that is the calculation result of IA + aIB + a 2 IC is transmitted (a: vector parameter). In the event of a short circuit accident, transmission of positive phase current is continued, and internal / external (own end, other end) accident discrimination is performed. A voltage relay or the like is always used to determine whether there is a short-circuit fault or a ground fault. When a ground fault is detected, the positive phase current transmission is switched to the zero phase current for transmission.

従来の電流差動リレーと地絡事故時の装置仕上り時間を同じ時間とするために、従来の地絡事故時の過渡応答時限(50ms)を満足するようにタイマー(約20ms)を設置する。   In order to make the device finishing time at the time of the ground fault accident the same as that of the conventional current differential relay, a timer (about 20 ms) is installed so as to satisfy the transient response time limit (50 ms) at the time of the conventional ground fault accident.

伝送の監視としては、伝送監視能力の向上のためにエラー検出精度の高いCRC検定方式を適用する。他に伝送データ(情報)がある場合はCRC12でも良い。   As transmission monitoring, a CRC verification method with high error detection accuracy is applied to improve transmission monitoring capability. If there is other transmission data (information), CRC 12 may be used.

本発明によれば、リレー専用伝送路(54kbpsなど)の無い電気所間においても、前記汎用伝送路を用いて区間判別能力の高い電流差動保護方式を適用できるので、送電線事故を高速かつ精度よく保護可能である。   According to the present invention, a current differential protection method with high section discrimination capability can be applied using the general-purpose transmission line even between electrical stations without a relay-dedicated transmission line (54 kbps, etc.). It can be protected with high accuracy.

図1は、本発明が適用される三相交流送電系統を示した単線図で、この例は2端子系統を示している。同図の送電系統は三相交流電源11、12を有し、端子A、Bが電源端で、送電線21によって端子Aと端子Bを接続している。遮断器22、23が「入」の時、送電線21は電源系統と接続される。   FIG. 1 is a single line diagram showing a three-phase AC power transmission system to which the present invention is applied, and this example shows a two-terminal system. The power transmission system in FIG. 1 has three-phase AC power supplies 11 and 12, terminals A and B are power supply terminals, and terminals A and B are connected by a power transmission line 21. When the circuit breakers 22 and 23 are “ON”, the power transmission line 21 is connected to the power supply system.

本発明の送電線保護装置は、送電線21の両端に接続されている電圧変成器41、42により母線の電圧を、変流器43、44により各相電流をそれぞれ取り込み、送電線内の事故が短絡か地絡かを判別する演算を実施する。   The power transmission line protection device of the present invention takes in the voltage of the bus line by the voltage transformers 41 and 42 connected to both ends of the power transmission line 21, and takes in each phase current by the current transformers 43 and 44, respectively. An operation is performed to determine whether is a short circuit or a ground fault.

送電線21の内部で事故が発生した場合、保護装置31、32は差電流保護方式により、A端から流れる電流とB端から流れる電流のベクトル和を算出し、IA−IB=0でなければ送電線故障と判断し、遮断器22、23を「切」とする。   When an accident occurs in the transmission line 21, the protection devices 31 and 32 calculate the vector sum of the current flowing from the A end and the current flowing from the B end by the differential current protection method, and if IA−IB = 0 is not satisfied. It is determined that the power transmission line has failed, and the circuit breakers 22 and 23 are set to “OFF”.

また、送電線21により接続されるA端子及びB端子間には、汎用の9.6kbpsや64kbpsなどの汎用伝送路24が接続されている。ここでは、2端子系統を示しているが、複数端子の系統であってもよい。   A general-purpose transmission line 24 such as a general-purpose 9.6 kbps or 64 kbps is connected between the A terminal and the B terminal connected by the power transmission line 21. Although a two-terminal system is shown here, a multi-terminal system may be used.

図2は保護装置の構成を示すブロック図である。保護装置31(保護装置32も同一構成)は、常時はCT43、CT44により計測した各相電流Ia,Ib,Icから正相電流I1を算出する。この正相電流は、汎用伝送路24により相手端子に電流データとして送信し、また相手端子から電流データを受信し、87Sリレーにより差電流演算を実施し、送電線21の短絡事故を検出する。   FIG. 2 is a block diagram showing the configuration of the protection device. The protection device 31 (the protection device 32 also has the same configuration) calculates the positive phase current I1 from the phase currents Ia, Ib, Ic measured by CT43, CT44 at all times. This positive phase current is transmitted as current data to the counterpart terminal through the general-purpose transmission line 24, receives current data from the counterpart terminal, performs a differential current calculation by the 87S relay, and detects a short circuit accident in the transmission line 21.

