JP2005181071A - Spin wave exciting/detecting device, high-frequency signal processing machine using the same and structure evaluating device of carbon nanotube - Google Patents

Spin wave exciting/detecting device, high-frequency signal processing machine using the same and structure evaluating device of carbon nanotube Download PDF

Info

Publication number
JP2005181071A
JP2005181071A JP2003421425A JP2003421425A JP2005181071A JP 2005181071 A JP2005181071 A JP 2005181071A JP 2003421425 A JP2003421425 A JP 2003421425A JP 2003421425 A JP2003421425 A JP 2003421425A JP 2005181071 A JP2005181071 A JP 2005181071A
Authority
JP
Japan
Prior art keywords
cnt
spin wave
spin
current
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003421425A
Other languages
Japanese (ja)
Inventor
Tanroku Miyoshi
旦六 三好
Masato Ogawa
真人 小川
Toshihito Umegaki
俊仁 梅垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Industry Research Organization NIRO
Original Assignee
New Industry Research Organization NIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Industry Research Organization NIRO filed Critical New Industry Research Organization NIRO
Priority to JP2003421425A priority Critical patent/JP2005181071A/en
Publication of JP2005181071A publication Critical patent/JP2005181071A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spin wave exciting/detecting device for directly exciting/detecting a spin wave having a nano-wavelength using a carbon nano-tube (CNT), a high-frequency signal processing machine using the spin wave exciting/detecting device, and a structure evaluating device which uses the CNT. <P>SOLUTION: The spin wave exciting/detecting device is equipped with the CNT 1, a ferrite 2, a high-frequency current generator or a ratiation electromagnetic field generator and a direct-current magnetic field generator, and constituted so that a high-frequency current 3 flows through the CNT 1, and a direct current magnetic field 5 is applied to the ferrite 2 to excite/detect the spin wave, by the interaction of the current of the CNT 1 with the spin 6 of the ferrite 2. The high-frequency signal processing device and the CNT structure evaluating device, both of which are equipped with this device, are also obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、スピン波励振・検出装置、前記装置を用いた高周波信号処理装置及びカーボンナノチューブ(以下、CNTと称す)の構造評価装置に関する。   The present invention relates to a spin wave excitation / detection device, a high-frequency signal processing device using the device, and a structure evaluation device for a carbon nanotube (hereinafter referred to as CNT).

従来のスピン波を利用したデバイスやCNTを利用した発振装置として次のようなものがある。
特開平06−97562 特開 2001−148596 特開 2002−182176 特開平06−310976
Conventional devices using spin waves and oscillation devices using CNT include the following.
JP 06-97562 A JP 2001-148596 A JP 2002-182176 A JP-A-06-310976

従来の金属を励振・検出用電極に用いる高周波信号処理装置では、ナノサイズの寸法制御が困難であり、(100nm程度が限界)、例えばSAWやMSWなどのマイクロメートル程度までの短波を用いた高周波信号処理装置はあったものの、ナノ波長を持つスピン波を直接励振・検出することができなかった。   In a conventional high-frequency signal processing apparatus using a metal for an excitation / detection electrode, it is difficult to control the size of the nano-size (the limit is about 100 nm). Although there was a signal processing device, spin waves with nano wavelengths could not be directly excited and detected.

本発明は、上記問題を鑑みてなされたものであって、その目的とするところは、CNTを用いてナノ波長を持つスピン波を直接励振・検出するスピン波励振・検出装置及び前記スピン波励振・検出装置を用いた高周波信号処理装置及びCNTの構造評価装置提供するものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a spin wave excitation / detection device for directly exciting / detecting a spin wave having a nano wavelength using CNTs and the spin wave excitation. A high-frequency signal processing device using a detection device and a CNT structure evaluation device are provided.

本発明のスピン波励振・検出装置は、CNTと、フェライトと、高周波電流発生器に若しくは放射電磁界発生器と、直流磁界発生器を備え、前記CNTに高周波電流が流れるようにし、前記フェライトに直流磁界を印加し、CNTの電流がフェライトのスピンと相互作用してスピン波を励振・検出する。
本発明の高周波信号処理装置は、前記スピン波を励振・検出装置を備えている。
本発明のCNT構造評価装置は、前記スピン波を励振・検出装置を備えている。
The spin wave excitation / detection device according to the present invention includes a CNT, a ferrite, and a high frequency current generator or a radiated electromagnetic field generator and a direct current magnetic field generator so that a high frequency current flows through the CNT, A DC magnetic field is applied, and the CNT current interacts with the ferrite spins to excite and detect spin waves.
The high-frequency signal processing device of the present invention includes a device for exciting and detecting the spin wave.
The CNT structure evaluation apparatus of the present invention includes a device for exciting and detecting the spin wave.

以下、本発明の実施形態を説明する。
CNTの物性を利用するエレクトロニクスでは、グラフェンシート(グラファイト) の巻き方に依存するCNT のカイラリティーに対する物性の変化、電気伝導率の制御が重要な問題である。われわれ発明者らは、CNT をマイクロ波・ミリ波デバイスにおけるスピン波励振・検出用のナノ電極構造へ応用しようと考え、その基本伝導特性と、電磁波との相互作用につき検討を行ってきた。
Embodiments of the present invention will be described below.
In electronics that utilizes the physical properties of CNTs, changes in physical properties and control of electrical conductivity with respect to the chirality of CNTs, which depend on how the graphene sheet (graphite) is wound, are important issues. The inventors of the present invention have considered the application of CNT to a nanoelectrode structure for spin wave excitation / detection in microwave / millimeter wave devices, and have studied the basic conduction characteristics and interaction with electromagnetic waves.

スピン波励振・検出用ナノ電極を検討する上で従来の金属はnm の寸法制御が困難であり、現状100nm が限界である。一方、CNT は、
1. 自己組織化によりnm 程度の直径制御が有望で、例えばカイラリティー(10, 0) で直径0.783nm、(10, 10) で1.357nm をもち、
2. 断熱的キャリア輸送によるバリスティック伝導性(μm程度の長い平均自由行程) をもつ。
これら1、2 の特徴から、nm 波長のスピン波を励振・検出し、かつスピンに熱揺ぎを与えないナノ電極の実現に有望である。ナノ電極実現のために、CNT の基本的伝導特性を電子波の量子輸送という観点で捉え、以下を図面に基づいて説明する。
In the study of nanoelectrodes for spin wave excitation and detection, it is difficult to control the size of conventional metals, and the current limit is 100 nm. On the other hand, CNT is
1. It is promising to control the diameter of the order of nm by self-organization. For example, it has a diameter of 0.783 nm for chirality (10, 0) and 1.357 nm for (10, 10).
2. Ballistic conductivity (long mean free path of about μm) due to adiabatic carrier transport.
These features 1 and 2 are promising for the realization of nanoelectrodes that excite and detect spin waves with a wavelength of nm, and that do not apply thermal fluctuations to the spins. In order to realize nanoelectrodes, the basic conduction characteristics of CNT will be considered from the viewpoint of quantum transport of electron waves, and the following will be described with reference to the drawings.

