JP2005181583A - Method for adjusting phase difference of optical waveguide element - Google Patents

Method for adjusting phase difference of optical waveguide element Download PDF

Info

Publication number
JP2005181583A
JP2005181583A JP2003420580A JP2003420580A JP2005181583A JP 2005181583 A JP2005181583 A JP 2005181583A JP 2003420580 A JP2003420580 A JP 2003420580A JP 2003420580 A JP2003420580 A JP 2003420580A JP 2005181583 A JP2005181583 A JP 2005181583A
Authority
JP
Japan
Prior art keywords
optical waveguide
phase difference
mach
optical
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003420580A
Other languages
Japanese (ja)
Other versions
JP4161897B2 (en
Inventor
Akira Terajima
彰 寺島
Hiroshi Mori
宏 森
Naomi Tamagawa
奈織美 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003420580A priority Critical patent/JP4161897B2/en
Publication of JP2005181583A publication Critical patent/JP2005181583A/en
Application granted granted Critical
Publication of JP4161897B2 publication Critical patent/JP4161897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply adjusting a phase difference of a Mach-Zehnder type interferometer caused by an error in an optical path. <P>SOLUTION: In the method for adjusting a phase difference of an optical waveguide element equipped with the optical waveguides which constitute the Mach-Zehnder type interferometer, in a region including a section directly above the optical waveguide constructing at least an arm of the Mach-Zehnder type interferometer, circular or dome-like liquid drops composed of a liquid transparent resin with a refractive index lower than that of a material forming the optical waveguide and with shapes after application having 10-200 μm diameters are applied along the optical waveguide in such a way that they are separated one drop by one drop. Thereby the region with an effective refractive index of the optical waveguide different from that of the other optical waveguides is generated so as to adjust the phase difference of the Mach-Zehnder type interferometer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マッハツェンダー型干渉計を構成する光導波路を備え光通信あるいは光情報処理分野で用いられる光導波路素子(光導波回路)に係り、特に、高精度かつ恒久的に位相差を調整できる光導波路素子の位相差調整方法に関するものである。   The present invention relates to an optical waveguide element (optical waveguide circuit) that includes an optical waveguide that constitutes a Mach-Zehnder interferometer and is used in the field of optical communication or optical information processing. In particular, the phase difference can be adjusted with high accuracy and permanently. The present invention relates to a phase difference adjusting method for an optical waveguide device.

近年、電気光学効果ないし熱光学効果を有する結晶質基板上に形成した光導波路によって構成される光導波回路の研究開発が盛んに行われている。特に、マッハツェンダー型干渉計のように2光束(両アーム)の光干渉を用いて、光出力を調整する光強度変調器、光可変光減衰器が実用化されている。   In recent years, research and development of optical waveguide circuits composed of optical waveguides formed on a crystalline substrate having an electro-optic effect or a thermo-optic effect have been actively conducted. In particular, an optical intensity modulator and an optical variable optical attenuator that adjust the optical output using optical interference of two light beams (both arms) like a Mach-Zehnder interferometer have been put into practical use.

以下、ニオブ酸リチウムで作製した偏波無依存型の光可変光減衰器を例に挙げて具体的に説明する。   Hereinafter, a polarization-independent optical variable optical attenuator made of lithium niobate will be described as an example.

まず、図3に示ように基板結晶のX軸を法線に持つニオブ酸リチウム基板11にTiを拡散させてZ軸に平行な光導波路を形成しマッハツェンダー型干渉計31を構成する。更に、金属蒸着膜によって正電極15をマッハツェンダー型干渉計31内の両アーム13、14側部に附加すると共に、両アーム13、14内に負電極16を附加する。   First, as shown in FIG. 3, a Mach-Zehnder interferometer 31 is formed by diffusing Ti on a lithium niobate substrate 11 having the X axis of the substrate crystal as a normal line to form an optical waveguide parallel to the Z axis. Further, a positive electrode 15 is added to the side portions of both arms 13 and 14 in the Mach-Zehnder interferometer 31 by a metal vapor deposition film, and a negative electrode 16 is added to both arms 13 and 14.

そして、上記電極15、16に電圧を印加すると、電気光学効果により二つのアーム13、14で屈折率が変化する。この屈折率変化をΔnとすると、   When a voltage is applied to the electrodes 15 and 16, the refractive index changes between the two arms 13 and 14 due to the electro-optic effect. If this refractive index change is Δn,

Figure 2005181583
と表される。ここで数式(1)中、Γは光波と電場の重なりを示すパラメータ、Vは印加電圧、dは電極間距離、nは屈折率、rは電気光学定数である。また、二つのアーム13、14では電場の向きが逆であるため、入力ポート12から入射した光がアームに差し掛かると位相差が生じ、両アーム間の作り込まれた位相差をδ0とすると、
Figure 2005181583
It is expressed. Here, in Equation (1), Γ is a parameter indicating the overlap of the light wave and the electric field, V is an applied voltage, d is a distance between electrodes, n is a refractive index, and r is an electro-optic constant. In addition, since the directions of the electric fields of the two arms 13 and 14 are opposite to each other, a phase difference is generated when light incident from the input port 12 reaches the arm, and the phase difference created between both arms is represented by δ 0 . Then