正相電流算出手段51は、各相の電流Ia,Ib,Icから(1)式により正相電流I1を算出する。ここで、a及びaはベクトルオペレータであり、a:120度、a:240度進めることを表している。
I1=Ia+aIb+aIc (1)
伝送する正相電流は、電気角60度の隣り合わせの2瞬時値、つまり(t−1)と(t0)の瞬時値の正相電流を伝送する。これは正弦波の120度分のデータを1回に伝送することである。なお、正弦波の180°を超えるとリレーとしての位相演算が1周期を超えて誤った演算を実施する可能性があるため、正弦波の120°とした。
The positive phase current calculation means 51 calculates the positive phase current I1 from the currents Ia, Ib, and Ic of each phase according to the equation (1). Here, a and a 2 are vector operators, which indicate that a: 120 degrees and a 2 : 240 degrees are advanced.
I1 = Ia + aIb + a 2 Ic (1)
The positive phase current to be transmitted transmits two instantaneous values adjacent to each other with an electrical angle of 60 degrees, that is, positive phase currents having instantaneous values of (t−1) and (t0). This is to transmit 120 degree data of a sine wave at a time. Note that when the sine wave exceeds 180 °, the phase calculation as a relay may exceed one period and an erroneous calculation may be performed. Therefore, the sine wave is set to 120 °.

電圧変成器41による地絡事故検出時は、正相電流を零相電流に切り替えて伝送する。零相電圧Vは、(2)式のように各相電圧のベクトル和で通常は0乃至その近傍であるが、地絡時は地絡相の電圧が低下するので不平衡となり、地絡電圧Vは所定電圧を超える。
=Va+Vb+Vc (2)
事故判別手段53で地絡事故が検出されると、切替手段54を切り替えて、正相電流I1に代えて零相電流Iが伝送される。
When a ground fault is detected by the voltage transformer 41, the positive phase current is switched to the zero phase current and transmitted. The zero-phase voltage V 0 is a vector sum of each phase voltage as shown in the equation (2), and is usually 0 or in the vicinity thereof. However, since the ground fault phase voltage is lowered during a ground fault, the zero phase voltage V 0 becomes unbalanced. voltage V 0 exceeds a predetermined voltage.
V 0 = Va + Vb + Vc (2)
When a ground fault is detected by the accident determination section 53, by switching the switching means 54, zero-phase current I 0 in place of the positive phase current I1 is transmitted.

零相電流Iは、(3)式のように各相電流のベクトル和である。通常は0乃至その近傍であるが、地絡時は地絡相の電流が増加するので不平衡となり、地絡電流Iは一定値を超える。
=Ia+Ib+Ic (3)
なお、ケーブル系統等、短絡事故の発生の惧れの無い系統では常時、零相電流を伝送しても良い。
The zero-phase current I 0 is a vector sum of each phase current as shown in the equation (3). Usually, it is 0 to the vicinity thereof, but during a ground fault, the current in the ground fault phase increases, resulting in an unbalance, and the ground fault current I 0 exceeds a certain value.
I 0 = Ia + Ib + Ic (3)
Note that a zero-phase current may be transmitted at all times in a system such as a cable system where there is no possibility of occurrence of a short circuit accident.

一方、相手端から伝送データを受信すると、図2の87Sリレーや87Gリレーは次のように動作する。87Sリレーは自端と他端の正相電流の差電流を検出し、差電流が所定値を超えていれば該当する遮断器に引き外し指令を出力する。87Gリレーは自他の零相電流の差電流を検出し、所定値を超えていれば遮断器に引き外し指令を出力する。   On the other hand, when transmission data is received from the other end, the 87S relay and 87G relay in FIG. 2 operate as follows. The 87S relay detects the difference current between the positive phase currents at its own end and the other end, and outputs a trip command to the corresponding circuit breaker if the difference current exceeds a predetermined value. The 87G relay detects a difference current between itself and other zero-phase currents, and outputs a trip command to the circuit breaker if it exceeds a predetermined value.