[CNTのバンド理論]
図1 は、グラフェンシートの格子点を示す図である。図1のグラフェンシートの格子点での波動関数を、LCAO 近似して、シュレディンガー方程式を解くと、固有値方程式としてグラフェンシートの分散関係式が得られる。
エネルギーをk 空間上に等高線でプロットしたグラフェンシートの分散曲線を図2 に示す。図2 中、上に+枝、下に−枝を示す。また、6 角形の線でΓ点、M点、K 点を重ねた。+枝と−枝はK点で接し、Γ点で最大間隔になる。またM点からM 点を結ぶ線上では一定のエネルギーになる。
図3 にカイラリティー(3, 0) のCNT の場合の第1 ブリルアンゾーンを示す。第1 ブリルアンゾーンは、キラル角で決まる(6π/a) × (4π/ √3a)の長方形と、周方向の境界条件から決まる7 本の直線とが重なる線分になる。同様に、カイラリティー(n, m) の場合についても第1 ブリルアンゾーンの線分を作ることができる。
[CNT band theory]
FIG. 1 is a diagram showing lattice points of a graphene sheet. When the wave function at the lattice point of the graphene sheet of FIG. 1 is approximated by LCAO and the Schrodinger equation is solved, a dispersion relational expression of the graphene sheet is obtained as an eigenvalue equation.
Figure 2 shows the dispersion curve of a graphene sheet in which energy is plotted in contour on the k-space. In FIG. 2, the + branch is shown above and the-branch is shown below. In addition, the Γ point, M point, and K point were overlapped with a hexagonal line. The + branch and the-branch touch each other at the K point, and have a maximum interval at the Γ point. In addition, the energy is constant on the line connecting M point to M point.
Figure 3 shows the first Brillouin zone for CNT with chirality (3, 0). The first Brillouin zone is a line segment that overlaps a (6π / a) × (4π / √3a) rectangle determined by the chiral angle and seven straight lines determined by the boundary conditions in the circumferential direction. Similarly, the first Brillouin zone line can be created for chirality (n, m).

CNT の分散曲線は、図2 のグラフェンシートの分散曲線を図3 の第1 ブリルアンゾーンの線分で切り取った切り口を、CNT で伝搬する電子波の分散関係を表す実バンドとしてもつ。またMuller 法でCNT の分散関係式を数値的に評価し、非伝搬波(エバネッセント波)の分散曲線を表す複素バンドを求め、あわせて図示すると図4 になる。図4 の分散曲線はカイラリティーが(3, 0) の場合を示すが、(n, 0)、(n, n) でそれぞれix は2n+1 個あり、n 組が2 重縮退している。一方n と m が等しくない場合、分散曲線の本数はn、m によって複雑に変化する。 The dispersion curve of CNTs has a cut end of the graphene sheet dispersion curve in Fig. 2 taken along the first Brillouin zone line in Fig. 3 as an actual band representing the dispersion relationship of the electron wave propagating through the CNTs. Also, numerically evaluating the dispersion relations of CNTs using the Muller method, a complex band representing the dispersion curve of the non-propagating wave (evanescent wave) is obtained, and the result is shown in Fig. 4. The dispersion curve in Fig. 4 shows the case where the chirality is (3, 0). There are 2n + 1 i x in (n, 0) and (n, n), and n pairs are degenerate twice. Yes. On the other hand, when n and m are not equal, the number of dispersion curves varies in a complex manner depending on n and m.

また、n、m、ix に依存してバンドギャップがない金属的な性質をもつ場合と、バンドギャップを生じる半導体的な性質をもつ場合とに分かれる。一般にn-m が3 の倍数のときに金属的になり、n-m が3 の倍数ではないときに半導体的になる。例えば、(3, 0)、(6, 0) では金属的、(4, 0)、(5,0) では半導体的になる。半導体的の場合にバンドギャップ中の波数が複素数になり(図中A)、バンドエッジの波数が複素数になり(同B)、複素バンドの存在が数値的に明らかになった。 Further, it divided into a case with n, m, and if depending on the i x having metallic properties no band gap, the semiconductor properties resulting bandgap. Generally, it becomes metallic when nm is a multiple of 3, and it becomes semiconductor when nm is not a multiple of 3. For example, (3, 0) and (6, 0) are metallic, and (4, 0) and (5, 0) are semiconducting. In the case of a semiconductor, the wave number in the band gap became a complex number (A in the figure), the wave number at the band edge became a complex number (same B), and the existence of the complex band was clarified numerically.

[CNTを流れる電流の定式化・数値計算結果]
電流密度、電流の定式化・ 数値計算結果を示す。ここでは、CNT 内の電子波伝搬を求めるのにTransfer Matrix 法(TM 法) を用いた。図5のようにCNT の両端に電圧V0 を加え、各単位胞で方形ポテンシャルを仮定した。図5において、CUC をCNT の単位胞、GUC をグラフェンシートの単位胞とし、印加電圧V0 によるポテンシャルが各GUC 内で一定値UJ,jp を持つ階段近似を行っている。GUC 内の黒丸は炭素原子の格子点を表す。
CNT はL+2個のCUC(CNT の単位胞)からなり、さらに各CUC は周方向にnp 個、軸方向にmp 個のGUC(グラフェンシートの単位胞)からなるとする。各GUC の波動関数(式1)と確率密度流に、軸方向に隣あうもの同士で連続になる条件(式2)を課すと、波動関数の振幅係数の入力・ 出力間の関係を表す行列(式3)が求められる。式(3) の2 × 2 行列MをTransfer Matrix と呼ぶ。
[Formulation and numerical calculation results of current flowing through CNT]
Current density, current formulation and numerical calculation results are shown. Here, the Transfer Matrix method (TM method) was used to determine the electron wave propagation in the CNT. As shown in FIG. 5, a voltage V 0 was applied to both ends of the CNT, and a square potential was assumed in each unit cell. In FIG. 5, CUC is a unit cell of CNT and GUC is a unit cell of graphene sheet, and staircase approximation is performed in which the potential by the applied voltage V 0 has a constant value U J, jp within each GUC. Black circles in GUC represent carbon atom lattice points.
CNT is composed of L + 2 CUCs (CNT unit cells), and each CUC is composed of n p pieces of GUC (unit cells of graphene sheet) in the circumferential direction and m p pieces in the axial direction. A matrix that expresses the relationship between the input and output of the amplitude coefficient of the wave function when the condition (equation 2) in which the adjacent ones in the axial direction are continuous is imposed on the wave function (Equation 1) and the probability density flow of each GUC. (Equation 3) is obtained. The 2 × 2 matrix M in Equation (3) is called a Transfer Matrix.