Figure 2005181583
と表される。数式(2)で入力パワーおよび出力パワーをそれぞれPinput、Poutputとする。出力側のY分岐における二つのアーム13、14間の位相差δは、電極の長さ(位相差の生じる区間の長さ)をlとすると数式(1)の屈折率差Δnを用いて次のように表される。
Figure 2005181583
It is expressed. In Expression (2), the input power and the output power are P input and P output , respectively. The phase difference δ between the two arms 13 and 14 in the Y branch on the output side is expressed as follows using the refractive index difference Δn of Equation (1) where l is the length of the electrode (the length of the section where the phase difference occurs). It is expressed as

Figure 2005181583
数式(1)で分かる通り、Eが増加すると比例してΔnもrの符号によって増加または減少し、δも増加または減少する。そのため、数式(2)における出力パワーPoutputの増減を電圧Vの増減によって制御することが可能である。理想的に二つのアーム長lが対称であるようなマッハツェンダー型干渉計では、図4に示すように印加電圧が0V(0ボルト)のとき、出力光強度は最大値をとり、徐々に電圧を上げていくと、出力光強度は徐々に減少し最小値をとる。
Figure 2005181583
As can be seen from Equation (1), as E increases, Δn increases or decreases in proportion to the sign of r, and δ also increases or decreases. Therefore, the increase / decrease in the output power P output in the equation (2) can be controlled by the increase / decrease in the voltage V. In a Mach-Zehnder interferometer in which the two arm lengths l are ideally symmetrical, when the applied voltage is 0 V (0 volt) as shown in FIG. As the value increases, the output light intensity gradually decreases and takes a minimum value.

これまでのニオブ酸リチウムに代表される電気光学効果を用いた光導波路型の変調器では、光導波回路の作製プロセス誤差によって、駆動電圧を印加していない状態でのマッハツェンダー型干渉計の両アーム間の位相差を一定にできない問題があり、その結果以下のような不具合が発生する。   In conventional optical waveguide type modulators using the electro-optic effect typified by lithium niobate, both of the Mach-Zehnder type interferometers in the state in which no driving voltage is applied due to an optical waveguide circuit fabrication process error. There is a problem that the phase difference between the arms cannot be made constant, and as a result, the following problems occur.

X軸を法線に持つニオブ酸リチウム基板表面にZ軸に平行な光導波路を形成したマッハツェンダー型干渉計においては、電気光学定数rは入射する偏光により作用する係数が異なる。基板表面に平行な振動電場を持つ偏光モードはTEモードと呼ばれ、基板表面に垂直な振動電場を持つ偏光モードはTMモードと呼ばれる。TEの入射偏光に対しては電気光学係数r12、TMモードの偏光に対しては電気光学係数r22が作用する。r12とr22は同じ絶対値であるが符号が逆である、すなわち、 In a Mach-Zehnder interferometer in which an optical waveguide parallel to the Z axis is formed on the surface of a lithium niobate substrate having the X axis as a normal line, the electro-optic constant r has a different coefficient depending on the incident polarized light. A polarization mode having an oscillating electric field parallel to the substrate surface is called a TE mode, and a polarization mode having an oscillating electric field perpendicular to the substrate surface is called a TM mode. The electro-optic coefficient r 12 acts on TE incident polarization, and the electro-optic coefficient r 22 acts on TM-mode polarization. r 12 and r 22 have the same absolute value but opposite signs, ie

Figure 2005181583
である。
Figure 2005181583
It is.

ここでTE,TMモード各々の電圧−光出力特性を個別に表すと、   Here, the voltage-light output characteristics of each of the TE and TM modes are individually expressed.

Figure 2005181583
となる。TMモードについては、正の印加電圧領域だけで見れば、電圧印加によって生じる位相差δは数式(3)から、TEモードの偏光とTMモードの偏光では見掛け上符号が反対で大きさが同一のように見える。
Figure 2005181583
It becomes. Regarding the TM mode, if seen only in the positive applied voltage region, the phase difference δ caused by the voltage application is apparently opposite in sign from the TE mode polarized light and the TM mode polarized light with the same magnitude. looks like.

図5はアーム長lが非対称な場合の電圧−光出力特性を示す。アーム長lが非対称である理想的でない場合は、印加電圧が0V(0ボルト)のときに出力光強度は最大とならないばかりでなく、TEモードが入射した場合とTMモードが入射した場合では印加電圧に対する出力光強度の変化が異なってくる。具体的には、0V(0ボルト)付近で現れる光出力極大が逆方向にシフトする。このため、ある印加電圧において、入射光の偏光が変化すると出力光強度が変化するという問題がある。図5に示すように、ある印加電圧でのTE、TM両モードの出力の差は変調器素子のPDL(Polarization Dependent Loss:偏波依存損失)をもたらす。偏波依存損失は、光ファイバー通信系内に位置する光部品おいて、受信側でのパワー変動につながるため抑制する必要がある。   FIG. 5 shows voltage-light output characteristics when the arm length l is asymmetric. When the arm length l is not ideal, the output light intensity is not maximized when the applied voltage is 0 V (0 volt), but is applied when the TE mode is incident and when the TM mode is incident. The change of the output light intensity with respect to the voltage is different. Specifically, the light output maximum that appears in the vicinity of 0 V (0 volts) shifts in the reverse direction. For this reason, there is a problem that the output light intensity changes when the polarization of the incident light changes at a certain applied voltage. As shown in FIG. 5, the difference between the TE and TM mode outputs at a certain applied voltage results in PDL (Polarization Dependent Loss) of the modulator element. Polarization-dependent loss needs to be suppressed because it leads to power fluctuation on the receiving side in the optical component located in the optical fiber communication system.