図3は伝送データのフォーマットを示す。先頭はフレーム同期ビット、その後6ビット毎に区切りを示す1ビットを挟んで電流ビットが2量分続いている。常時は正相電流の電気角60°間隔の2量データを送信し、地絡事故判定時はこの正相電流部に零相電流の電気角60°間隔の2量データを載せ、相手端子に伝送する。また、相手端に対し正相電流を伝送しているか零相電流を伝送しているかの判定情報(図では「地絡」)を併せて伝送する。「地絡」の後の(1)、(4)はサブコミデータ(複数のデータを何回かに1回の割合で伝送する)であり、CB情報(「切」or「入」)や装置健全条件等を伝送するフォーマットとしている。   FIG. 3 shows a format of transmission data. The head is a frame synchronization bit, and then there are two current bits, one bit indicating a break every 6 bits. Normally, the binary data of the positive phase current with electrical angle of 60 ° is transmitted, and when the ground fault is judged, the binary data of the zero phase current with electrical angle of 60 ° is put on this positive phase current part, To transmit. Also, determination information (“ground fault” in the figure) as to whether a positive phase current or a zero phase current is transmitted is transmitted to the other end. (1) and (4) after “Ground fault” are sub-communication data (a plurality of data are transmitted at a rate of once every several times), and CB information (“OFF” or “ON”) and The format is used to transmit device health conditions.

なお、電流データ1量は12ビット(2の12乗ビットのディジタル量)である。しかし、電気量の正弦波120°の範囲(ビット総数:53ビット)でデータを送るには、CRC検定も考慮すると、電流データ1量を8ビットで送る必要がある。本実施例ではa−Low方式やμ−Low方式により圧縮し、電流データ1量を8ビットデータにして伝送する。この圧縮により地絡相の検出は困難になるが、地絡の有無は判定できる。もちろん、より高速の汎用伝送路(たとえば、64kbps)であれば、このようなデータ圧縮の必要もなくなる。   The amount of current data 1 is 12 bits (a digital amount of 2 12 bits). However, in order to send data in the range of 120 ° electric sine wave (total number of bits: 53 bits), it is necessary to send 1 amount of current data in 8 bits, considering the CRC test. In this embodiment, compression is performed by the a-Low method or the μ-Low method, and one amount of current data is transmitted as 8-bit data. Although this compression makes it difficult to detect the ground fault phase, the presence or absence of a ground fault can be determined. Of course, if a higher-speed general-purpose transmission line (for example, 64 kbps) is used, there is no need for such data compression.

CRC検定は16ビットが必要なため、伝送フォーマットをCRC1〜CRC4に分割して伝送する。CRC16の場合、CRC検定式はX16+X12+X+1となる。CRC検定では、送受信データ(伝送データ)をCRC検定式で割り、その余りを伝送する。これにより、エラー検出精度の高い伝送監視が可能になる。 Since CRC verification requires 16 bits, the transmission format is divided into CRC1 to CRC4 and transmitted. For CRC 16, CRC test expression becomes X 16 + X 12 + X 5 +1. In CRC verification, transmission / reception data (transmission data) is divided by a CRC verification formula, and the remainder is transmitted. This enables transmission monitoring with high error detection accuracy.

図4に地絡事故検出時の過渡応答対策回路を示す。従来、地絡事故では検出から50ms後に遮断器を引き外しする。本実施例でも、従来の電流差動リレーの装置仕上り時間と同じ時間とするため、地絡事故時の過渡応答時限タイマーの値を変更設置する。   FIG. 4 shows a transient response countermeasure circuit when a ground fault is detected. Conventionally, in a ground fault, the circuit breaker is tripped 50 ms after detection. Also in this embodiment, in order to set the same time as the device finishing time of the conventional current differential relay, the value of the transient response time timer at the time of the ground fault is changed and installed.