Figure 2005181071
Figure 2005181071
Figure 2005181071
Figure 2005181071
Figure 2005181071
Figure 2005181071

確率密度流JJ,jp,ix,iy (x,E) は、CUC 内の平均値として(式4)で求められる。透過確率は入力出力での確率密度流の比で(式5)で表される。電流密度は透過確率とフェルミ−ディラック分布関数などで(式6)で表される。全電流は電流密度の周方向の積分で求まる。 Probability density flow J J, jp, ix, iy (x, E) is obtained by (Equation 4) as an average value in CUC. The transmission probability is a ratio of the probability density flow at the input output and is expressed by (Equation 5). The current density is expressed by (Equation 6) in terms of transmission probability and Fermi-Dirac distribution function. The total current is obtained by integrating the current density in the circumferential direction.

Figure 2005181071
Figure 2005181071
Figure 2005181071
Figure 2005181071
Figure 2005181071
Figure 2005181071

[電流−電圧特性、抵抗]
電流−電圧特性は、カイラリティー(3, 0) でCNTの単位胞の数L をパラメータに図6 のようになり、L →∞である一定の値に収束している。図6は 電流−電圧特性(パラメータL)を示す図である。図6の挿入図は0.01V 付近を拡大表示したものである。
次に電流−電圧特性の傾きから抵抗値を計算し、L を横軸に図7 に示す。図7は CNT(3, 0) の抵抗− L 特性を示す図である。挿入図は抵抗値とL とは比例関係にはならず、オーム性の抵抗体と異なる特性を示す。これは、電子波の伝搬特性を表す式(5) の透過確率Dix,iy (x,E) がL-1 に比例しないからである。
[Current-voltage characteristics, resistance]
The current-voltage characteristics are as shown in Fig. 6 with chirality (3, 0) and the number L of CNT unit cells as a parameter, and converge to a constant value L → ∞. FIG. 6 is a diagram showing current-voltage characteristics (parameter L). The inset in Fig. 6 is an enlarged view of around 0.01V.
Next, the resistance value is calculated from the slope of the current-voltage characteristics, and L is shown in Fig. 7 along the horizontal axis. FIG. 7 shows the resistance-L characteristics of CNT (3, 0). In the inset, the resistance value and L are not in a proportional relationship and show different characteristics from ohmic resistors. This is because the transmission probability D ix, iy (x, E) in the equation (5) representing the propagation characteristic of the electron wave is not proportional to L- 1 .

[電流密度周方向分布]
マイクロ波デバイス用のナノ電極構造を設計する上では電流−電圧特性のみならず、電流密度のCNT の周方向分布も重要である。そこで、図8 に電流密度周方向分布をm=0 に固定し、n をパラメータにしてプロットした結果を示す。このプロットはジグザグ形のCNT の直径をパラメータにしたのと等価である。n=3、6 で金属的、n=4、5 で半導体的になることが、解析でわかっている。nで電流密度周方向分布が変化するので、カイラリティー(n, 0) のCNT の電流分布はn により制御できることがわかる。
[Current density circumferential distribution]
In designing the nanoelectrode structure for microwave devices, not only the current-voltage characteristics but also the circumferential distribution of the current density of CNTs is important. Figure 8 shows the results of plotting the current density distribution in the circumferential direction at m = 0 and using n as a parameter. This plot is equivalent to using the diameter of a zigzag CNT as a parameter. Analysis shows that n = 3 and 6 are metallic and n = 4 and 5 are semiconducting. Since the current density distribution in the circumferential direction varies with n, it can be seen that the current distribution of CNTs with chirality (n, 0) can be controlled by n.

[CNTのスピン波励振・検出装置への応用]
電流密度周方向分布のスピン波励振への影響を示す。図9 は本発明者らが提案しているCNT によるスピン波励振・検出装置の一実施形態である。図9において、符号1はCNT、2はフェライト、3は電流、4磁界、5は バイアス磁界、6はスピン、7はスピン波の波長を示している。
本実施形態に係るスピン波励振・検出装置は、CNT1と、前記CNT1の下に置かれたフェライト2と、図示しない高周波電流発生器と、図示しない直流磁界発生器を備えている。
前記CNT1に高周波電流3を流し、前記フェライト2に直流磁界5を印加し、CNT1の電流による電界4がフェライト2のスピン6と相互作用してスピン波を励振・検出する。従来はマイクロ波フィルタなどに用いられていた構造であるが、電極をnm オーダで作成できなかった。
[Application of CNT to spin wave excitation and detection system]
The influence of current density circumferential distribution on spin wave excitation is shown. FIG. 9 shows an embodiment of a spin wave excitation / detection device using CNTs proposed by the present inventors. In FIG. 9, reference numeral 1 denotes CNT, 2 denotes ferrite, 3 denotes current, 4 magnetic fields, 5 denotes bias magnetic field, 6 denotes spin, and 7 denotes the wavelength of the spin wave.
The spin wave excitation / detection device according to this embodiment includes a CNT1, a ferrite 2 placed under the CNT1, a high-frequency current generator (not shown), and a DC magnetic field generator (not shown).
A high frequency current 3 is applied to the CNT 1, a DC magnetic field 5 is applied to the ferrite 2, and an electric field 4 generated by the current of the CNT 1 interacts with the spin 6 of the ferrite 2 to excite and detect a spin wave. Conventionally, the structure has been used for microwave filters, but the electrodes could not be made on the order of nm.

CNT のカイラリティーで電流密度分布を変化できるので、その分布に合う波長7のスピン波を励振・検出できる。電流密度分布の周期とスピン波の波長とが正の相関をもっていることが他の例から類推できる。例えば、(5,0) より(3, 0) の方が長い周期の成分をより多くもつので、スピン波波長が長くなる。従って、カイラリティーによりスピン波波長をコントロールできる。   Since the current density distribution can be changed by the chirality of CNT, a spin wave having a wavelength of 7 that matches the distribution can be excited and detected. It can be inferred from other examples that the period of the current density distribution and the wavelength of the spin wave have a positive correlation. For example, since (3, 0) has more components with a longer period than (5,0), the spin wave wavelength becomes longer. Therefore, the spin wave wavelength can be controlled by chirality.

ここでは、数値計算結果としてジグザグ形の場合を示したが、アームチェア形・キラル形の任意のカイラリティーにこの解析手法は適用できるので、図9 のスピン波励振・検出装置でスピン波励用ナノ電極のカイラリティー(n, m) を適当に設計することでスピン波励振・検出装置の特性を制御できる。   Here, the case of zigzag type was shown as a numerical calculation result, but this analysis method can be applied to any chirality of armchair type and chiral type, so spin wave excitation / detection device in Fig. 9 can be used for spin wave excitation. By appropriately designing the chirality (n, m) of the nanoelectrode, the characteristics of the spin wave excitation / detection device can be controlled.