作製プロセスのばらつきから生じる光路長誤差を調整する方法として、従来、光導波路の実効屈折率を恒久的に変化させる方法が報告されている。その例として、干渉計の分岐導波路の一方に動作点調整用の膜を装荷し、この膜の長さを調節する方法、あるいは、光導波路上に配置したヒータに直流電流を流すことにより局所的に高温加熱する方法がある(特許文献1参照)。   As a method for adjusting the optical path length error resulting from the variation in the manufacturing process, a method for permanently changing the effective refractive index of the optical waveguide has been reported. As an example, a film for adjusting the operating point is loaded on one of the branching waveguides of the interferometer and the length of this film is adjusted, or a direct current is passed through a heater arranged on the optical waveguide. There is a method of heating at a high temperature (see Patent Document 1).

また、特許文献2においては、マッハツェンダー型干渉計の分岐導波路の一部に、基板材料よりも高屈折率の材料からなる膜体を形成、この膜厚を導波光波長の1/4以下とすることが報告されている。   Further, in Patent Document 2, a film body made of a material having a refractive index higher than that of the substrate material is formed in a part of the branch waveguide of the Mach-Zehnder interferometer, and the film thickness is ¼ or less of the waveguide wavelength. It has been reported that.

更に、特許文献3においてはニオブ酸リチウム結晶を基板とする導波路素子において、SiO2バッファー層の一部に開口部分を作り、ここにシアノアクリレート系高分子接着剤を塗布することによる位相差調整の方法が報告されている。 Further, in Patent Document 3, in a waveguide element having a lithium niobate crystal as a substrate, an opening is formed in a part of the SiO 2 buffer layer, and a phase difference is adjusted by applying a cyanoacrylate polymer adhesive thereto. The method has been reported.

しかし、特許文献1〜3に記載された方法の多くはPLC(Planar Lightwave Circuit)と呼ばれる、平面基板上にSiO2を主成分とする石英系ガラスから成る石英導波路を形成する方法に適用されたものである。このPLC導波路素子は光導波路直上にヒータを附加し、熱光学効果により光導波路の実効屈折率若しくは干渉計の位相差を制御することによって駆動する光導波路素子である。一方、電気光学効果を利用した光導波路素子の場合は電流がほとんど流れることなく電圧のみの駆動であるため素子駆動の電力が1mW以下であることが特徴である。従って、出力5W程度のヒータを附加することは低消費電力という特徴が生かせず現実的ではない。 However, many of the methods described in Patent Documents 1 to 3 are applied to a method called a PLC (Planar Lightwave Circuit), which is a method of forming a quartz waveguide made of quartz glass containing SiO 2 as a main component on a flat substrate. It is a thing. This PLC waveguide element is an optical waveguide element that is driven by adding a heater directly above the optical waveguide and controlling the effective refractive index of the optical waveguide or the phase difference of the interferometer by the thermo-optic effect. On the other hand, in the case of an optical waveguide element utilizing the electro-optic effect, since the current is hardly driven and only voltage is driven, the element driving power is 1 mW or less. Therefore, it is not practical to add a heater with an output of about 5 W because the feature of low power consumption cannot be utilized.

また、特許文献1に述べられている動作点調整用の膜を装荷しこの膜の長さを調整する方法では、実際にはレーザ照射によるトリミング、すなわち、膜物質の過熱蒸発によっている。従って、この方法では、装荷された膜と同時に導波路基板材料が損傷を受けて光伝播損失が増大する恐れがある。   In the method of loading the operating point adjusting film described in Patent Document 1 and adjusting the length of the film, the trimming by laser irradiation, that is, the overheating of the film material is actually performed. Therefore, in this method, the waveguide substrate material is damaged at the same time as the loaded film, which may increase the light propagation loss.

同様に、特許文献2においても、膜体の長さを調節する方法としてYAGレーザ照射によるトリミングがなされており、膜体と同時に導波路基板材料が損傷を受けて光伝播損失が増大する恐れがある。   Similarly, in Patent Document 2, trimming by YAG laser irradiation is performed as a method for adjusting the length of the film body, and at the same time as the film body, the waveguide substrate material may be damaged and light propagation loss may increase. is there.

また、特許文献3に記載の方法では、微量の位相差を調節するためには付加すべきシアノアクリレート系高分子接着剤等の塗布量を極めて正確に塗布できなければならない。しかし、特許文献3においては、その塗布方法は記述されておらずこの報告に基づいて結果を再現することは出来ない。
特開平04−337707号公報(請求項1、2、段落番号0023) 特開2001−100163号公報(請求項1、段落番号0028) 特開平07−028006号公報(請求項6、段落番号0035、0036)
Moreover, in the method described in Patent Document 3, it is necessary to be able to apply a coating amount of a cyanoacrylate polymer adhesive or the like to be added very accurately in order to adjust a small amount of phase difference. However, in Patent Document 3, the coating method is not described, and the result cannot be reproduced based on this report.
Japanese Laid-Open Patent Publication No. 04-337707 (Claims 1, 2, paragraph number 0023) JP 2001-100193 (Claim 1, paragraph number 0028) JP 07-028006 A (Claim 6, paragraph numbers 0035 and 0036)

本発明はこのような問題点に着目してなされたもので、その課題とするところは、従来技術の欠点が克服された光導波路素子の位相差調整方法を提供することにある。   The present invention has been made paying attention to such problems, and the object of the present invention is to provide a method for adjusting the phase difference of an optical waveguide element in which the drawbacks of the prior art are overcome.

