JP2005180567A - Resin-made tube - Google Patents

Resin-made tube Download PDF

Info

Publication number
JP2005180567A
JP2005180567A JP2003421764A JP2003421764A JP2005180567A JP 2005180567 A JP2005180567 A JP 2005180567A JP 2003421764 A JP2003421764 A JP 2003421764A JP 2003421764 A JP2003421764 A JP 2003421764A JP 2005180567 A JP2005180567 A JP 2005180567A
Authority
JP
Japan
Prior art keywords
tube
resin
laminated
innermost layer
connecting tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003421764A
Other languages
Japanese (ja)
Inventor
Masayuki Kamata
誠之 鎌田
Hiroshi Kumagai
宏 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003421764A priority Critical patent/JP2005180567A/en
Publication of JP2005180567A publication Critical patent/JP2005180567A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a conventional resin-made tube is poor in mountability on a pipe and requires high cost due to a large number of parts items in connection. <P>SOLUTION: The resin-made tube 11 is equipped with a laminated tube 12 in which the innermost layer 12a is made up of thermoplastic resin having hardness of 90 or less and the outermost layer 12b is made up of a thermoplastic resin having a tension elastic modulus of 30MPa or more, a pipe body 13 for coupling is made up of a thermoplastic resin containing 50 wt.% or more of a forming material of the innermost layer 12a. While at least the innermost layer 12a of the laminated tube 12 and the pipe body 13 for coupling are coupled by fusing, each inside surfaces of the laminated tube 12 and the pipe body 13 are continued in a substantially coplanar manner. While mountability to mating member such as pipe is improved without deteriorating essential advantages, a total cost reduction is materialized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば、自動車の燃料系、エア系及び冷却系などの各種流通系に用いられる樹脂製チューブに関するものである。   The present invention relates to a resin tube used in various distribution systems such as a fuel system, an air system, and a cooling system of an automobile.

一般に、自動車の燃料系、エア系及び冷却系などの流通系には、金属製、ゴム製及び樹脂製のチューブ、又はこれらの材料のうちの二種ないし三種を用いたチューブが使用されている。図5は、タンク等の構造体に設けたパイプ101とゴム製チューブ102の連結構造を示す図であって、パイプ101の外側にゴム製チューブ102を嵌合し、この嵌合部分の外周を長さ調整可能なベルト状のクランプ103で緊締している。
また、とくに近年では、錆の発生がなく、軽量化が可能であるとともに低コストである等の利点から、樹脂製チューブが主流になりつつある。図6は、パイプ201と樹脂製チューブ202の連結構造を示す図であって、管状のコネクタ203を用いており、このコネクタ203の一端側の内部に、Oリング204、バックアップリング205及びスペーサ206を介してパイプ201を嵌合すると共に、同コネクタ23の他端部の外側に、Oリング207を介して樹脂製チューブ202を嵌合している。
Generally, metal, rubber and resin tubes, or tubes using two or three of these materials are used in distribution systems such as automobile fuel systems, air systems and cooling systems. . FIG. 5 is a diagram showing a connection structure between a pipe 101 and a rubber tube 102 provided in a structure such as a tank. The rubber tube 102 is fitted to the outside of the pipe 101, and the outer periphery of this fitting portion is shown. It is tightened by a belt-like clamp 103 that can be adjusted in length.
In recent years, resin tubes are becoming mainstream due to advantages such as no rust, light weight and low cost. FIG. 6 is a view showing a connection structure between the pipe 201 and the resin tube 202, and uses a tubular connector 203. An O-ring 204, a backup ring 205, and a spacer 206 are provided inside one end of the connector 203. The pipe 201 is fitted through the connector 23, and the resin tube 202 is fitted through the O-ring 207 outside the other end of the connector 23.

ところが、上記したような樹脂製チューブにあっては、ゴム製チューブと比較すると、剛性が高いのでパイプに対する組付け性が悪く、また、連結部分のシール性を得ることが難しいので、図6に示すコネクタに加えて、Oリング、バックアップリング及びスペーサといった複数のシール用部品が不可欠であり、これによりコスト増になるという問題点があった。さらに、コネクタを用いることから、このコネクタに対応してパイプ等の相手部材の形状を見直さなければならない場合もあり、相手部材を成形する金型などの大幅な変更が必要になることがあった。   However, in the case of the resin tube as described above, the rigidity is higher than that of the rubber tube, so that the assembly property to the pipe is poor, and it is difficult to obtain the sealing property of the connecting portion. In addition to the connector shown, a plurality of sealing parts such as an O-ring, a backup ring, and a spacer are indispensable, which increases the cost. Furthermore, since a connector is used, it may be necessary to review the shape of the mating member such as a pipe corresponding to this connector, which may require a significant change in the mold for molding the mating member. .

本発明は、上記従来の状況に鑑みて成されたもので、樹脂製チューブの利点を損なうことなく、従来の課題を解決することを目的としている。   The present invention has been made in view of the above-described conventional situation, and aims to solve the conventional problems without impairing the advantages of the resin tube.