[スピン波励振・検出装置の応用の検証]
従来、商品情報無線タグ(RFID)の内、マイクロ波方式のものがある。同方式は、通信エリアが広くシャープな指向性を持ち、通信速度が速い。しかし、同方式の問題点は、デジタル変調機能を必要とするため、内蔵電池または外部からの電源供給が必要で、電力を消費する点である。
そこで、本発明者らは前記問題点を解決するために、上述のCNTを用いたスピン波励振・検出装置の特性を利用した高周波信号処理装置を提案する。
デジタル変調マイクロ波フィルタで符号化された情報をCNTの構造に変換して、マイクロ波を同フィルタで符号化する装置をここで提案する。デジタル変調マイクロ波フィルタは、RFIDのほかにも放送などのデジタル化に対応するためのデバイスとしての可能性をもつ。また、所定の帯域、例えば、THz帯域のバンドパスフィルタなどの信号処理装置を示す。
[Verification of application of spin wave excitation and detection equipment]
Conventionally, among product information wireless tags (RFID), there is a microwave type. This method has a wide communication area, sharp directivity, and high communication speed. However, the problem with this method is that it requires a digital modulation function, so it requires power supply from an internal battery or from the outside and consumes power.
In order to solve the above problems, the present inventors propose a high-frequency signal processing device that uses the characteristics of the above-described spin wave excitation / detection device using CNTs.
We propose here an apparatus that converts the information encoded by a digital modulation microwave filter into a CNT structure and encodes the microwave using the filter. The digital modulation microwave filter has a possibility as a device for dealing with digitization of broadcasting in addition to RFID. In addition, a signal processing device such as a bandpass filter of a predetermined band, for example, a THz band is shown.

また、従来、Carbon Nanotube(CNT)の構造を測定する方法として、透過型顕微鏡などによる像を寸法測定する方法があった。この問題点は、CNTの像の寸法からカイラリティを測定するうえで、1本1本のCNTを測定する必要があり、測定時間がかかる点である。
そこで、本発明者らは前記問題点を解決するために、上述のCNTを用いたスピン波励振・検出装置の特性を利用したCNT構造評価装置を提案する。特に、バンドルCNTのカイラリティを複数本、同時に測定するCNT構造評価装置を提案する。
Conventionally, as a method for measuring the structure of Carbon Nanotube (CNT), there has been a method for measuring the size of an image using a transmission microscope or the like. This problem is that it takes time to measure each CNT in order to measure chirality from the dimensions of the CNT image.
In order to solve the above problems, the present inventors propose a CNT structure evaluation apparatus that uses the characteristics of the spin wave excitation / detection apparatus using the CNTs described above. In particular, we propose a CNT structure evaluation system that measures multiple bundle CNT chiralities simultaneously.

具体的に、スピン波励振・検出装置として、CNTが自己組織化でnm程度の直径を持つ特徴と、前記特徴のためnm波長のスピン波が空間整合しやすいという特徴と、CNTがバリスティックな伝導特性を示すので、隣接するYIGのスピンに熱揺らぎを与えないという特徴を用いてフェライトの1種YIG(イットリウム・鉄・ガ−ネット)中のスピン波を励振・検出するスピン波励振・検出装置を用いる。
以下に、スピン波励振・検出装置への応用を検証する。CNTを円筒形断面を持つ電極として扱って説明する。
Specifically, as a spin wave excitation / detection device, the CNT has a self-organized feature with a diameter of about nm, the feature that the spin wave of nm wavelength is easily spatially matched, and the CNT is ballistic. Spin wave excitation / detection that excites and detects spin waves in one type of ferrite YIG (yttrium, iron, garnet) using the feature that it does not give thermal fluctuation to the spin of adjacent YIG because it shows conduction characteristics Use the device.
Below, the application to the spin wave excitation / detection device is verified. CNT will be described as an electrode having a cylindrical cross section.

直流磁界H0が印加されたYIG2上に高周波電流が流れる2本のCNT1in, 1outが平行に置かれた実施形態(図10)について説明する。YIG2の厚=100μm、飽和磁化μ0M0=0.17T、印加直流磁界μ0H0=0.1Tの時のスピン波の分散曲線を図11に示す。波長λが約2.5nmで周波数は5THzに及び、伝搬し得る波の周波数が従来の静磁波デバイスより3桁程度高い。この高周波数化はワイスの分子磁界HeがH0を強めるように働くためである。図11の実線はμ0Heを内部磁界と同じく46Tで仮定した時の分散曲線で、破線、一点鎖線はHe をそれぞれ10%増減させたときのものである。一方、このスピン波を励振・検出する上で加工精度に問題の残る金属電極に比べ、CNTでは自己組織化により直径がスピン波の波長より短くでき、例えばカイラリティ(10,10)で1.357nmなので、広帯域動作が予想できる。 An embodiment (FIG. 10) in which two CNTs 1 in and 1 out , in which a high-frequency current flows, is placed in parallel on the YIG 2 to which the DC magnetic field H 0 is applied will be described. FIG. 11 shows a spin wave dispersion curve when the thickness of YIG2 = 100 μm, the saturation magnetization μ 0 M 0 = 0.17T, and the applied DC magnetic field μ 0 H 0 = 0.1T. The wavelength λ is about 2.5 nm, the frequency is 5 THz, and the frequency of the wave that can propagate is about three orders of magnitude higher than that of the conventional magnetostatic wave device. The higher frequency is Weiss molecular field H e is to work as enhance H 0. In the dispersion curve when the solid line assumed in same 46T and internal magnetic field of mu 0 H e in FIG. 11, a dashed line, one-dot chain line is obtained when the increased or decreased by 10% respectively H e. On the other hand, compared to metal electrodes that have a problem in processing accuracy when exciting and detecting this spin wave, the CNT can be made shorter than the wavelength of the spin wave by self-organization, for example, 1.357 nm with chirality (10,10). Wide band operation can be expected.

上記の広帯域な動作を評価するため、高周波信号処理装置の挿入損失ILを検出する試験を行った。ILは、基本的には高周波信号処理装置への入力電力に対する出力電力の比で定義される。   In order to evaluate the broadband operation, a test for detecting the insertion loss IL of the high-frequency signal processing apparatus was performed. IL is basically defined by the ratio of output power to input power to the high-frequency signal processing device.

図12に挿入損失ILを検出するために用いた高周波信号処理装置の解析モデルを示す。図12の解析モデルにより動作を説明する。前記YIG2に直流磁界5を印加し、高周波電源8から供給される高周波電流3で入力側CNT1inが高周波磁界4を発生し、その磁界4がスピン6と結合してスピン波9をYIG2中に励振し、伝搬したスピン波9が高周波磁界を作り、その磁界を出力側CNT1outが検出して高周波電流を流し、その電流を負荷抵抗が出力電力として消費する。ここでの電磁界解析では、CNT1in, CNT1outを円筒形断面を持つ電極として扱い、そして、このCNT電極とYIG2とを含めた境界条件を適用する。この電磁界よりスピン波励振での放射抵抗Rwを求める。また、CNTの量子輸送解析で求めたCNT自身の抵抗と電源抵抗または整合負荷抵抗RGとから、ILは求められる。 FIG. 12 shows an analysis model of the high-frequency signal processing device used for detecting the insertion loss IL. The operation will be described with reference to the analysis model of FIG. A DC magnetic field 5 is applied to the YIG 2, the input side CNT 1 in generates a high frequency magnetic field 4 by a high frequency current 3 supplied from a high frequency power supply 8, and the magnetic field 4 couples with a spin 6 to cause a spin wave 9 into the YIG 2. The excited and propagated spin wave 9 creates a high frequency magnetic field, and the output side CNT1 out detects the magnetic field to cause a high frequency current to flow, and the load resistor consumes the current as output power. In this electromagnetic field analysis, CNT1 in and CNT1 out are treated as electrodes having a cylindrical cross section, and boundary conditions including the CNT electrode and YIG2 are applied. Determine the radiation resistance R w of the spin-wave excitation than the electromagnetic field. In addition, IL is obtained from the resistance of the CNT itself and the power supply resistance or matching load resistance R G obtained by the quantum transport analysis of the CNT.