そこで、このような課題を解決するため本発明者等が鋭意研究を継続した結果、以下に述べるような現象に着目して本発明を完成するに至っている。すなわち、本発明者等は光導波路から直上の物質に僅かながら光が染み出していることに着目し、光回路素子を構成する光導波路そのものの屈折率を変化させるのではなく、光導波路の直上にある物質の屈折率を変化させ、これにより導波路を伝搬する光波に対する実効的な屈折率が変化することを利用して本発明に係る位相差調整法を見出したものである。   Therefore, as a result of continuous researches by the present inventors in order to solve such problems, the present invention has been completed by paying attention to the following phenomenon. That is, the present inventors pay attention to a slight amount of light leaking from the optical waveguide to the material immediately above, and do not change the refractive index of the optical waveguide itself constituting the optical circuit element, but directly above the optical waveguide. The phase difference adjustment method according to the present invention has been found by utilizing the fact that the effective refractive index for the light wave propagating through the waveguide is changed by changing the refractive index of the substance in the structure.

すなわち、請求項1に係る発明は、
結晶質基板と、この基板上に設けられた入力用並びに出力用チャネル光導波路と、これ等入出力用チャネル光導波路間に設けられかつマッハツェンダー型干渉計を構成する光導波路とを備える光導波路素子の位相差調整方法を前提とし、
上記マッハツェンダー型干渉計における少なくとも一方のアームを構成する光導波路の直上を含む領域に、この光導波路を形成する物質よりその屈折率が低い液状の透明樹脂にて構成されかつ塗布後の形態が10マイクロメーターから200マイクロメーターの直径を有する円形状若しくはドーム状の液滴を一個ずつ分割して光導波路に沿って塗布し、これにより上記光導波路の実効屈折率が異なる領域を生じさせてマッハツェンダー型干渉計の位相差を調整することを特徴とする。
That is, the invention according to claim 1
Optical waveguide comprising a crystalline substrate, input and output channel optical waveguides provided on the substrate, and an optical waveguide provided between the input / output channel optical waveguides and constituting a Mach-Zehnder interferometer Based on the element phase difference adjustment method,
The region including the portion directly above the optical waveguide constituting at least one arm in the Mach-Zehnder interferometer is composed of a liquid transparent resin whose refractive index is lower than that of the material forming the optical waveguide, and the form after application is A circular or dome-shaped droplet having a diameter of 10 micrometers to 200 micrometers is divided one by one and applied along the optical waveguide, thereby generating regions having different effective refractive indexes of the optical waveguide, thereby increasing the Mach. The phase difference of the Zender interferometer is adjusted.

また、請求項2に係る発明は、
請求項1記載の発明に係る光導波路素子の位相差調整方法を前提とし、
屈折率が1以上2.2以下、25℃における粘性が50mPa・s以上1000mPa・s以下である液状の樹脂材料により上記透明樹脂が構成されていることを特徴とし、
請求項3に係る発明は、
請求項1記載の発明に係る光導波路素子の位相差調整方法を前提とし、
ニオブ酸リチウム若しくはタンタル酸リチウムにより上記結晶質基板が構成されていることを特徴とするものである。
The invention according to claim 2
Based on the phase difference adjusting method for the optical waveguide device according to the invention of claim 1,
The transparent resin is composed of a liquid resin material having a refractive index of 1 to 2.2 and a viscosity at 25 ° C. of 50 mPa · s to 1000 mPa · s,
The invention according to claim 3
Based on the phase difference adjusting method for the optical waveguide device according to the invention of claim 1,
The crystalline substrate is composed of lithium niobate or lithium tantalate.

本発明に係る光導波路素子の位相差調整方法は、マッハツェンダー型干渉計における少なくとも一方のアームを構成する光導波路の直上を含む領域に、この光導波路を形成する物質よりその屈折率が低い液状の透明樹脂にて構成されかつ塗布後の形態が10マイクロメーターから200マイクロメーターの直径を有する円形状若しくはドーム状の液滴を一個ずつ分割して光導波路に沿って塗布し、これにより上記光導波路の実効屈折率が異なる領域を生じさせてマッハツェンダー型干渉計の位相差を調整することを特徴とする。   The phase difference adjusting method for an optical waveguide element according to the present invention is a liquid having a refractive index lower than that of a substance forming the optical waveguide in a region including the portion directly above the optical waveguide constituting at least one arm in the Mach-Zehnder interferometer. A circular or dome-shaped droplet having a diameter of 10 micrometers to 200 micrometers, which is made of a transparent resin, is applied one by one along the optical waveguide. The phase difference of the Mach-Zehnder interferometer is adjusted by generating regions having different effective refractive indexes of the waveguide.