(a)は従来の過渡応答対策回路で、地絡リレーである87Gリレーや64リレーなどは、事故発生時に不要動作する可能性が高い為、一旦動作後50msの遅延時間後に事故検出信号(遮断器の引き外し)を出力する。又、87Gリレーの入力は伝送情報であり伝送側の異常で不要動作した場合、誤って遮断器を遮断し停電を起こす可能性がある為、自短のPT情報により算出する64リレーとのAND処理とした。更に2線以上の地絡事故(短絡)時に事故種別判別が短絡及び地絡の両表示が出るのを防止する目的で不足電圧リレーである27リレーにより地絡遮断をロックしている。(b)は本実施例による今回の過渡応答対策回路で、論理回路の入力に相手端からの地絡受信が含まれる。この地絡受信は、短絡・地絡判定後に正相電流を零相電流に切り替えて伝送するため、従来より30ms程度遅れる。そこで、過渡応答時限を20ms(50−30)として、短絡・地絡事故判別による仕上り時間遅れが発生しないように対策している。   (A) is a conventional transient response countermeasure circuit. Since there is a high possibility that the ground fault relays 87G relay, 64 relay, etc. will operate unnecessarily when an accident occurs, an accident detection signal (interruption) once after a delay time of 50 ms after operation. ) Is output. Also, since the 87G relay input is transmission information, and an unnecessary operation occurs due to an abnormality on the transmission side, there is a possibility that the circuit breaker will be cut off and a power failure may occur. Treated. Further, in order to prevent both the short-circuit and ground fault indications from appearing in the case of fault type discrimination (short circuit) of two or more lines, the ground fault cutoff is locked by 27 relays which are undervoltage relays. (B) is the current transient response countermeasure circuit according to the present embodiment, and the input of the logic circuit includes the reception of the ground fault from the other end. This ground fault reception is delayed by about 30 ms from the prior art because the positive phase current is switched to the zero phase current and transmitted after the short circuit / ground fault determination. Therefore, the transient response time limit is set to 20 ms (50-30), and measures are taken so as not to cause a finishing time delay due to short circuit / ground fault discrimination.

図5は、本発明の処理手順の実施例を示すフローチャートである。保護装置31(32)が供えるコンピュータによって処理される。   FIG. 5 is a flowchart showing an embodiment of the processing procedure of the present invention. It is processed by a computer provided by the protection device 31 (32).

ステップ51は送電線の状態監視であり、事故無しの時はステップ57により正相電流の伝送を継続する。ステップ52は、送電線に短絡事故が発生した場合で、正相電流により区間内事故の判別が可能であるので、正相電流の伝送は継続される。ステップ53では、送電線区間内短絡事故を判別し、ステップ54で該当遮断器を遮断する。   Step 51 is monitoring of the state of the power transmission line. When there is no accident, the transmission of the positive phase current is continued by step 57. Step 52 is a case where a short circuit accident occurs in the power transmission line, and since it is possible to determine an in-section accident based on the positive phase current, transmission of the positive phase current is continued. In step 53, a short circuit accident in the transmission line section is determined, and in step 54, the corresponding circuit breaker is interrupted.

ステップ55では電圧要素により地絡事故を判別し、地絡事故時は伝送する電気量を正相電流から零相電流に切替え伝送する。ステップ56では送電線区間内地絡事故を判別し、当該遮断器を遮断する。   In step 55, a ground fault is determined based on the voltage element, and when the ground fault occurs, the amount of electricity to be transmitted is switched from the positive phase current to the zero phase current for transmission. In step 56, a ground fault in the transmission line section is determined, and the circuit breaker is shut off.

本処理は、各端子で差電流リレー演算を実施しても、代表端で差電流演算を実施して演算結果を他の端子に伝送しても良い。   In this process, the difference current relay calculation may be performed at each terminal, or the difference current calculation may be performed at the representative end and the calculation result may be transmitted to another terminal.

以上、本発明によれば、リレー専用の通信設備を持たない電気所間においても、9.6kbpsや64kbps等の汎用伝送路を用いる送電線保護が可能である。   As described above, according to the present invention, power transmission line protection using a general-purpose transmission line such as 9.6 kbps and 64 kbps can be performed even between electric stations that do not have communication equipment dedicated for relays.

本発明の実施形態ある送電線保護装置の全体構成図。1 is an overall configuration diagram of a power transmission line protection device according to an embodiment of the present invention. 保護装置の一実施例を示す構成図。The block diagram which shows one Example of a protective device. 伝送データのフォーマットと正相電流/零相電流の切替を示す説明図。Explanatory drawing which shows the format of transmission data, and switching of positive phase current / zero phase current. 地絡過渡応答回路を模式的に示す説明図。Explanatory drawing which shows a ground fault transient response circuit typically. 送電線保護装置の処理手順を示すフローチャート。The flowchart which shows the process sequence of a power transmission line protection apparatus.

符号の説明Explanation of symbols

11,12…電源端、21…送電線、22,23…遮断器(CB)、24…汎用伝送路、31,32…送電線保護リレー、41,42…電圧変成器、43,44…変流器、51…正相電流演算部、52…零相電流演算部、53…事故判別部、54…切替手段。   DESCRIPTION OF SYMBOLS 11,12 ... Power supply end, 21 ... Power transmission line, 22, 23 ... Circuit breaker (CB), 24 ... General purpose transmission line, 31, 32 ... Power transmission line protection relay, 41, 42 ... Voltage transformer, 43, 44 ... Variable Current source 51... Positive phase current calculation unit 52. Zero phase current calculation unit 53. Accident determination unit 54.

Claims (8)

差電流保護方式によって送電線の事故を検出し、該当保護区間を保護する送電線保護方法において、
自端の保護装置は相手端の保護装置との間で、常時は正相電流の隣接する2瞬時値による伝送データを送受し、前記正相電流に基いて該当保護区間の短絡を判定した場合にその遮断器を開放することを特徴とする送電線保護方法。
In the transmission line protection method that detects the accident of the transmission line by the differential current protection method and protects the corresponding protection section,
When the self-protection device always sends / receives transmission data based on the two instantaneous values of the positive phase current adjacent to the protection device at the other end, and determines a short circuit in the corresponding protection section based on the positive phase current A method for protecting a transmission line, characterized in that the circuit breaker is opened.
請求項1において、地絡を検出した場合は前記正相電流に代えて零相電流を送受し、該当保護区間の遮断器を開放することを特徴とする送電線保護方法。   The transmission line protection method according to claim 1, wherein when a ground fault is detected, a zero-phase current is transmitted and received instead of the positive-phase current, and a circuit breaker in the corresponding protection section is opened. 請求項1または2において、前記2瞬時値の伝送データはa−Law方式で圧縮される送電線保護方法。   3. The transmission line protection method according to claim 1, wherein the transmission data of the two instantaneous values is compressed by an a-Law method. 請求項1または2において、前記伝送データはCRC検定方式により検定される送電線保護方法。   3. The transmission line protection method according to claim 1, wherein the transmission data is verified by a CRC verification method. 送電系統の保護区間毎に遮断器と保護装置を設け、差電流保護方式によって送電系統の事故を検出して送電線を保護する送電線保護装置において、
自端と他端の保護装置間に汎用伝送路と、前記保護装置に常時は正相電流による伝送データを送受する通信手段を設け、短絡差電流演算を実施することを特徴とする送電線保護装置。
In the transmission line protection device that protects the transmission line by providing a circuit breaker and a protection device for each protection section of the transmission system, detecting an accident in the transmission system by the differential current protection method,
A transmission line protection characterized in that a general-purpose transmission line is provided between the protective device at its own end and the other end, and communication means for transmitting and receiving transmission data by a positive phase current is provided to the protective device at all times, and short-circuit difference current calculation is performed. apparatus.
請求項5において、前記正相電流は隣接する60度間隔の2瞬時値であることを特徴とする送電線保護装置。   6. The transmission line protection device according to claim 5, wherein the positive phase current is two instantaneous values at intervals of 60 degrees adjacent to each other. 請求項5または6において、前記保護装置は地絡事故を検出した場合、前記正相電流を零相電流に切り替えて伝送するための切替手段を設けることを特徴とする送電線保護装置。   7. The transmission line protection device according to claim 5, wherein the protection device is provided with a switching means for switching the positive phase current to a zero phase current when a ground fault is detected. 請求項7において、前記保護装置は地絡過渡応答時限を満足するための過渡応答タイマーを設けることを特徴とする送電線保護装置。
8. The transmission line protection device according to claim 7, wherein the protection device includes a transient response timer for satisfying a ground fault transient response time limit.
JP2003420806A 2003-12-18 2003-12-18 Electric feeder line protection method and device Pending JP2005184956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420806A JP2005184956A (en) 2003-12-18 2003-12-18 Electric feeder line protection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420806A JP2005184956A (en) 2003-12-18 2003-12-18 Electric feeder line protection method and device