次に、このILを数値的に評価した結果を示す。ILはスピン波の波長等を介してCNTの直径に依存する。そこで、直径をパラメータとしてIL-周波数特性を評価すると図13が得られる。横軸に周波数、縦軸にILをとる。YIG2の厚みを10nm、CNT1in,1outの長さを1μmとしてCNT1in,1outはジグザグ形を仮定し、カイラリティを(n, 0)とした。また、金属的カイラリティにするため、nを3, 30, 45, 60, 90と3の倍数で変化させた。ここで、励振する電子波の分布が周方向に関して均一であると仮定した。図13から、n=3をのぞいてnによって周波数可変なバンドパス特性がえられた。このことからTHz帯域のバンドパスフィルタなどの信号処理デバイスの可能性が示された。nが大きくなると直径が大きくなるので励振検出されるスピン波波長が長くなり、バンドパス特性の中心周波数が低くなる。 Next, the results of numerical evaluation of this IL will be shown. IL depends on the diameter of the CNT via the wavelength of the spin wave. Therefore, when the IL-frequency characteristic is evaluated using the diameter as a parameter, FIG. 13 is obtained. The horizontal axis represents frequency and the vertical axis represents IL. The thickness of YIG2 10nm, CNT1 in, 1 CNT1 in the length of the out as 1 [mu] m, 1 out assumes a zigzag, and the chirality and (n, 0). In order to achieve metallic chirality, n was changed to 3, 30, 45, 60, 90 and multiples of 3. Here, it was assumed that the distribution of excited electron waves was uniform in the circumferential direction. From FIG. 13, a bandpass characteristic whose frequency is variable by n except n = 3 was obtained. This indicates the possibility of a signal processing device such as a bandpass filter in the THz band. As n increases, the diameter increases, so the wavelength of the spin wave that is detected by excitation becomes longer, and the center frequency of the bandpass characteristic becomes lower.

[高周波信号処理装置]
以上から、上述のスピン波励振・検出装置をBPFフィルタ等の高周波信号処理装置に応用できることがわかる。言い換えれば、CNTが高周波信号処理装置のスピン波励振用のナノ電極に適用可能であることが判る。高周波信号処理装置の主な構成として、図9、図10、図12に示したものと同様な構成を用いることができる。
上述のスピン波励振・検出装置を高周波信号処理装置の一つであるBPFフィルタに応用した場合、図13のIL-周波数特性から求めたBPFフィルタの中心周波数f0 及び3dB帯域幅BW並びにBW/ f0 とnの特性を図14に示す。
n=24で特性が現れはじめ、このときの中心周波数が5.2THzと最も高い通過中心周波数になり、n=45で最大帯域幅になった。このことから、f0、BWがカイラリティでコントロールできる可能性がある。
[High-frequency signal processor]
From the above, it can be seen that the above-described spin wave excitation / detection device can be applied to a high-frequency signal processing device such as a BPF filter. In other words, it can be seen that CNT can be applied to a nanoelectrode for spin wave excitation of a high-frequency signal processing device. As a main configuration of the high-frequency signal processing device, a configuration similar to that shown in FIGS. 9, 10, and 12 can be used.
When the above-described spin wave excitation / detection device is applied to a BPF filter which is one of high frequency signal processing devices, the center frequency f 0 and the 3 dB bandwidth BW and BW / B of the BPF filter obtained from the IL-frequency characteristics of FIG. FIG. 14 shows the characteristics of f 0 and n.
The characteristics began to appear at n = 24, the center frequency at this time became the highest passing center frequency of 5.2 THz, and the maximum bandwidth at n = 45. From this, f 0 and BW may be controlled by chirality.

[CNT構造評価装置]
また、上述のスピン波励振・検出装置の応用の検証において、カイラリティ(n, 0)の場合について示したが、任意のカイラリティ(n, m)の場合についても同様な解析可能であるので、任意のカイラリティーのCNTのカイラリティー弁別が実現できると考えられる。
[CNT structure evaluation equipment]
In the verification of the application of the spin wave excitation / detection device described above, the case of chirality (n, 0) has been shown. However, since the same analysis can be performed for the case of arbitrary chirality (n, m), any It is thought that the chirality discrimination of CNTs in the CNT can be realized.

CNTに電流を励振する方法を制御すると、周方向の電流密度分布を変えることができ、この制御により、CNTのカイラリティーに関する情報をより詳しく読むことができると考えられる。その結果、CNTが弁別でき、CNT構造評価装置を得ることができる。   Controlling the method of exciting the current in the CNT can change the current density distribution in the circumferential direction, and it is thought that this control can read information on the CNT chirality in more detail. As a result, CNT can be discriminated and a CNT structure evaluation apparatus can be obtained.

上述のスピン波励振・検出装置のCNT構造評価装置への応用の可能性を検証する。
上記図10乃至図13を参照した上述の説明と同様の方法で、図15に示す各種CNTの構造パラメータを以下のように変化させた。
図15中、
(1)は、CNTが単層で直径を変化させた場合である。直径の変化は次のような範囲と条件で行った。
直径変化: n=150〜240, mx=1, my=1, L=1, N=500×150/n
(2)は、CNTが多層で、層数を変化させた場合である。層数の変化は次のような範囲と条件で行った。
層数変化: L=1〜4, n=150,120,90,60=nmin, mx=my=1, N=500×150/ nmin
(3)は、横方向のCNTの本数を変化させた場合である。横方向の本数の変化は次のような範囲と条件で行った。
横方向本数変化: my=1〜250, mx=1, L=4, n=150,120,90,60=nmin, N=500×150/nmin
(4)は、縦方向のCNTの本数を変化させた場合である。縦方向の本数の変化は次のような範囲と条件で行った。
縦方向本数変化: mx=1〜250, my=1, L=4, n=150,120,90,60=nmin, N=500×150/nmin
(5)は、縦方向及び横方向にCNTの本数を変化させた場合である。縦方向及び横方向の本数の変化は次のような範囲と条件で行った。
縦×横方向本数変化:mx,my =1〜250, L=4, n=150,120,90,60=nmin ,N=500×150/nmin
ただし、(n,0)はカイラリティ、LはCNTの層数、mx、myはCNTのそれぞれ縦、横方向の本数、NはCNTの縦方向の解析分割数である。
The possibility of applying the above-described spin wave excitation / detection device to the CNT structure evaluation device is verified.
The structural parameters of the various CNTs shown in FIG. 15 were changed as follows by the same method as described above with reference to FIGS.
In FIG.
(1) is a case where the diameter of the CNT is changed by a single layer. The diameter was changed within the following ranges and conditions.
Diameter change: n = 150-240, mx = 1, my = 1, L = 1, N = 500 × 150 / n
(2) is a case where the number of CNTs is varied and the number of layers is changed. The number of layers was changed within the following ranges and conditions.
Layer number change: L = 1 ~ 4, n = 150,120,90,60 = n min , mx = my = 1, N = 500 × 150 / n min
(3) shows a case where the number of CNTs in the horizontal direction is changed. The change in the number in the horizontal direction was performed within the following ranges and conditions.
Change in number of horizontal direction: my = 1 ~ 250, mx = 1, L = 4, n = 150,120,90,60 = n min , N = 500 × 150 / n min
(4) shows a case where the number of CNTs in the vertical direction is changed. The change in the number in the vertical direction was performed within the following ranges and conditions.
Change in number of vertical direction: mx = 1 ~ 250, my = 1, L = 4, n = 150,120,90,60 = n min , N = 500 × 150 / n min
(5) is a case where the number of CNTs is changed in the vertical and horizontal directions. Changes in the numbers in the vertical and horizontal directions were made in the following ranges and conditions.
Change in number of vertical and horizontal directions: mx, my = 1 to 250, L = 4, n = 150,120,90,60 = n min , N = 500 × 150 / n min
Where (n, 0) is chirality, L is the number of CNT layers, mx and my are the number of CNTs in the vertical and horizontal directions, and N is the number of analysis divisions in the vertical direction of CNTs.