従って、この位相差調整方法によれば、簡易な方法で、特性の極めて高く、歩留まりのよい可変光減衰器等の光導波路素子を実現できるため、波長多重通信システムに必要な、高機能な光導波路素子を安価に歩留まりよく提供することが可能となる。   Therefore, according to this phase difference adjustment method, an optical waveguide device such as a variable optical attenuator having extremely high characteristics and a high yield can be realized by a simple method. It is possible to provide the waveguide element at a low cost and with a high yield.

以下、本発明を具体的に説明する。   The present invention will be specifically described below.

図1はニオブ酸リチウム基板上に光導波路型マッハツェンダー干渉計を形成した強度変調器の概略構成を示している。すなわち、結晶のX軸方位でカットされたニオブ酸リチウム基板11に、この結晶のZ軸方向に光を伝搬させるようにTi蒸着およびTi拡散によって光導波路の下部アーム部13および上部アーム部14を形成した。ここで、マッハツェンダー型干渉計の2つのアーム13、14は等しい長さに設計されており、マッハツェンダー型干渉計に印加する電圧が0ボルトのとき、素子出力ポート17から出射する光の強度が最大となることを目標としている。   FIG. 1 shows a schematic configuration of an intensity modulator in which an optical waveguide type Mach-Zehnder interferometer is formed on a lithium niobate substrate. That is, the lower arm portion 13 and the upper arm portion 14 of the optical waveguide are formed on the lithium niobate substrate 11 cut in the X-axis direction of the crystal by Ti vapor deposition and Ti diffusion so that light propagates in the Z-axis direction of the crystal. Formed. Here, the two arms 13 and 14 of the Mach-Zehnder interferometer are designed to be equal in length, and the intensity of light emitted from the element output port 17 when the voltage applied to the Mach-Zehnder interferometer is 0 volts. The goal is to maximize.

更に、電極間ギャップを28μm(マイクロメーター)として上記アーム(光導波路)13、14並びに上記ニオブ酸リチウム基板11のX軸に対し垂直な電場を印加するように長さ30mmのマッハツェンダー型干渉計正電極15および干渉計負電極16をTi金属およびAu金属にて形成した。   Further, a Mach-Zehnder interferometer having a length of 30 mm so as to apply an electric field perpendicular to the X axis of the arms (optical waveguides) 13 and 14 and the lithium niobate substrate 11 with an interelectrode gap of 28 μm (micrometer). The positive electrode 15 and the interferometer negative electrode 16 were formed of Ti metal and Au metal.

そして、図1に示す素子の入力ポート12から波長1.55μm用シングルモードファイバーを用いて、波長1.55μmの光を入力ポート12においてTEモード偏光となるように入射させた。その結果、上記干渉計正電極15および干渉計負電極16の印加電圧を0から36ボルトに掃引したとき、図5に示した例と類似して、素子出力ポート17から出射する光出力の極大値を与える電圧は1.2ボルトとなり、電圧が0ボルトで最大とはならなかった。このずれを電圧と光出力の関係における位相のシフト量であらわすと0.21ラジアン(rad)であった。   Then, using a single mode fiber for a wavelength of 1.55 μm from the input port 12 of the element shown in FIG. 1, light having a wavelength of 1.55 μm was incident on the input port 12 so as to be TE mode polarized light. As a result, when the applied voltage of the interferometer positive electrode 15 and the interferometer negative electrode 16 is swept from 0 to 36 volts, the maximum of the light output emitted from the element output port 17 is similar to the example shown in FIG. The voltage giving value was 1.2 volts, which was not the maximum at 0 volts. This shift was expressed as a phase shift amount in the relationship between voltage and light output, and was 0.21 radians (rad).

ここで、その屈折率が1.4で、粘性係数が250mPa・sであるアクリル系の紫外線硬化樹脂を、圧電素子を利用して内径100μmのノズルから上部アーム部14における出力側テーパー部分18に滴下した。滴下されたアクリル系の紫外線硬化樹脂は直径120μmのドーム型形状を有する液滴となり、出力側テーパー部分18に塗布を60μmの長さづつ塗布した。   Here, an acrylic ultraviolet curable resin having a refractive index of 1.4 and a viscosity coefficient of 250 mPa · s is applied from the nozzle having an inner diameter of 100 μm to the output side tapered portion 18 in the upper arm portion 14 using a piezoelectric element. It was dripped. The dropped acrylic ultraviolet curable resin was a droplet having a dome shape with a diameter of 120 μm, and the coating was applied to the output side tapered portion 18 in a length of 60 μm.

そして、塗布を5回行った結果、光導波路直上の塗布領域の長さが増加するに従い、図2のグラフ図において黒丸で示すように位相シフトが徐々に減少し、塗布5回目、すなわち、60μm×5=3mmの長さに亘り塗布した段階で位相シフトが−0.03ラジアンとなった。   As a result of performing the coating five times, as the length of the coating region immediately above the optical waveguide increases, the phase shift gradually decreases as shown by the black circle in the graph of FIG. 2, and the fifth coating, that is, 60 μm. The phase shift became −0.03 radians when it was applied over a length of × 5 = 3 mm.