Publications (1)

Publication Number Publication Date
JP2005184956A true JP2005184956A (en) 2005-07-07

Family

ID=34782230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420806A Pending JP2005184956A (en) 2003-12-18 2003-12-18 Electric feeder line protection method and device

Country Status (1)

Country Link
JP (1) JP2005184956A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453959C1 (en) * 2011-04-25 2012-06-20 Общество с ограниченной ответственностью "ЯВИАР" Control and protection equipment for direct current feeder
CN102916404A (en) * 2011-12-27 2013-02-06 许继集团有限公司 Differential protection method of regional power grid network change range
JP2013169059A (en) * 2012-02-15 2013-08-29 Toshiba Corp Protection relay device and protection relay system
CN109599849A (en) * 2018-11-29 2019-04-09 成都尚华电气有限公司 A kind of electric railway AT sections of differential protecting methods
CN112242693A (en) * 2020-09-25 2021-01-19 中国直升机设计研究所 Direct current bus bar short-circuit protection device and method
CN112260240A (en) * 2020-10-19 2021-01-22 华翔翔能科技股份有限公司 Micro-grid feeder protection device and method
CN113192798A (en) * 2021-02-07 2021-07-30 浙江世隆电气科技有限公司 Tripper structure for universal installation of electronic and thermomagnetic molded case circuit breakers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453959C1 (en) * 2011-04-25 2012-06-20 Общество с ограниченной ответственностью "ЯВИАР" Control and protection equipment for direct current feeder
CN102916404A (en) * 2011-12-27 2013-02-06 许继集团有限公司 Differential protection method of regional power grid network change range
CN102916404B (en) * 2011-12-27 2015-01-07 许继电气股份有限公司 Differential protection method of regional power grid network change range
JP2013169059A (en) * 2012-02-15 2013-08-29 Toshiba Corp Protection relay device and protection relay system
CN109599849A (en) * 2018-11-29 2019-04-09 成都尚华电气有限公司 A kind of electric railway AT sections of differential protecting methods
CN112242693A (en) * 2020-09-25 2021-01-19 中国直升机设计研究所 Direct current bus bar short-circuit protection device and method
CN112260240A (en) * 2020-10-19 2021-01-22 华翔翔能科技股份有限公司 Micro-grid feeder protection device and method
CN113192798A (en) * 2021-02-07 2021-07-30 浙江世隆电气科技有限公司 Tripper structure for universal installation of electronic and thermomagnetic molded case circuit breakers

Similar Documents

Publication Publication Date Title
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
US8649131B2 (en) Method and device for supervising secondary circuit of instrument transformer in power system
KR100822988B1 (en) Fault type selection system for identifying faults in an electric power system
US20170108542A1 (en) Determining status of electric power transmission lines in an electric power transmission system
EP2206208B1 (en) Differential protection method, system and device
KR100246203B1 (en) A control system and method for high impedance ground fault of power line in a power system
EP2862252B1 (en) A power bay protection device and a method for protecting power bays
CN106771804B (en) A kind of transmission line of electricity broken string area judging method based on zero-sequence network
KR20040014364A (en) Directional ground relay system
JP2005184956A (en) Electric feeder line protection method and device
CN107634506A (en) A kind of transformer station&#39;s overcurrent protection method and device and system
EP3062410B1 (en) A protection apparatus
JP4836663B2 (en) Loop system protection device and method
JP3221000B2 (en) Method and apparatus for determining ground fault section of distribution line
Mourad et al. Simple and adaptive busbar protection scheme considering CT saturation effect
JP2010183745A (en) Short-circuit protector
JP2019187012A (en) Transmission line protection system
JP2005176440A (en) Method and device for protecting transmission line
KR20240021619A (en) Substation Integrated Protection System and Substation Integrated Monitoring Method
JP3843663B2 (en) Protection relay device
EP1295374B1 (en) Method and device for power system protection
JP2019122094A (en) Line selection relay device with premise protective function
CN105140881A (en) Differential protection method, system and device
Rainin et al. Complex criteria of operation of automatic low-voltage circuit breakers
JPH06105451A (en) Line protection relay device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701