CNTのカイラリティを測定するため、ILの周波数特性を測定した。前記パラメータ変化(1)についてILの周波数特性は図16になり、この結果、1本のCNTの場合、nが大きくなるとILの周波数特性の中心周波数f0は低くなる結果になった。
前記パラメータ変化(2)についてILの周波数特性は図17なり、多層にしたとき、f0のn依存性は、最外層のCNTの径より内側のCNTの径のほうが小さい結果になった。
前記パラメータ変化(3)についてILの周波数特性は図18になり、横方向にCNTを並べた場合、4層CNT(n=150,,120,90,60)について250本並べたときに、本数が多くなるとある一定のIL−周波数特性の形になった。
前記パラメータ変化(4)についてILの周波数特性は図19になり、縦方向にCNTを並べた場合、並べる本数が増えれば増えるほどf0が低くなった。
前記パラメータ変化(5)についてILの周波数特性は図20になり、縦方向と横方向にCNTを並べた場合(バンドル状CNT)、並べる本数が増えれば増えるほどf0が低くなり、1×1〜3×3本でTHz帯になるのに比べて100×100本でマイクロ波帯に下がった。
In order to measure the CNT chirality, the frequency characteristics of IL were measured. FIG. 16 shows the IL frequency characteristics for the parameter change (1). As a result, in the case of one CNT, when n increases, the center frequency f 0 of the IL frequency characteristics decreases.
Regarding the parameter change (2), the frequency characteristics of IL are as shown in FIG. 17, and in the case of multiple layers, the n dependence of f 0 is smaller for the inner CNT diameter than for the outermost CNT diameter.
Regarding the parameter change (3), the frequency characteristics of IL are shown in FIG. 18. When CNTs are arranged in the horizontal direction, the number of four-layered CNTs (n = 150, 120, 90, 60) is 250 As the value increases, a certain IL-frequency characteristic is obtained.
For the parameter change (4), the frequency characteristics of IL are shown in FIG. 19, and when CNTs are arranged in the vertical direction, f 0 decreases as the number of arranged CNTs increases.
The frequency characteristics of IL with respect to the parameter change (5) are shown in FIG. 20. When CNTs are arranged in the vertical and horizontal directions (bundle CNT), f 0 decreases as the number of arranged CNTs increases, and 1 × 1 Compared to the THz band with ~ 3x3, it fell to the microwave band with 100x100.

以上から、この発明によって生じた特有な効果として次があげられる。
1.nとf0の相関から、カイラリティを測定できる。
2.横方向にCNTを並べた場合IL周波数特性の形から、バンドルCNTのカイラリティを平均値で測定できる。
3.バンドル状CNTの場合、本数をある程度増やすと、測定技術がまだ発展途上にあるTHz帯から、測定技術がある程度進んでいるGHz帯の測定技術を使ってカイラリティーを測定できる。
4.CNT 1本当たりの許容電流量に限界があるので、本数を増やすことで許容電流を大きくでき、発生させる磁界を多く取れるため、入力側CNTから出力側CNTへのスピン波の伝搬損失分を見越した大きさの高周波磁界を励振させることが可能にできる。
From the above, the following effects can be given as specific effects produced by the present invention.
1. Chirality can be measured from the correlation between n and f 0 .
2. When CNTs are arranged in the horizontal direction, the chirality of bundle CNTs can be measured as an average value from the shape of IL frequency characteristics.
3. In the case of bundled CNTs, if the number is increased to some extent, chirality can be measured from the THz band, where the measurement technology is still developing, using the measurement technology of the GHz band, where the measurement technology has advanced to some extent.
4). Since there is a limit to the allowable current amount per CNT, increasing the number allows increasing the allowable current and generating a large amount of generated magnetic field, allowing for the propagation loss of spin waves from the input CNT to the output CNT. It is possible to excite a high-frequency magnetic field of a certain size.

以上から、カイラリティを測定できることが可能であり、上述のスピン波励振・検出装置がCNT構造評価装置へ応用可能であることがわかる。特に、この装置によれば、CNTは単層1本に限らず、バンドルCNTのカイラリティを複数本、同時に測定することが可能である。尚、カイラリティが判ると、測定したCNTが金属であるのか、半導体であるのか、また,金属と半導体の特性が混在するのか等CNTの特性及び構造を弁別し、評価することができる。   From the above, it can be seen that chirality can be measured, and the above-described spin wave excitation / detection device can be applied to a CNT structure evaluation device. In particular, according to this apparatus, the number of CNTs is not limited to one single layer, and a plurality of bundle CNT chiralities can be measured simultaneously. If the chirality is known, it is possible to discriminate and evaluate the characteristics and structure of the CNT, such as whether the measured CNT is a metal, a semiconductor, or whether the characteristics of a metal and a semiconductor are mixed.

具体的なCNTの構造評価装置の主な構成として、図9、図10、図12に示したものと同様な構成を用いることができる。
更に、図9、図10、図12に示したものは、スピン波の伝搬損失を解析では考慮していないが、実際にはスピン波を入力側CNTから出力側CNTへ伝搬させるためには、スピン波の伝搬損失分を見越した大きさの高周波磁界を励振させる必要がある。
図12の解析モデルに示したように金属とCNTを接触させて伝導電流を流す構造に限らず、金属とCNTとが非接触な、例えば、放射電磁界発生器を備えて、図21に示すように、THz帯の放射電磁界をCNTに当ててCNTに電流を発生させる構造も考えられる。
As a specific main structure of the CNT structure evaluation apparatus, the same structure as that shown in FIGS. 9, 10, and 12 can be used.
Further, in the cases shown in FIGS. 9, 10, and 12, the propagation loss of the spin wave is not considered in the analysis, but in order to actually propagate the spin wave from the input side CNT to the output side CNT, It is necessary to excite a high-frequency magnetic field that is large enough to allow for the propagation loss of spin waves.
As shown in the analysis model of FIG. 12, the structure is not limited to a structure in which a metal and CNT are brought into contact with each other and a conduction current is allowed to flow. Similarly, a structure in which a THz-band radiated electromagnetic field is applied to the CNT to generate a current in the CNT is also conceivable.

図21は、例えば、THzのスピン波を吸収するタイプで、THzの放射源から放射されたTHzの電磁波が、CNT1にあたり、伝搬するスピン波9に共鳴する周波数成分だけがフェライト2に吸収されて、それ以外は透過する。このような帯域除去特性は、出力スペクトルを測定することで得ることができる。このような測定系により、CNT1と外部回路との結線を省略できるので、測定を高速化できる。   FIG. 21 shows a type that absorbs a THz spin wave, for example, a THz electromagnetic wave radiated from a THz radiation source hits the CNT 1, and only a frequency component resonating with the propagating spin wave 9 is absorbed by the ferrite 2. Other than that, it is transparent. Such band elimination characteristics can be obtained by measuring the output spectrum. With such a measurement system, the connection between the CNT1 and the external circuit can be omitted, so that the measurement can be speeded up.

上記スピン波励振・検出装置を主な構成として有するCNT構造評価装置において、スピン波の波長からカイラリティを特定してCNTの物理的性質を評価することができる。具体的には、CNTに高周波電流を入力し、CNTを介してスピン波を励振・検出し、出力を測定すると、高周波スペクトルが観測される。このスペクトルからCNTの構造パラメータであるカイラリティを例えば、以下の手順で測定できる。この測定方法及び装置によれば、CNTは単層1本に限らず、バンドルCNTのカイラリティを複数本、同時に測定することができる。
1.実験によりフェライトを伝搬するスピン波の波長に関する標準的な分散曲線を予め作成しておく。
CNTの測定高周波スペクトルと、フェライトを伝搬するスピン波の波長に関する前記分散曲線からスピン波の波長を求める。
2.前記フェライトを伝搬するスピン波の波長からCNTの電流密度周方向分布周期を求める。これは、正の相関を持つことが他のデバイスの波の性質から予想されるため求めることができる。
3.前記CNTの電流密度周方向分布周期からカイラリティを特定する。
In the CNT structure evaluation apparatus having the above-described spin wave excitation / detection apparatus as a main configuration, it is possible to specify the chirality from the wavelength of the spin wave and evaluate the physical properties of the CNT. Specifically, when a high frequency current is input to the CNT, a spin wave is excited and detected via the CNT, and the output is measured, a high frequency spectrum is observed. From this spectrum, the chirality that is the structural parameter of the CNT can be measured, for example, by the following procedure. According to this measurement method and apparatus, the number of CNTs is not limited to one single layer, and a plurality of bundle CNTs can be measured simultaneously.
1. A standard dispersion curve regarding the wavelength of the spin wave propagating through the ferrite is prepared in advance by experiments.
The wavelength of the spin wave is obtained from the measured high frequency spectrum of CNT and the dispersion curve relating to the wavelength of the spin wave propagating through the ferrite.
2. The CNT current density circumferential distribution period is obtained from the wavelength of the spin wave propagating through the ferrite. This can be determined because a positive correlation is expected from the wave nature of other devices.
3. The chirality is identified from the current density circumferential distribution period of the CNT.

尚、本発明は、上記の好ましい実施形態例に記載されているが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態例が他になされることができることは理解されよう。   In addition, although this invention is described in said preferable embodiment example, this invention is not restrict | limited only to it. It will be understood that various other exemplary embodiments may be made without departing from the spirit and scope of the invention.

既に、産業界で多くの応用があるマイクロ波・ミリ波デバイスなどの微細構造高周波信号処理装置の電源へとして最適である。
また、現在産業界において、CNTは大量生産されているが、そのCNT構造についての弁別装置として最適である。
It is optimal as a power source for high-frequency signal processing equipment such as microwave / millimeter-wave devices that already have many applications in the industry.
In addition, CNT is currently mass-produced in the industry, and is optimal as a discriminator for the CNT structure.

グラフェンシートの格子点を示す図Diagram showing lattice points of graphene sheet グラフェンシートの分散曲線を示す図Diagram showing graphene sheet dispersion curve 第1 ブリルアンゾーンを示す図Figure showing the first Brillouin zone CNTの分散曲線を示す図Diagram showing dispersion curve of CNT TM 法の解析モデルを示す図Diagram showing analysis model of TM method 電流−電圧特性(パラメータL)を示す図Diagram showing current-voltage characteristics (parameter L) CNT(3, 0) の抵抗− L 特性を示す図Diagram showing resistance-L characteristics of CNT (3, 0) 電流密度周方向分布を示す図Diagram showing current density circumferential distribution スピン波励振・検出装置の一実施形態を示す図The figure which shows one Embodiment of a spin wave excitation and a detection apparatus 高周波信号処理装置の一実施形態を示す図The figure which shows one Embodiment of a high frequency signal processing apparatus スピン波の分散曲線を示す図Diagram showing dispersion curve of spin wave 高周波信号処理装置の解析モデルを示す図The figure which shows the analysis model of the high frequency signal processor IL-周波数特性を評価する図Diagram to evaluate IL-frequency characteristics 中心周波数f0 及び3dB帯域幅BW並びにBW/ f0 とnの特性を示す図Diagram showing characteristics of center frequency f 0 and 3 dB bandwidth BW and BW / f 0 and n 各種CNTの構造パラメータを変化させた例を示す図Diagram showing examples of changing the structural parameters of various CNTs 直径を変化させた場合のILの周波数特性を示す図Diagram showing frequency characteristics of IL when the diameter is changed 層数を変化させた場合のILの周波数特性を示す図Diagram showing frequency characteristics of IL when the number of layers is changed 横方向の本数を変化させた場合のILの周波数特性を示す図Diagram showing frequency characteristics of IL when the number in the horizontal direction is changed 縦方向の本数を変化させた場合のILの周波数特性を示す図Diagram showing frequency characteristics of IL when the number in the vertical direction is changed 縦及び横方向の本数を変化させた場合のILの周波数特性を示す図Diagram showing frequency characteristics of IL when the number in the vertical and horizontal directions is changed スピン波励振・検出装置の他の一実施形態を示す図The figure which shows other one Embodiment of a spin wave excitation and a detection apparatus

符号の説明Explanation of symbols

1 CNT、
2 フェライト、
3 電流、
4 磁界、
5 バイアス磁界
6 スピン、
7 波長
8 電源
9 スピン波

1 CNT,
2 Ferrite,
3 current,
4 magnetic field,
5 Bias magnetic field 6 Spin,
7 Wavelength 8 Power supply 9 Spin wave

Claims (3)

カーボンナノチューブと、フェライトと、高周波電流発生器若しくは放射電磁界発生器と、直流磁界発生器とを備え、
前記カーボンナノチューブに高周波電流が流れるようにし、前記フェライトに直流磁界を印加し、カーボンナノチューブの電流がフェライトのスピンと相互作用してスピン波を励振・検出するスピン波励振・検出装置。
A carbon nanotube, a ferrite, a high-frequency current generator or a radiated electromagnetic field generator, and a DC magnetic field generator;
A spin wave excitation / detection device configured to cause a high-frequency current to flow through the carbon nanotube, apply a DC magnetic field to the ferrite, and the current of the carbon nanotube interacts with the spin of the ferrite to excite and detect a spin wave.
請求項1に記載のスピン波励振・検出装置を備えた高周波信号処理装置。   A high frequency signal processing device comprising the spin wave excitation / detection device according to claim 1. 請求項1に記載のスピン波励振・検出装置を備えたカーボンナノチューブの構造評価装置。

A carbon nanotube structure evaluation apparatus comprising the spin wave excitation / detection apparatus according to claim 1.

JP2003421425A 2003-12-18 2003-12-18 Spin wave exciting/detecting device, high-frequency signal processing machine using the same and structure evaluating device of carbon nanotube Withdrawn JP2005181071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421425A JP2005181071A (en) 2003-12-18 2003-12-18 Spin wave exciting/detecting device, high-frequency signal processing machine using the same and structure evaluating device of carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421425A JP2005181071A (en) 2003-12-18 2003-12-18 Spin wave exciting/detecting device, high-frequency signal processing machine using the same and structure evaluating device of carbon nanotube

Publications (1)

Publication Number Publication Date
JP2005181071A true JP2005181071A (en) 2005-07-07

Family

ID=34782659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421425A Withdrawn JP2005181071A (en) 2003-12-18 2003-12-18 Spin wave exciting/detecting device, high-frequency signal processing machine using the same and structure evaluating device of carbon nanotube

Country Status (1)

Country Link
JP (1) JP2005181071A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528456B1 (en) * 2005-03-01 2009-05-05 The Regents Of The University Of California Nano-scale computational architectures with spin wave bus
US7535070B2 (en) * 2006-01-30 2009-05-19 The Regents Of The University Of California Spin-wave architectures
JP2009295824A (en) * 2008-06-05 2009-12-17 Keio Gijuku Spintronics device and information transmission method
JP2011199190A (en) * 2010-03-23 2011-10-06 Toshiba Corp Spin wave element
JP2013253917A (en) * 2012-06-08 2013-12-19 Fujitsu Ltd Method and program for predicting electric conductivity characteristic
JP2014507791A (en) * 2010-12-23 2014-03-27 ピープルズ・フレンドシップ・ユニバーシティ・オブ・ロシア (ピーエフユーアール) How to generate spin waves
WO2020230893A1 (en) * 2019-05-16 2020-11-19 公立大学法人大阪 Chirality detection device, chirality detection method, separation device, separation method, and chiral substance device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528456B1 (en) * 2005-03-01 2009-05-05 The Regents Of The University Of California Nano-scale computational architectures with spin wave bus
US7535070B2 (en) * 2006-01-30 2009-05-19 The Regents Of The University Of California Spin-wave architectures
US8193598B2 (en) 2006-01-30 2012-06-05 The Regents Of The University Of California Spin-wave architectures
JP2009295824A (en) * 2008-06-05 2009-12-17 Keio Gijuku Spintronics device and information transmission method
JP2011199190A (en) * 2010-03-23 2011-10-06 Toshiba Corp Spin wave element
JP2014507791A (en) * 2010-12-23 2014-03-27 ピープルズ・フレンドシップ・ユニバーシティ・オブ・ロシア (ピーエフユーアール) How to generate spin waves
JP2013253917A (en) * 2012-06-08 2013-12-19 Fujitsu Ltd Method and program for predicting electric conductivity characteristic
WO2020230893A1 (en) * 2019-05-16 2020-11-19 公立大学法人大阪 Chirality detection device, chirality detection method, separation device, separation method, and chiral substance device
CN113826003A (en) * 2019-05-16 2021-12-21 公立大学法人大阪 Chiral detection device, chiral detection method, separation device, separation method, and chiral substance device
US11698360B2 (en) 2019-05-16 2023-07-11 University Public Corporation Osaka Chirality detection device, chirality detection method, separation device, separation method, and chiral substance device

Similar Documents

Publication Publication Date Title
Piscanec et al. Raman spectroscopy of silicon nanowires
Konstantinov et al. Photon-induced vanishing of magnetoconductance in 2D electrons on liquid helium
Yoon et al. Temperature dependence of magnetic anisotropy constant in manganese ferrite nanoparticles at low temperature
Jha et al. Design of multilayered epsilon-near-zero microwave planar sensor for testing of dispersive materials
Zingsem et al. Biologically encoded magnonics
Beato-López et al. Magnetic nanoparticle detection method employing non-linear magnetoimpedance effects
CN110579628B (en) In-situ characterization device for nanoscale extremely-low thermal conductance
JP2005181071A (en) Spin wave exciting/detecting device, high-frequency signal processing machine using the same and structure evaluating device of carbon nanotube
Saito et al. Isospin pomeranchuk effect and the entropy of collective excitations in twisted bilayer graphene
Durbhakula et al. Electromagnetic scattering from individual crumpled graphene flakes: A characteristic modes approach
Gubbiotti et al. Tailoring the spin waves band structure of 1D magnonic crystals consisting of L-shaped iron/permalloy nanowires
Forestiere et al. Hydrodynamic model for the signal propagation along carbon nanotubes
Kucera et al. Technical aspects of measurement of cellular electromagnetic activity
Aidi et al. Electromagnetic modeling of coupled carbon nanotube dipole antennas based on integral equations system
Otelaja et al. Design and operation of a microfabricated phonon spectrometer utilizing superconducting tunnel junctions as phonon transducers
Xiao et al. Impulse responses and the late time stability properties of time‐domain integral equations
Devkota et al. Tailoring magnetic and microwave absorption properties of glass-coated soft ferromagnetic amorphous microwires for microwave energy sensing
Kučera et al. Technical aspects of measurement of cellular electromagnetic activity
Ovsyannikov et al. Spin current and spin waves at a platinum/yttrium iron garnet interface: impact of microwave power and temperature
Yuan et al. Study of frequency dependent AC loss in Bi-2223 tapes used for gradient coils in magnetic resonance imaging
Yamaguchi et al. Ferromagnetic resonance of Ni wires fabricated on ferroelectric LiNbO3 substrate for studying magnetic anisotropy induced by the heterojunction
Timoshenko et al. Terahertz frequency selective surfaces using heterostructures based on two-dimensional diffraction grating of single-walled carbon nanotubes
Lin et al. Low-frequency electronic excitations in doped carbon nanotubes
Saxena et al. Wireless communication through microtubule analogue device: noise-driven machines in the bio-systems
Das et al. Surface magnetic polaritons in ferromagnetic and antiferromagnetic cylindrical tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070801