他方、上記塗布試験の後、塗布した未硬化の樹脂を上部アーム部14から除去し、上記紫外線硬化樹脂を下部アーム部13における出力側テーパー部分19に60μmの長さづつ塗布領域を増加させた結果、上記の塗布結果とは反対に、図2のグラフ図において白丸で示すように、位相シフトが徐々に増加し、塗布5回目、すなわち、60μm×5=3mmの長さに亘り塗布した段階で位相シフトがほぼ0.39ラジアンとなった。ここで、図2のグラフ図にプロットした位相シフト量を得るため、図5のような電圧−光出力の値を上記数式(5)にフィティングしてVπおよび位相シフトδTEを決めるという方法を採
用した。
On the other hand, after the application test, the applied uncured resin was removed from the upper arm portion 14, and the application region of the UV curable resin was increased by 60 μm in length to the output side tapered portion 19 in the lower arm portion 13. As a result, as shown by the white circles in the graph of FIG. 2, the phase shift gradually increased and the coating was applied for the fifth time, that is, 60 μm × 5 = 3 mm, as shown by the white circle in the graph of FIG. And the phase shift was about 0.39 radians. How the value of the optical output in fitting to the equation (5) that determines the Vπ and the phase shift [delta] TE - Here, in order to obtain the phase shift amount plotted in the graph of FIG. 2, such voltage as in FIG. 5 It was adopted.

この結果から、光導波路の直上に紫外線硬化型樹脂等液状の透明樹脂を約3mmの長さにわたり塗布することにより、位相シフトを約±0.2ラジアン(すなわち、上部アーム部14における出力側テーパー部分18では「−0.03ラジアン−0.21ラジアン=−0.24ラジアン」、下部アーム部13における出力側テーパー部分19では「0.39ラジアン−0.21ラジアン=+0.18ラジアン」)に亘って制御できることが確認された。このことから、1mmあたり約±0.07ラジアンの位相シフトを調整できることになる。   From this result, by applying a liquid transparent resin such as an ultraviolet curable resin directly over the optical waveguide over a length of about 3 mm, the phase shift is about ± 0.2 radians (that is, the output side taper in the upper arm portion 14). The portion 18 is “−0.03 radians−0.21 radians = −0.24 radians”, and the output side tapered portion 19 of the lower arm portion 13 is “0.39 radians−0.21 radians = + 0.18 radians”) It was confirmed that it was possible to control over the entire range. From this, a phase shift of about ± 0.07 radians per mm can be adjusted.

尚、滴下される透明樹脂の直径は小さいほど精密な位相調整が可能になるが、直径が120μmと比較的大きくても、対象となる光導波路素子が乗せられたステージを10μmづつ移動させ、塗布を繰り返した場合、実質的に10μmの分解能で透明樹脂の塗布面積を増やすことができる。すなわち、一滴下あたり約±0.0007ラジアンの高精度で位相の制御が可能となる。   The smaller the diameter of the transparent resin to be dropped, the more precise the phase adjustment becomes possible. However, even if the diameter is relatively large (120 μm), the stage on which the target optical waveguide element is placed is moved by 10 μm and applied. Can be repeated, the coating area of the transparent resin can be increased with a resolution of 10 μm. That is, the phase can be controlled with high accuracy of about ± 0.0007 radians per drop.

一方、液滴の厚みムラの影響は、導波路を伝搬する光が導波路基板から上部へ染み出している大きさが0.5μm以下であることから、液滴の半径がそれを大きく上回っていれば、液滴における大きさのばらつきは無視できる。尚、上記液状の透明樹脂は、必要とする塗布量が決定された後に硬化される。この場合、液状の透明樹脂が紫外線硬化型樹脂で構成されている場合、紫外線の照射によって硬化収縮を起こすが、この対策として硬化後の収縮率が10%以下である材料を選択すれば、硬化後の位相ズレはほとんど抑制することができる。更に、硬化に伴う樹脂自身の屈折率変化による影響に関しても、例えば、「塗布/硬化」の工程を2工程に分けることにより抑制することが可能である。すなわち、第一工程では上記液状の透明樹脂を目標とする位相補正量に相当する長さの例えば90%まで塗布した後に硬化させる。次に、ここまでで達せられる位相値を確認した後、第二工程で残りの位相値分を塗布、硬化させる方法である。尚、これら液状透明樹脂の塗布によって光導波路の損失が増加しないことも確認されている。   On the other hand, the influence of the uneven thickness of the droplet is that the size of the light propagating through the waveguide oozes upward from the waveguide substrate is 0.5 μm or less, so the radius of the droplet is much larger than that. If this is the case, the variation in size of the droplets can be ignored. The liquid transparent resin is cured after the required coating amount is determined. In this case, when the liquid transparent resin is composed of an ultraviolet curable resin, curing shrinkage is caused by irradiation with ultraviolet rays. As a countermeasure against this, if a material having a shrinkage ratio after curing of 10% or less is selected, the resin is cured. Subsequent phase shift can be almost suppressed. Furthermore, the influence of the refractive index change of the resin itself accompanying the curing can be suppressed by dividing the “coating / curing” step into two steps, for example. That is, in the first step, the liquid transparent resin is applied to, for example, 90% of the length corresponding to the target phase correction amount, and then cured. Next, after confirming the phase value achieved so far, the remaining phase value is applied and cured in the second step. It has also been confirmed that the loss of the optical waveguide does not increase by the application of these liquid transparent resins.