本発明の樹脂製チューブは、少なくとも二以上の樹脂層を同心状に積層し、且つ最内層が硬度90以下の熱可塑性樹脂から成ると共に、最内層以外の層のうちの少なくとも一層が引張り弾性率30MPa以上の熱可塑性樹脂から成る積層チューブと、積層チューブの最内層を形成する材料を50質量%以上含む熱可塑性樹脂から成る連結用管体を備えている。そして、積層チューブの末端部分を拡径した状態にして、積層チューブの少なくとも最内層と連結用管体を融着により連結すると共に、積層チューブの内面と連結用管体の内面を略同一面状に連続させたことを特徴としている。   The resin tube of the present invention has at least two resin layers concentrically laminated, and the innermost layer is made of a thermoplastic resin having a hardness of 90 or less, and at least one of the layers other than the innermost layer has a tensile elastic modulus. A laminated tube made of a thermoplastic resin of 30 MPa or more and a connecting tube made of a thermoplastic resin containing 50% by mass or more of the material forming the innermost layer of the laminated tube are provided. Then, with the end portion of the laminated tube expanded, at least the innermost layer of the laminated tube and the connecting tube are connected by fusion, and the inner surface of the laminated tube and the inner surface of the connecting tube are substantially flush with each other. It is characterized by being continuous.

また、上記の樹脂製チューブは、好適な製造方法として、成形型内に積層チューブの末端部分を挿入した状態にして連結用管体を射出成形し、積層チューブの少なくとも最内層と連結用管体を融着させる製造方法が挙げられる。   In addition, as a preferable manufacturing method, the above-mentioned resin tube is formed by injection-molding a connecting tube with the end portion of the laminated tube inserted into a mold, and at least the innermost layer of the laminated tube and the connecting tube The manufacturing method which fuse | melts is mentioned.

さらに、上記の樹脂製チューブは、例えば自動車の冷却水の循環系に好適な連結構造として、積層チューブの最内層及び連結用管体の材料をオレフィン系熱可塑性エラストマーとし、連結用管体をパイプ等の相手部材の外側に嵌合し、連結用管体の嵌合部分の外周をクランプにより緊締した連結構造が挙げられる。   Further, the above-mentioned resin tube has, for example, a connection structure suitable for a cooling water circulation system of an automobile, the innermost layer of the laminated tube and the material of the connection tube are made of an olefin thermoplastic elastomer, and the connection tube is a pipe. A connection structure in which the outer periphery of the mating member of the connecting member is fastened with a clamp is used.

本発明の樹脂製チューブによれば、積層チューブと連結用管体から成るものとしたことから、錆の発生がなく、軽量化が可能であるとともに低コストであるという本来の利点を何ら損なうことがなく、薄肉によるさらなる軽量化が可能であると共に、パイプ等の相手部材への組付け性が良好であって、コネクタ類が不要となり、また、相手部材との連結部分のシール性も良好であるので、シール用部品の削減が可能となり、トータルコストを低減することができる。さらに、積層チューブと連結用管体の互いの内面を略同一面状に連続させたことにより、内部流体の流動抵抗も小さく抑えることができる。   According to the resin tube of the present invention, since it is composed of a laminated tube and a connecting tube, there is no generation of rust, and the original advantage of being able to be reduced in weight and being low in cost is lost. It is possible to further reduce the weight by thin wall, and it is easy to assemble to a mating member such as a pipe, no connectors are required, and the sealing property of the connecting part with the mating member is also good. Therefore, the number of sealing parts can be reduced, and the total cost can be reduced. Furthermore, the flow resistance of the internal fluid can be kept small by making the inner surfaces of the laminated tube and the connecting tube body substantially continuous.

本発明の樹脂製チューブの製造方法によれば、積層チューブと連結用管体から成る樹脂製チューブを効率良く大量生産することができ、且つ品質にばらつきのない樹脂製チューブを提供することができる。   According to the method for producing a resin tube of the present invention, it is possible to efficiently mass-produce a resin tube composed of a laminated tube and a connecting tube, and to provide a resin tube having no variation in quality. .

本発明の樹脂製チューブの連結構造によれば、例えば自動車の冷却水の循環系に好適であって、積層チューブの最内層及び連結用管体において、耐熱性や加水分解性及び冷却水に対するバリヤ性が良好なものとなり、長期にわたって品質の劣化がきわめて少ない連結構造を得ることができる。   According to the connection structure of the resin tube of the present invention, it is suitable for, for example, a cooling water circulation system of an automobile, and in the innermost layer of the laminated tube and the connecting pipe body, heat resistance, hydrolyzability, and a barrier against cooling water Therefore, it is possible to obtain a connection structure with very little deterioration in quality over a long period of time.

図1は、本発明の樹脂製チューブの一実施形態を示す図である。図示の樹脂製チューブ11は、少なくとも二以上の樹脂層を同心状に積層した積層チューブ12と、当該樹脂製チューブ11の端部を構成する連結用管体13を備えている。   FIG. 1 is a view showing an embodiment of the resin tube of the present invention. The illustrated resin tube 11 includes a laminated tube 12 in which at least two or more resin layers are concentrically stacked, and a connecting tube 13 that constitutes an end of the resin tube 11.

図示の積層チューブ12は、二つの樹脂層を有するもので、最内層12aが、硬度(ゴム硬度)90以下の熱可塑性樹脂から成ると共に、最内層12a以外の層のうちの少なくとも一層すなわち図示例では最外層12bが、引張り弾性率30MPa以上の熱可塑性樹脂から成るものとしている。これに対して、連結用管体13は、積層チューブ12の最内層12aを形成する材料を50質量%以上含む熱可塑性樹脂から成るものとしている。   The illustrated laminated tube 12 has two resin layers. The innermost layer 12a is made of a thermoplastic resin having a hardness (rubber hardness) of 90 or less, and at least one of the layers other than the innermost layer 12a, that is, the illustrated example. Then, the outermost layer 12b is made of a thermoplastic resin having a tensile elastic modulus of 30 MPa or more. On the other hand, the connecting tube 13 is made of a thermoplastic resin containing 50% by mass or more of the material forming the innermost layer 12a of the laminated tube 12.

そして、樹脂製チューブ11は、積層チューブ12の末端部分を拡径した状態にして、積層チューブ12の少なくとも最内層12aと連結用管体13を融着により連結し、積層チューブ12の内面と連結用管体13の内面を略同一面状に連続させている。   Then, the resin tube 11 is connected to at least the innermost layer 12a of the laminated tube 12 and the connecting tube 13 by fusion, with the end portion of the laminated tube 12 being expanded, and connected to the inner surface of the laminated tube 12. The inner surface of the pipe body 13 is made to be substantially the same plane.

ここで、積層チューブ12の最内層12aの硬度を90以下としたのは、硬度が90を超えると、当該樹脂製チューブ11自体の柔軟性や、連結用管体13との融着性が低下するからであり、また、積層チューブ12の最外層12bの引張り弾性率を30MPa以上としたのは、引張り弾性率が30MPa未満であると、当該樹脂製チューブ11自体の機械的強度が低下するからである。   Here, the hardness of the innermost layer 12a of the laminated tube 12 is set to 90 or less. When the hardness exceeds 90, the flexibility of the resin tube 11 itself and the fusing property with the connecting tube 13 are lowered. This is because the tensile elastic modulus of the outermost layer 12b of the laminated tube 12 is set to 30 MPa or more because the mechanical strength of the resin tube 11 itself decreases when the tensile elastic modulus is less than 30 MPa. It is.

さらに、連結用管体13に含まれる最内層12aの形成材料を50質量%以上としたのは、パイプ等の相手部材に対する良好な組付け性やシール性を確保すると共に、連結用管体13と最内層12aとの充分な融着強度を得るためである。この融着強度は、連結用管体13に含まれる最内層12aの形成材料を30質量%以上にすれば最低限確保することができるが、低透過の観点からでは60質量%以上とするのが良く、望ましくは80質量%以上であり、より望ましくは100質量%である。   Furthermore, the material for forming the innermost layer 12a included in the connecting tube 13 is 50% by mass or more, while ensuring good assembling and sealing properties with respect to a mating member such as a pipe, and the connecting tube 13 This is for obtaining a sufficient fusion strength between the innermost layer 12a and the innermost layer 12a. This fusion strength can be ensured at a minimum if the material for forming the innermost layer 12a contained in the connecting tube 13 is 30% by mass or more, but it is 60% by mass or more from the viewpoint of low transmission. Is desirably 80% by mass or more, and more desirably 100% by mass.

上記構成を備えた樹脂製チューブ11は、錆の発生がなく、軽量化が可能であるとともに低コストであるという樹脂製チューブ本来の利点を何ら損なうことがなく、パイプ等の相手部材に嵌合する際の組付け性が良好であって、従来のようなコネクタ(図6参照)が不要となり、また、相手部材との連結部分のシール性も良好であるので、シール用部品の削減又は廃止が可能となり、トータルコストを低減し得るものとなる。さらに、積層チューブ12と連結用管体13の互いの内面を略同一面状に連続させているので、内部流体の流動抵抗も小さく抑えられる。   The resin tube 11 having the above-described configuration is fitted with a mating member such as a pipe without causing any rust, reducing the weight and reducing the low cost of the resin tube. Assembling performance is good, the conventional connector (see Fig. 6) is unnecessary, and the sealing performance of the connecting part with the mating member is also good, so the number of sealing parts can be reduced or eliminated. And the total cost can be reduced. Furthermore, since the inner surfaces of the laminated tube 12 and the connecting tube 13 are made to be substantially the same surface, the flow resistance of the internal fluid can be kept small.

また、樹脂製チューブ11は、積層チューブ12の最内層12aと連結用管体13が同一材料から成るものとし、この際、共に硬度80以下の熱可塑性樹脂から成るものとすることができ、このようにすれば、積層チューブ12と連結用管体13との融着強度がより強固なものになる。   Further, the resin tube 11 can be composed of the innermost layer 12a of the laminated tube 12 and the connecting tube body 13 made of the same material, and at this time, both can be made of a thermoplastic resin having a hardness of 80 or less. By doing so, the fusion strength between the laminated tube 12 and the connecting tube 13 becomes stronger.

さらに、上記樹脂製チューブ11を製造するには、成形型内に積層チューブ12の末端部分を挿入した状態にして連結用管体13を射出成形し、積層チューブ12の少なくとも最内層12aと連結用管体13を融着させる方法が挙げられる。   Furthermore, in order to manufacture the resin tube 11, the connecting tube 13 is injection-molded with the end portion of the laminated tube 12 inserted into a mold, and is connected to at least the innermost layer 12 a of the laminated tube 12. A method of fusing the tube body 13 is exemplified.

このような製造方法によれば、積層チューブ12と連結用管体13から成る樹脂製チューブ11を効率良く大量生産することができ、且つ品質にばらつきのない樹脂製チューブ11を提供することができる。   According to such a manufacturing method, the resin tube 11 composed of the laminated tube 12 and the connecting tube 13 can be efficiently mass-produced, and the resin tube 11 having no variation in quality can be provided. .

また、上記の如く樹脂製チューブ11を製造する際には、図2に他の実施形態を示すように、積層チューブ12の外面と連結用管体13の外面を略同一面状に連続させることも有効である。このようにすれば、積層チューブ12と連結用管体13との融着部分の面積を大きく確保することができ、より強固で安定した融着強度を得ることができ、さらに、概観体裁が良好であるとともに取扱い性も向上する。   Further, when the resin tube 11 is manufactured as described above, the outer surface of the laminated tube 12 and the outer surface of the connecting tube body 13 are made to be substantially in the same plane as shown in FIG. Is also effective. In this way, it is possible to secure a large area of the fused portion between the laminated tube 12 and the connecting tube 13, to obtain a stronger and more stable fusion strength, and to improve the appearance. In addition, handleability is improved.

図3は上記樹脂製チューブ11の連結構造の一例を示す図であって、積層チューブ12の最内層12a及び連結用管体13の材料をオレフィン系熱可塑性エラストマーとしており、連結用管体13をパイプ等の相手部材21の外側に嵌合し、連結用管体13の嵌合部分の外周を長さ調整可能なベルト状のクランプ22により緊締したものとなっている。   FIG. 3 is a view showing an example of the connection structure of the resin tube 11, wherein the material of the innermost layer 12 a of the laminated tube 12 and the connecting tube 13 is an olefin-based thermoplastic elastomer, and the connecting tube 13 is It is fitted to the outside of a mating member 21 such as a pipe, and the outer periphery of the fitting portion of the connecting tube 13 is tightened by a belt-like clamp 22 whose length can be adjusted.

上記の連結構造は、例えば自動車の冷却水の循環系に好適であり、積層チューブ12の最内層12a及び連結用管体13において、耐熱性や加水分解性及び冷却水に対するバリヤ性が良好であり、長期にわたって品質の劣化がきわめて少ないものとなる。   The above connection structure is suitable, for example, for a cooling water circulation system of an automobile, and in the innermost layer 12a of the laminated tube 12 and the connecting pipe body 13, heat resistance, hydrolyzability, and barrier property against cooling water are good. The degradation of quality over a long period of time will be extremely small.

図4は本発明の樹脂製チューブのさらに他の実施形態を示す図であり、図示の樹脂製チューブ11は、連結用管体13の外面に、熱可塑性樹脂から成る保護層14が融着により設けてある。この保護層14は、耐候、耐熱、耐オゾン及び耐薬品などの機能を有するものであれば、その材料がとくに限定されることはないが、例えば積層チューブ11の最外層12bと同じ材料を用いることができ、この場合には、パイプ等の相手部材に対する組付け性を良好にし得るように、最外層12bの肉厚よりも薄肉にすることが望ましい。   FIG. 4 is a view showing still another embodiment of the resin tube of the present invention. In the resin tube 11 shown in the drawing, a protective layer 14 made of a thermoplastic resin is bonded to the outer surface of the connecting tube body 13. It is provided. The material of the protective layer 14 is not particularly limited as long as it has functions such as weather resistance, heat resistance, ozone resistance, and chemical resistance. For example, the same material as the outermost layer 12b of the laminated tube 11 is used. In this case, it is desirable that the thickness of the outermost layer 12b be thinner than that of the outermost layer 12b so that the assembling property with respect to a mating member such as a pipe can be improved.

上記の保護層14を備えた樹脂製チューブ11では、連結用管体の耐候性や耐熱性などを確保することができ、長期にわたって品質の劣化がきわめて少ないものとなる。   In the resin tube 11 provided with the protective layer 14 described above, the weather resistance and heat resistance of the connecting pipe body can be ensured, and the deterioration of the quality is extremely small over a long period of time.

(実施例1)
最外層に引張り弾性率850MPaのポリプロピレン(サンアロマー製PB370、肉厚1.5mm)を用い、最内層に硬度80のオレフィン系エラストマー(エーイーエスジャパン製サントプレーン101−80、肉厚0.5mm)を用いて、二層の積層チューブ(内径φ30mm)を共押出しにより成形した。この積層チューブの末端部分を加熱下でマンドレル(φ34mm)に挿入して拡径した後、積層チューブの末端部分を成形型内に挿入した状態にして、硬度73のオレフィン系エラストマー(エーイーエスジャパン製サントプレーン101−73)を射出することにより、連結用管体(内径φ30mm、肉厚4mm、チューブ端部からの長さ30mm)を成形すると共に、連結用管体と積層チューブを熱板融着により接合し、図1に示すような樹脂製チューブを得た。
(Example 1)
Polypropylene with a tensile elastic modulus of 850 MPa (Sun Allomer PB370, wall thickness 1.5 mm) is used for the outermost layer, and an olefin-based elastomer with a hardness of 80 (Suntoprene 101-80, wall thickness 0.5 mm made by AES Japan) is used for the innermost layer. Using, a two-layer laminated tube (inner diameter φ30 mm) was formed by coextrusion. After the end portion of this laminated tube is inserted into a mandrel (φ34 mm) under heating to expand the diameter, the end portion of the laminated tube is inserted into a mold, and an olefin elastomer having a hardness of 73 (manufactured by AES Japan) Santoplane 101-73) is injected to form a connecting tube (inner diameter φ30 mm, wall thickness 4 mm, length 30 mm from the end of the tube), and the connecting tube and laminated tube are fused by hot plate. To obtain a resin tube as shown in FIG.

(実施例2)
最外層に引張り弾性率850MPaのポリプロピレン(サンアロマー製PB370、肉厚1.5mm)を用い、最内層に硬度80のオレフィン系エラストマー(エーイーエスジャパン製サントプレーン101−80、肉厚0.5mm)を用いて、二層の積層チューブ(内径φ30mm)を共押出しにより成形した。この積層チューブの末端部分を加熱下でマンドレル(φ34mm)に挿入して拡径した後、積層チューブの末端部分を成形型内に挿入した状態にして、硬度70のオレフィン系エラストマー(エーイーエスジャパン製サントプレーン101−73)を射出することにより、連結用管体(内径φ30mm、肉厚4mm、チューブ端部からの長さ30mm)を成形すると共に、連結用管体と積層チューブを接合し、図2に示すような樹脂製チューブを得た。
(Example 2)
Polypropylene with a tensile elastic modulus of 850 MPa (Sun Allomer PB370, wall thickness 1.5 mm) is used for the outermost layer, and an olefin-based elastomer with a hardness of 80 (Suntoprene 101-80, wall thickness 0.5 mm made by AES Japan) is used for the innermost layer. Using, a two-layer laminated tube (inner diameter φ30 mm) was formed by coextrusion. After the end portion of this laminated tube is inserted into a mandrel (φ34 mm) under heating to expand the diameter, the end portion of the laminated tube is inserted into a mold, and an olefin elastomer having a hardness of 70 (manufactured by AES Japan). By injecting the santoprene 101-73), a connecting tube (inner diameter φ 30 mm, thickness 4 mm, length 30 mm from the end of the tube) is formed, and the connecting tube and the laminated tube are joined together. A resin tube as shown in 2 was obtained.

(実施例3)
最外層に引張り弾性率850MPaのポリプロピレン(サンアロマー製PB370、肉厚1.5mm)を用い、最内層に硬度73のオレフィン系エラストマー(エーイーエスジャパン製サントプレーン101−73、肉厚0.5mm)を用いて、二層の積層チューブ(内径φ30mm)を共押出しにより成形した。この積層チューブの末端部分を加熱下でマンドレル(φ34mm)に挿入して拡径した後、積層チューブの末端部分を成形型内に挿入した状態にして、積層チューブの最内層と同一材料を射出することにより、連結用管体(内径φ30mm、肉厚4mm、チューブ端部からの長さ30mm)を成形すると共に、連結用管体と積層チューブを接合し、図2に示すような樹脂製チューブを得た。
(Example 3)
Polypropylene with a tensile elastic modulus of 850 MPa (Sun Allomer PB370, wall thickness 1.5 mm) is used for the outermost layer, and an olefin-based elastomer with a hardness of 73 (AES Japan Santoprene 101-73, wall thickness 0.5 mm) is used for the innermost layer. Using, a two-layer laminated tube (inner diameter φ30 mm) was formed by coextrusion. After the end portion of the laminated tube is inserted into a mandrel (φ34 mm) under heating to expand the diameter, the end portion of the laminated tube is inserted into a mold, and the same material as the innermost layer of the laminated tube is injected. As a result, a connecting tube (inner diameter φ 30 mm, wall thickness 4 mm, length 30 mm from the end of the tube) is formed, the connecting tube and the laminated tube are joined, and a resin tube as shown in FIG. 2 is formed. Obtained.

(実施例4)
最外層に引張り弾性率850MPaのポリプロピレン(サンアロマー製PB370、肉厚1.5mm)を用い、最内層に硬度73のオレフィン系エラストマー(エーイーエスジャパン製サントプレーン101−73、肉厚0.5mm)を用いて、二層の積層チューブ(内径φ30mm)を共押出しにより成形した。この積層チューブの末端部分を加熱下でマンドレル(φ34mm)に挿入して拡径した後、積層チューブの末端部分を成形型内に挿入した状態にして、積層チューブの最内層と同一材料を本体部、積層チューブの最外層と同一材料を保護層として、連結用管体(内径φ30mm、肉厚:外層0.2mm、内層3.8mm、チューブ端部からの長さ30mm)を射出成形すると共に、連結用管体と積層チューブを接合し、図4に示すような樹脂製チューブを得た。
Example 4
Polypropylene with a tensile elastic modulus of 850 MPa (Sun Allomer PB370, wall thickness 1.5 mm) is used for the outermost layer, and an olefin-based elastomer with a hardness of 73 (AES Japan Santoprene 101-73, wall thickness 0.5 mm) is used for the innermost layer. Using, a two-layer laminated tube (inner diameter φ30 mm) was formed by coextrusion. After the end portion of this laminated tube is inserted into a mandrel (φ34 mm) under heating to expand the diameter, the end portion of the laminated tube is inserted into the mold, and the same material as the innermost layer of the laminated tube is placed in the main body. In addition, with the same material as the outermost layer of the laminated tube as a protective layer, a connecting tube (inner diameter φ 30 mm, wall thickness: outer layer 0.2 mm, inner layer 3.8 mm, length 30 mm from the end of the tube) is injection molded, The connecting tube and the laminated tube were joined to obtain a resin tube as shown in FIG.

(実施例5)
最外層に引張り弾性率232MPaのポリエステル系エラストマー(東レデュポン製ハイトレル7277、肉厚1.5mm)を用い、中間層に無水マレイン酸変性ポリプロピレン(肉厚0.1mm)を用い、最内層に硬度73のオレフィン系エラストマー(エーイーエスジャパン製サントプレーン101−73、肉厚0.4mm)を用いて 三層の積層チューブ(内径φ30mm)を共押出しにより成形した。この積層チューブの末端部分を加熱下でマンドレル(φ34)に挿入して拡径した後、積層チューブの末端部分を成形型内に挿入した状態にして、積層チューブの最内層と同一材料を射出することにより、連結用管体(内径φ30mm、肉厚4mm、チューブ端部からの長さ30mm)を成形すると共に、連結用管体と積層チューブを接合し、図4に示す如く連結用管体と積層チューブの内面及び外面が共に同一面状に連続する樹脂製チューブを得た。
(Example 5)
A polyester elastomer with a tensile modulus of 232 MPa is used for the outermost layer (Hytrel 7277 manufactured by Toray DuPont, wall thickness 1.5 mm), maleic anhydride-modified polypropylene (wall thickness 0.1 mm) is used for the intermediate layer, and hardness 73 is used for the innermost layer. A three-layer laminated tube (inner diameter: 30 mm) was molded by coextrusion using an olefin-based elastomer (Sant Plain 101-73 manufactured by AES Japan, wall thickness 0.4 mm). After the end portion of this laminated tube is inserted into a mandrel (φ34) under heating to expand the diameter, the end portion of the laminated tube is inserted into a mold and the same material as the innermost layer of the laminated tube is injected. As a result, a connecting tube (inner diameter φ 30 mm, wall thickness 4 mm, length 30 mm from the end of the tube) is formed, and the connecting tube and the laminated tube are joined together. As shown in FIG. A resin tube was obtained in which the inner and outer surfaces of the laminated tube were both continuous in the same plane.

なお、上記実施例1〜4において、硬度は、JIS K6253に示すタイプAデュロメータにより室温で測定した。また、引張り弾性率の測定方法は、JIS K7113に準拠し、室温において引張り試験速度は500mm/minとした。   In Examples 1 to 4, the hardness was measured at room temperature using a type A durometer shown in JIS K6253. The tensile modulus was measured in accordance with JIS K7113, and the tensile test speed was 500 mm / min at room temperature.

(比較例1)
実施例4に基づいて三層の積層チューブを作成し、この積層チューブをパイプ継手(φ32mm)の外側に嵌合し、嵌合部分の外周を板ばね式クランプにより緊締した。
(Comparative Example 1)
A three-layer laminated tube was prepared based on Example 4, this laminated tube was fitted to the outside of a pipe joint (φ32 mm), and the outer periphery of the fitting portion was tightened with a leaf spring clamp.

(比較例2)
従来の水系配管に使用している補強糸入りEPDMゴムホース(φ30mm)を用い、このゴムホースをパイプ継手(φ32mm)の外側に嵌合し、嵌合部分の外周を板ばね式クランプにより締結した。
(Comparative Example 2)
An EPDM rubber hose with reinforcing yarn (φ30 mm) used in conventional water-based piping was used, this rubber hose was fitted to the outside of the pipe joint (φ32 mm), and the outer periphery of the fitting portion was fastened by a leaf spring clamp.

(評価方法)
◎挿入力
パイプ継手(φ32mm)に対して、チューブの端部を100mm/minの速度で端部から30mmの位置まで挿入し、そのときの最大荷重を測定した。この際、挿入助剤として水で二倍に希釈した中性洗剤を用い、チューブの端部より30mmの位置までの内面に中性洗剤を塗布した。
(Evaluation methods)
Insertion force With respect to the pipe joint (φ32 mm), the end of the tube was inserted at a speed of 100 mm / min to a position 30 mm from the end, and the maximum load at that time was measured. At this time, a neutral detergent diluted twice with water was used as an insertion aid, and the neutral detergent was applied to the inner surface from the end of the tube to a position of 30 mm.

◎連結用管体の密着力
連結用管体と積層チューブの接着性評価として、連結用管体を治具に固定して積層チューブを500mm/minの速度で引張り、双方の界面での剥がれ又は材料破断が起こった時の荷重を測定した。
◎ Adhesive strength of connecting tube As an evaluation of adhesion between connecting tube and laminated tube, the connecting tube is fixed to a jig and the laminated tube is pulled at a speed of 500 mm / min. The load when material breakage occurred was measured.

◎洩れ試験
チューブの端部をパイプ継手(φ32mm)の外側に嵌合し、この嵌合部分の外周にクランプを装着した後、水で50%に希釈した自動車用冷却水をチューブに供給して、その内部を0.5Mpa/minの昇圧速度で0.3Mpaまで加圧し、洩れの有無を観測した。このとき、後記する表1において、洩れが生じたものを〇、洩れが生じなかったものを×とした。質量比は、チューブ全長を500mmとした場合の質量を、比較例2の質量を100として相対比で示した。試料は新品及び乾熱劣化後(120℃×250h)とした。以上の試験結果を表1に示す
◎ Leakage test After fitting the end of the tube to the outside of the pipe joint (φ32mm) and attaching a clamp to the outer periphery of this fitting, supply automotive cooling water diluted to 50% with water to the tube. The inside was pressurized to 0.3 Mpa at a pressure increase rate of 0.5 Mpa / min, and the presence or absence of leakage was observed. At this time, in Table 1 to be described later, the case where leakage occurred was marked with ◯, and the case where leakage did not occur was marked with ×. The mass ratio is shown as a relative ratio with the mass when the total length of the tube is 500 mm as the mass of Comparative Example 2 being 100. The samples were new and after dry heat deterioration (120 ° C. × 250 h). The above test results are shown in Table 1.

Figure 2005180567
Figure 2005180567

表1から明らかなように、実施例1〜5の樹脂製チューブは、比較例1と比べると、挿入力及び洩れ圧の面で優れており、また、比較例2(従来構造)と比較しても、挿入力及び洩れ性能において同等以上であり、さらに軽量化効果も得られたことから本発明の樹脂製チューブの有効性を確認することができた。   As is clear from Table 1, the resin tubes of Examples 1 to 5 are superior in comparison with Comparative Example 1 in terms of insertion force and leakage pressure, and compared with Comparative Example 2 (conventional structure). However, since the insertion force and the leakage performance were equal or better, and the lightening effect was obtained, the effectiveness of the resin tube of the present invention could be confirmed.

本発明の樹脂製チューブの一実施形態を示す片側省略の断面図である。It is sectional drawing of the one side omission which shows one Embodiment of the resin-made tubes of this invention. 樹脂製チューブの他の実施形態を示す片側省略の断面図である。It is sectional drawing of the one side omission which shows other embodiment of resin-made tubes. 樹脂製チューブの連結構造の一例を示す片側省略の断面図である。It is sectional drawing of the omission of one side which shows an example of the connection structure of resin tubes. 樹脂製チューブのさらに他の実施形態を示す片側省略の断面図である。It is sectional drawing of the one side omission which shows other embodiment of resin-made tubes. 従来のゴム製チューブの締結構造を示す断面図である。It is sectional drawing which shows the fastening structure of the conventional rubber tube. 従来の樹脂製チューブの締結構造を示す断面図である。It is sectional drawing which shows the fastening structure of the conventional resin tube.

符号の説明Explanation of symbols

11 樹脂製チューブ
12 積層チューブ
12a 最内層
12b 最外層
13 連結用管体
14 保護層
21 相手部材
22 クランプ
DESCRIPTION OF SYMBOLS 11 Resin tube 12 Laminated tube 12a Innermost layer 12b Outermost layer 13 Connection pipe body 14 Protection layer 21 Opposing member 22 Clamp

Claims (6)

少なくとも二以上の樹脂層を同心状に積層し、且つ最内層が硬度90以下の熱可塑性樹脂から成ると共に、最内層以外の層のうちの少なくとも一層が引張り弾性率30MPa以上の熱可塑性樹脂から成る積層チューブと、
積層チューブの最内層を形成する材料を50質量%以上含む熱可塑性樹脂から成る連結用管体を備え、
積層チューブの末端部分を拡径した状態にして、積層チューブの少なくとも最内層と連結用管体を融着により連結すると共に、積層チューブの内面と連結用管体の内面を略同一面状に連続させたことを特徴とする樹脂製チューブ。
At least two or more resin layers are concentrically laminated, and the innermost layer is made of a thermoplastic resin having a hardness of 90 or less, and at least one of the layers other than the innermost layer is made of a thermoplastic resin having a tensile elastic modulus of 30 MPa or more. Laminated tubes,
A connecting tube made of a thermoplastic resin containing 50% by mass or more of the material forming the innermost layer of the laminated tube;
With the diameter of the end of the laminated tube expanded, at least the innermost layer of the laminated tube and the connecting tube are connected by fusion, and the inner surface of the laminated tube and the inner surface of the connecting tube are substantially flush with each other. A resin tube characterized by having been made.
積層チューブの最内層と連結用管体が同一材料から成り、共に硬度80以下の熱可塑性樹脂から成ることを特徴とする請求項1に記載の樹脂製チューブ。   2. The resin tube according to claim 1, wherein the innermost layer of the laminated tube and the connecting tube are made of the same material, and are both made of a thermoplastic resin having a hardness of 80 or less. 連結用管体の外面に、熱可塑性樹脂から成る保護層が設けてあることを特徴とする請求項1又は2に記載の樹脂製チューブ。   The resin tube according to claim 1 or 2, wherein a protective layer made of a thermoplastic resin is provided on an outer surface of the connecting pipe body. 請求項1〜3のいずれかに記載の樹脂製チューブを製造するに際し、成形型内に積層チューブの末端部分を挿入した状態にして連結用管体を射出成形し、積層チューブの少なくとも最内層と連結用管体を融着させることを特徴とする樹脂製チューブの製造方法。   When manufacturing the resin tube according to any one of claims 1 to 3, the connecting tube is injection-molded with the end portion of the laminated tube inserted into the mold, and at least the innermost layer of the laminated tube A method for producing a resin tube, comprising fusing a connecting tube. 積層チューブの外面と連結用管体の外面を略同一面状に連続させることを特徴とする請求項4に記載の樹脂製チューブの製造方法。   The method for producing a resin tube according to claim 4, wherein the outer surface of the laminated tube and the outer surface of the connecting tube body are made to be substantially the same surface. 積層チューブの最内層及び連結用管体の材料がオレフィン系熱可塑性エラストマーであって、連結用管体をパイプ等の相手部材の外側に嵌合し、連結用管体の嵌合部分の外周をクランプにより緊締したことを特徴とする樹脂製チューブの連結構造。   The material of the innermost layer of the laminated tube and the connecting tube is an olefin-based thermoplastic elastomer, and the connecting tube is fitted to the outside of a mating member such as a pipe, and the outer periphery of the fitting portion of the connecting tube is Resin tube connection structure characterized by tightening with a clamp.
JP2003421764A 2003-12-19 2003-12-19 Resin-made tube Pending JP2005180567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421764A JP2005180567A (en) 2003-12-19 2003-12-19 Resin-made tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421764A JP2005180567A (en) 2003-12-19 2003-12-19 Resin-made tube

Publications (1)

Publication Number Publication Date
JP2005180567A true JP2005180567A (en) 2005-07-07

Family

ID=34782848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421764A Pending JP2005180567A (en) 2003-12-19 2003-12-19 Resin-made tube

Country Status (1)

Country Link
JP (1) JP2005180567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101500A (en) * 2006-02-01 2010-05-06 Seiko Epson Corp Tube with connector and method for forming the same
JP2018028350A (en) * 2016-08-17 2018-02-22 積水化学工業株式会社 Multilayer pipe and piping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101500A (en) * 2006-02-01 2010-05-06 Seiko Epson Corp Tube with connector and method for forming the same
JP2018028350A (en) * 2016-08-17 2018-02-22 積水化学工業株式会社 Multilayer pipe and piping

Similar Documents

Publication Publication Date Title
US20050218606A1 (en) Low permeability elastic sealing ring
JP2001263544A (en) Impermeable composite hose
WO2007007917A1 (en) Connection structure for different kinds of metal tubes
US6540868B1 (en) Method for producing a connector
JP2011002012A (en) Pipe joint structure
JP2611658B2 (en) Flexible pipeline
JP3683857B2 (en) Pipe for automotive fluid
JP2004211811A (en) Pipe connecting structure for connecting tube and hose
JP2005180567A (en) Resin-made tube
JP2007292302A (en) Resin composite hose of curve shape and method for producing the same
JP2005233363A (en) Pipe coupling and manufacturing method thereof
JP2007303635A (en) Sealing structure for refrigerating cycle
JP2007064341A (en) Connector
KR200437516Y1 (en) Packing for connecting glass reinforced plastic pipe
JPH02253089A (en) Electrofusion joint with connecting member
JPH1163336A (en) Reinforced rubber flexible joint
JP4415691B2 (en) Resin pipe fastening method
JP4144948B2 (en) Conversion joint and manufacturing method thereof
JP4179071B2 (en) Welding joint for resin tube connection of fuel tank
AU754504B2 (en) Method to remove leakage problems in pipes produced from plastic-base materials
JP2007051678A (en) Pipe joint
JP4971476B2 (en) Blow molded hollow body having connector pipe and method for producing the same
JPH06159563A (en) Polyolefine pipe with socket
JP2001146990A (en) Water cut-off method for pipe end cross section of composite pipe
JP5508200B2 (en) Piping material and manufacturing method thereof