そして、本発明に係る位相差調整方法を用いて上述した偏波無依存型の可変光減衰器に対し位相調整を行ったところ、10dB減衰時のPDL(偏波依存損失)は5dBであったが1.5dBに減少し、20dB減衰時のPDLは12.3dBから2.1dBに減少した。   Then, when the phase adjustment was performed on the above-described polarization-independent variable optical attenuator using the phase difference adjustment method according to the present invention, the PDL (polarization-dependent loss) at the time of 10 dB attenuation was 5 dB. Decreased to 1.5 dB, and PDL at 20 dB attenuation decreased from 12.3 dB to 2.1 dB.

尚、X−方位結晶上でZ−方位伝播の変調器を例に挙げて本発明を説明したが、本発明はこの方位および変調器に当然のことながら限定されるものではない。   Although the present invention has been described by taking a Z-directional propagation modulator as an example on an X-directional crystal, the present invention is of course not limited to this orientation and modulator.

また、図1のマッハツェンダー型干渉計における入力側と出力側の両方ないし片方のY−分岐を方向性結合器型3dBカプラーで置き換えた干渉型素子(バランストブリッジ型変調器とも呼ばれる)においても本発明が有効であることは明らかである。   Also in the interference type element (also called a balanced bridge type modulator) in which both the input side and the output side of the Mach-Zehnder type interferometer of FIG. 1 or one Y-branch is replaced with a directional coupler type 3 dB coupler. It is clear that the present invention is effective.

また、液状の透明樹脂で構成される液滴が塗布される領域として、上述した説明では上部アーム部14および下部アーム部13の各出力側テーパー部分18、19が例示されているが、入力側のテーパー部分に塗布しても同様の効果が得られ、かつ、電極15、16に挟まれたテーパーの付かない領域に塗布しても同様である。   Further, in the above description, the output side taper portions 18 and 19 of the upper arm portion 14 and the lower arm portion 13 are exemplified as the region to which the liquid droplet made of the liquid transparent resin is applied. The same effect can be obtained even when applied to the tapered portion, and the same effect can be obtained when applied to the non-tapered region between the electrodes 15 and 16.

また、液状の透明樹脂として紫外線硬化型樹脂が適用されているが熱硬化型樹脂等の適用も可能である。   Further, although an ultraviolet curable resin is applied as a liquid transparent resin, a thermosetting resin or the like can also be applied.

本発明に係る光導波路素子の位相差調整方法を説明するための説明図。Explanatory drawing for demonstrating the phase difference adjustment method of the optical waveguide element which concerns on this invention. 本発明に係る光導波路素子の位相差調整方法において液滴の塗布回数と位相シフト量との関係を示すグラフ図。The graph which shows the relationship between the frequency | count of application | coating of a droplet, and a phase shift amount in the phase difference adjustment method of the optical waveguide element which concerns on this invention. マッハツェンダー型干渉計を構成する光導波路を備える光導波路素子の説明図。Explanatory drawing of an optical waveguide element provided with the optical waveguide which comprises a Mach-Zehnder type interferometer. マッハツェンダー型干渉計を構成する光導波路を備える光導波路素子(光導波路型マッハツェンダー干渉計)における印加電圧と光出力との関係を示すグラフ図。The graph which shows the relationship between the applied voltage and optical output in an optical waveguide element (optical waveguide type Mach-Zehnder interferometer) provided with the optical waveguide which comprises a Mach-Zehnder type interferometer. アーム間に作り込まれた位相差が存在する場合の光導波路型マッハツェンダー干渉計における印加電圧と光出力との関係を示すグラフ図。The graph which shows the relationship between the applied voltage and optical output in an optical waveguide type | mold Mach-Zehnder interferometer in case the phase difference built between arms exists.

符号の説明Explanation of symbols

11 ニオブ酸リチウム基板(結晶質基板)
12 入力ポート
13 下部アーム
14 上部アーム
15 正電極
16 負電極
17 出力ポート
18 上部アームの出力側テーパー部分
19 下部アームの出力側テーパー部分
11 Lithium niobate substrate (crystalline substrate)
DESCRIPTION OF SYMBOLS 12 Input port 13 Lower arm 14 Upper arm 15 Positive electrode 16 Negative electrode 17 Output port 18 Output side taper part of upper arm 19 Output side taper part of lower arm

Claims (3)

結晶質基板と、この基板上に設けられた入力用並びに出力用チャネル光導波路と、これ等入出力用チャネル光導波路間に設けられかつマッハツェンダー型干渉計を構成する光導波路とを備える光導波路素子の位相差調整方法において、
上記マッハツェンダー型干渉計における少なくとも一方のアームを構成する光導波路の直上を含む領域に、この光導波路を形成する物質よりその屈折率が低い液状の透明樹脂にて構成されかつ塗布後の形態が10マイクロメーターから200マイクロメーターの直径を有する円形状若しくはドーム状の液滴を一個ずつ分割して光導波路に沿って塗布し、これにより上記光導波路の実効屈折率が異なる領域を生じさせてマッハツェンダー型干渉計の位相差を調整することを特徴とする光導波路素子の位相差調整方法。
Optical waveguide comprising a crystalline substrate, input and output channel optical waveguides provided on the substrate, and an optical waveguide provided between the input / output channel optical waveguides and constituting a Mach-Zehnder interferometer In the element phase difference adjustment method,
The region including the portion directly above the optical waveguide constituting at least one arm in the Mach-Zehnder interferometer is composed of a liquid transparent resin whose refractive index is lower than that of the material forming the optical waveguide, and the form after application is A circular or dome-shaped droplet having a diameter of 10 micrometers to 200 micrometers is divided one by one and applied along the optical waveguide, thereby generating regions having different effective refractive indexes of the optical waveguide, thereby increasing the Mach. A method of adjusting a phase difference of an optical waveguide device, wherein the phase difference of a Zender interferometer is adjusted.
屈折率が1以上2.2以下、25℃における粘性が50mPa・s以上1000mPa・s以下である液状の樹脂材料により上記透明樹脂が構成されていることを特徴とする請求項1記載の光導波路素子の位相差調整方法。   2. The optical waveguide according to claim 1, wherein the transparent resin is composed of a liquid resin material having a refractive index of 1 to 2.2 and a viscosity at 25 ° C. of 50 mPa · s to 1000 mPa · s. Method for adjusting the phase difference of the element. ニオブ酸リチウム若しくはタンタル酸リチウムにより上記結晶質基板が構成されていることを特徴とする請求項1記載の光導波路素子の位相差調整方法。

2. The phase difference adjusting method for an optical waveguide element according to claim 1, wherein the crystalline substrate is made of lithium niobate or lithium tantalate.

JP2003420580A 2003-12-18 2003-12-18 Method of adjusting phase difference of optical waveguide element Expired - Fee Related JP4161897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420580A JP4161897B2 (en) 2003-12-18 2003-12-18 Method of adjusting phase difference of optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420580A JP4161897B2 (en) 2003-12-18 2003-12-18 Method of adjusting phase difference of optical waveguide element

Publications (2)

Publication Number Publication Date
JP2005181583A true JP2005181583A (en) 2005-07-07
JP4161897B2 JP4161897B2 (en) 2008-10-08

Family

ID=34782063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420580A Expired - Fee Related JP4161897B2 (en) 2003-12-18 2003-12-18 Method of adjusting phase difference of optical waveguide element

Country Status (1)

Country Link
JP (1) JP4161897B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532471A (en) * 2012-10-24 2015-11-09 オクラロ テクノロジー リミテッド Light modulator
EP2881787A4 (en) * 2012-07-30 2016-04-27 Fujitsu Optical Components Ltd Light receiving circuit
CN115508627A (en) * 2022-09-26 2022-12-23 重庆大学 Silicon-based waveguide electric field sensing chip based on slit runway type micro-ring and measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881787A4 (en) * 2012-07-30 2016-04-27 Fujitsu Optical Components Ltd Light receiving circuit
US9461753B2 (en) 2012-07-30 2016-10-04 Fujitsu Optical Components Limited Optical receiver circuit
JP2015532471A (en) * 2012-10-24 2015-11-09 オクラロ テクノロジー リミテッド Light modulator
JP2019040213A (en) * 2012-10-24 2019-03-14 オクラロ テクノロジー リミテッド Optical modulator
US10401703B2 (en) 2012-10-24 2019-09-03 Lumentum Technology Uk Limited Optical modulator
CN115508627A (en) * 2022-09-26 2022-12-23 重庆大学 Silicon-based waveguide electric field sensing chip based on slit runway type micro-ring and measuring method

Also Published As

Publication number Publication date
JP4161897B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
US4984861A (en) Low-loss proton exchanged waveguides for active integrated optic devices and method of making same
US7389030B2 (en) Optically functional device
JP2009053499A (en) Optical modulator and optical modulation module
JP2008039859A (en) Optical modulator
JP2007304427A (en) Optical switching element
JP2007212787A (en) Optical control element, optical switching unit, and optical modulator
JPWO2010082673A1 (en) Branched optical waveguide, optical waveguide substrate, and optical modulator
JP4691428B2 (en) Light modulator
JP4161897B2 (en) Method of adjusting phase difference of optical waveguide element
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP4544474B2 (en) Light modulator
US20140307994A1 (en) Electro-optic modulator having large bandwidth
JPH0996731A (en) Waveguide type optical device
US6268949B1 (en) Optical intensity modulator and fabrication method using an optical waveguide having an arc shaped path
JP2008009314A (en) Optical waveguide element, optical modulator, and optical communication device
JPH0728006A (en) Optical bias adjustment method and waveguide type optical modulation device, as well as method for imparting phase difference to guided light
US20180284351A1 (en) Optical waveguide device
US20100247025A1 (en) Optical element
JP2009301023A (en) Optical modulator
JP2006215159A (en) Method for adjusting phase difference of optical waveguide element
JP4671335B2 (en) Waveguide type optical device
Tripathi et al. Liquid Crystal Based Inverted Rib Waveguide
KR20240158178A (en) Lithium niobate waveguide modulator device and method for manufacturing same
JP5087043B2 (en) ELECTRO-OPTICAL ELEMENT AND MANUFACTURING METHOD THEREOF
CN107179617B (en) High-speed electro-optic modulator and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees