JP2005180467A - Dynamic pressure fluid bearing motor with variable opening - Google Patents

Dynamic pressure fluid bearing motor with variable opening Download PDF

Info

Publication number
JP2005180467A
JP2005180467A JP2003417766A JP2003417766A JP2005180467A JP 2005180467 A JP2005180467 A JP 2005180467A JP 2003417766 A JP2003417766 A JP 2003417766A JP 2003417766 A JP2003417766 A JP 2003417766A JP 2005180467 A JP2005180467 A JP 2005180467A
Authority
JP
Japan
Prior art keywords
sleeve
lubricating fluid
shaft
hydrodynamic bearing
bearing motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003417766A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ichiyama
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Original Assignee
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURA GIJUTSU KENKYUSHO KK, Kura Gijutsu Kenkyusho KK filed Critical KURA GIJUTSU KENKYUSHO KK
Priority to JP2003417766A priority Critical patent/JP2005180467A/en
Publication of JP2005180467A publication Critical patent/JP2005180467A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a dynamic pressure fluid bearing motor enabling the precise control of floated amount without a thrust bearing larger in size than its shaft diameter. <P>SOLUTION: The precise floated amount control in association with a spiral groove equal in size to approximately the small shaft diameter is enabled by generating the most of a load capacity for supporting a rotating part by force-feeding a lubricating fluid to near the end of the shaft by the unbalance herringbone groove of a radial bearing. A circulating passage opening is formed in a sleeve end part which can be easily performed by precise machining or a counter plate to form the variable opening in association with a flat shaft end. Since the flow velocity of the lubricating fluid can be set to the minimum, the possibility of leakage of the lubricating fluid can be reduced, shaft damage can be reduced, and a thin, low power consumption magnetic disk using the dynamic pressure fluid bearing motor can be provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,動圧流体軸受モータに拘わり,特に高速回転,薄型の磁気ディスク装置(HDD)に適した動圧流体軸受モータに拘わる。   The present invention relates to a hydrodynamic bearing motor, and more particularly to a hydrodynamic bearing motor suitable for a high-speed rotation and thin magnetic disk drive (HDD).

従来のHDD用動圧流体軸受は回転部の姿勢維持と共に軸方向位置を厳密に規制する必要から回転部の姿勢はラジアルベアリングで,軸方向位置はスラストベアリングで分担する構成であり,ラジアルベアリングの他に軸より大径のスラストベアリング部を有していた。   Since conventional hydrodynamic bearings for HDDs need to strictly control the axial position while maintaining the attitude of the rotating part, the rotating part is configured with a radial bearing, and the axial position is shared with a thrust bearing. In addition, it had a thrust bearing part larger in diameter than the shaft.

HDDの小型化傾向と共に動圧流体軸受モータも小型,薄型化に向かう環境下でラジアルベアリングスパンを確保する為に本発明者が先に発明したスラストベアリングをハブ裏面に形成するシングルスラスト構造が徐々に支配的になってきた。これは潤滑流体が流動摩擦する面積を減らして軸損低減,更には組み立て性改善等にも寄与している。   With the trend toward miniaturization of HDDs, hydrodynamic bearing motors are also becoming smaller and thinner. In order to ensure radial bearing span, the present inventors have gradually developed a single thrust structure in which the thrust bearing previously invented is formed on the rear surface of the hub. Has become dominant. This contributes to reducing the axial loss by reducing the area where the lubricating fluid flows and friction, and further improving the assembly.

しかしながら,未だ残っている軸径より大きなスラストベアリング或はスラストプレートの存在は回転部の軸方向位置を規制する目的だけのために潤滑流体が高速で流動する領域を有し,遠心力による潤滑流体漏れの脅威を常に残すと共に軸損低減に難点を残すものであった。   However, the presence of a thrust bearing or thrust plate larger than the remaining shaft diameter has a region where the lubricating fluid flows at high speed only for the purpose of regulating the axial position of the rotating part. It always left a threat of leakage and a difficulty in reducing axial loss.

スラストベアリング或はスラストプレートを持たずに軸とスリーブのみで回転部を精密に支持する動圧流体軸受を実現すれば上記諸問題を改善できるが,そのような構成は今日の軸受構成が支配的となる以前に種々開発が試みられていた。それらは,軸端中心で常に接触摺動する構成,軸端に小さなスパイラルグルーブを有して浮上させる構成,磁気反発力或は磁気吸引力で回転部を浮上支持させる構成,ラジアルベアリングの潤滑流体圧送(ポンピング)により軸方向の負荷容量を得る構成等である。   The above problems can be improved by realizing a hydrodynamic bearing that precisely supports the rotating part with only a shaft and a sleeve without a thrust bearing or thrust plate, but such a configuration is dominated by today's bearing configuration. Various developments were attempted before becoming. They consist of a structure that always slides in contact with the center of the shaft end, a structure that floats with a small spiral groove at the shaft end, a structure that floats and supports the rotating part by magnetic repulsion or magnetic attraction, and lubricating fluid for radial bearings. For example, the load capacity in the axial direction is obtained by pumping.

軸端を摺動回転させる第一の構成は,回転部重量が小さくなった今日ではかなり現実的にはなったが,それでも衝撃に対して軸方向のダンピングが利きにくい点及び衝撃が加わったことによる圧痕の影響等を考慮するとHDDへの採用には適さない。   The first configuration that slides and rotates the shaft end has become quite realistic today when the weight of the rotating part has decreased, but it still has a point in which axial damping is difficult to work against and impact has been added. Considering the influence of the indentation due to, it is not suitable for use in HDD.

軸端に小さなスパイラルグルーブを有する第二の構成は,例えば特公昭46−8046に提案されているが,小さな軸径の場合に低速回転で十分な負荷容量を得られないので浮上量が小さく,回転起動及び停止時の摺動距離が大となる弱点を有する。   The second configuration having a small spiral groove at the shaft end is proposed in, for example, Japanese Examined Patent Publication No. 46-8046. However, in the case of a small shaft diameter, a sufficient load capacity cannot be obtained at low speed rotation, so the flying height is small. It has a weak point that the sliding distance at the start and stop of rotation becomes large.

磁気的な反発力或は吸引力を利用して回転部を支持する第三の構成は軸方向の位置精度が得られず,部品数増加等の課題があって小型のHDD応用には現実的で無い。   The third configuration that supports the rotating part using the magnetic repulsive force or attractive force cannot achieve the positional accuracy in the axial direction, and has problems such as an increase in the number of parts, which is practical for small HDD applications. Not.

ラジアルベアリングの潤滑流体圧送能力を利用する第四の構成は有底スリーブの底部と軸端とで構成する間隙に潤滑流体を圧送して軸方向の負荷容量を得る。ラジアルベアリングの潤滑流体圧送は効率が良くしかも強力であるので回転体を支持するに十分ではあるが,浮上量の精密制御に難点がある。現実的な提案は2種有り,一つはスリーブ周壁に循環路の開口を有して浮上移動する軸端位置と併せて可変開口を形成させて浮上量制御をする構成,及び軸端とスリーブ間でオリフィスを構成して浮上量制御をする構成である。   In a fourth configuration using the lubricating fluid pumping capability of the radial bearing, the lubricating fluid is pumped into a gap formed by the bottom of the bottomed sleeve and the shaft end to obtain an axial load capacity. The lubrication fluid pumping of radial bearings is efficient and powerful enough to support the rotating body, but there are difficulties in precise control of flying height. There are two types of realistic proposals. One is a structure that controls the flying height by forming a variable opening along with the position of the shaft end that has a circulation path opening on the sleeve peripheral wall, and the shaft end and sleeve It is the structure which controls the flying height by forming an orifice between them.

第四の構成の前者は特公昭48−4498に提案され,軸とスリーブ周壁に設けた循環路開口とで形成しているが,特開昭58−24615で指摘されるように循環路開口位置の精度を確保することが困難であり,HDD用軸受として数ミクロンメートルレベルでの浮上量の均一性を得ることは難しい。   The former of the fourth configuration is proposed in Japanese Patent Publication No. 48-4498, and is formed by a shaft and a circulation path opening provided in the peripheral wall of the sleeve. It is difficult to ensure the accuracy of the above, and it is difficult to obtain a uniform flying height on the order of several micrometers as a HDD bearing.

第四の構成の後者の構成は特開昭58−24615,特開昭58−24616,特開昭58−54223等の提案があって浮上量精度を改善しようとするが,軸とスリーブの径方向間隙より大の浮上量制御は困難である。現在のHDD用動圧流体軸受モータでは径方向間隙は2ミクロンメートル程度であり,軸方向の浮上量は5ミクロンメートル程度として衝撃,振動へのマージンを確保したいので製品への適用は難しい。   The latter configuration of the fourth configuration is proposed in Japanese Patent Laid-Open Nos. 58-24615, 58-24616, 58-54223, etc. to improve the flying height accuracy. It is difficult to control the flying height larger than the directional gap. In the current hydrodynamic bearing motor for HDD, the radial clearance is about 2 microns, and the flying height in the axial direction is about 5 microns, so it is difficult to apply to products because it wants to secure a margin for shock and vibration.

以上の理由から従来提案されていた上記の方式は何れも現在のHDDには採用し難い。しかしながら,ラジアルベアリングは径方向の間隙が狭いので効率が良くまた強力であるので第四の構成を改善する事により回転部浮上量の高精度制御実現の可能性がある。   For the reasons described above, any of the above-described methods proposed heretofore is difficult to adopt in current HDDs. However, since the radial bearing has a narrow radial gap, it is efficient and powerful, so there is a possibility of realizing high-precision control of the flying height of the rotating part by improving the fourth configuration.

特公昭46−8046「流体摺動軸受装置」Japanese Patent Publication No.46-8046 "Fluid sliding bearing device"

特公昭48−4498「心向及び軸向荷重に対する流体力学摺動軸受」Japanese Patent Publication No. 48-4498 "Hydrodynamic sliding bearings for axial and axial loads" 特開昭58−24615「動圧形流体軸受装置」Japanese Patent Application Laid-Open No. 58-24615 “Hydrodynamic Fluid Bearing Device” 特開昭58−24616「動圧形流体軸受装置」Japanese Patent Laid-Open No. 58-24616 "Hydrodynamic Fluid Bearing Device" 特開昭58−54223「動圧形スピンドル装置」Japanese Patent Laid-Open No. 58-54223 “Dynamic Pressure Spindle Device”

そこで本発明の目的は,軸径より大のスラストベアリングを持たずに回転部の浮上量を精密に制御して高速回転,薄型化,低軸損化,低コスト化等を可能とする動圧流体軸受モータを実現し,薄型で低消費電力の磁気ディスク装置を実現することである。   Accordingly, an object of the present invention is to provide a dynamic pressure that enables high-speed rotation, thinning, low shaft loss, low cost, etc. by precisely controlling the flying height of the rotating part without having a thrust bearing larger than the shaft diameter. It is to realize a fluid dynamic bearing motor and to realize a thin and low power consumption magnetic disk device.

本発明による動圧流体軸受モータの基本概念は,相対的に回転自在に嵌合する円筒状の軸及び有底スリーブと,軸及びスリーブ間間隙の潤滑流体と,回転部及び固定部間に磁気吸引力を発生させる磁気的手段とを有して構成される動圧流体軸受モータに於いて,軸表面或いはスリーブ内周面にスリーブ底部方向に圧送能力を有する不平衡ヘリングボーングルーブを有すると共に軸端近傍と不平衡ヘリングボーングルーブの軸端より遠い側とを結ぶ循環路を軸内或いはスリーブ内に有し,軸とスリーブ間の間隙で構成する流路断面積より小の流路断面積のオリフィスによる第一の軸方向負荷容量発生手段を循環路内に有すると共に軸端部近傍に浮上量依存の第二の軸方向負荷容量発生手段を有し,不平衡ヘリングボーングルーブは回転部姿勢を保持する為のラジアルベアリング動圧を発生させると共にスリーブ底面側に潤滑流体を圧送し,第一及び第二の軸方向負荷容量と磁気吸引力及び回転部重量とを平衡させて回転部を所定の浮上量に制御する事を特徴とする。   The basic concept of the hydrodynamic bearing motor according to the present invention consists of a cylindrical shaft and a bottomed sleeve that are relatively rotatably fitted, a lubricating fluid in the gap between the shaft and the sleeve, and a magnetic field between the rotating portion and the fixed portion. In a hydrodynamic bearing motor configured with magnetic means for generating an attractive force, the shaft surface or the inner peripheral surface of the sleeve has an unbalanced herringbone groove having a pumping ability in the sleeve bottom direction and the shaft There is a circulation path in the shaft or in the sleeve that connects the vicinity of the end and the side far from the shaft end of the unbalanced herringbone groove. The first axial load capacity generating means by the orifice is provided in the circulation path, and the second axial load capacity generating means depending on the flying height is provided in the vicinity of the shaft end, and the unbalanced herringbone groove has the rotating portion attitude. A radial bearing dynamic pressure is generated for holding, and a lubricating fluid is pumped to the bottom surface side of the sleeve to balance the first and second axial load capacities with the magnetic attraction force and the weight of the rotating part, thereby to It is characterized by controlling the flying height.

有底スリーブを円筒スリーブと端面に固定するカウンタープレートとで構成し,循環路の一部をスリーブ端面及びカウンタープレート間に形成した凹部チャネルで構成する。凹部チャネルの断面である循環路開口と軸端外周部とにより回転部の浮上量に応じて変化する可変開口を構成し,第一及び第二の軸方向負荷容量発生手段を兼ねて浮上量の精密制御を実施する。スリーブ端面或いはカウンタープレート面の凹部チャネルは諸種の微細加工技術を利用して形成できるので開口断面及び位置は高精度であり従来構造で浮上量の精密制御が出来ないとの欠陥を克服できる。   The bottomed sleeve is constituted by a cylindrical sleeve and a counter plate fixed to the end face, and a part of the circulation path is constituted by a recessed channel formed between the sleeve end face and the counter plate. A variable opening that changes in accordance with the flying height of the rotating part is configured by the circulation path opening that is a cross section of the recessed channel and the outer peripheral part of the shaft end, and serves as the first and second axial load capacity generating means. Implement precise control. Since the recessed channel on the sleeve end face or counter plate surface can be formed by using various micromachining techniques, the opening cross section and position are highly accurate, and the defect that the flying height cannot be precisely controlled with the conventional structure can be overcome.

さらに軸端或いはスリーブ底部にポンプインのスパイラルグルーブを構成し,実質的な可変開口と併せて浮上量制御を行う事で軸方向の支持剛性を高め精密な浮上量制御を可能にする。その場合に可変開口のみによる最大の軸方向負荷容量を磁気吸引力及び回転部重量の和にほぼ等しくなるようにパラメーターを設定すれば,低速回転或いは小軸径等の理由でスパイラルグルーブによる負荷容量が小さい場合でも回転部の浮上を確実に出来る。   Furthermore, a pump-in spiral groove is formed at the shaft end or sleeve bottom, and the flying height is controlled in combination with a substantially variable opening to increase the axial support rigidity and enable precise flying height control. In that case, if the parameter is set so that the maximum axial load capacity due to only the variable aperture is approximately equal to the sum of the magnetic attractive force and the weight of the rotating part, the load capacity due to the spiral groove due to low speed rotation or small shaft diameter, etc. Rotation of the rotating part can be ensured even when is small.

スリーブ内の循環路に接続されて潤滑流体が空気との界面を形成するよう徐々に間隙を大としてスリーブ端面で大気に通じさせた潤滑流体へのアクセス孔を設けると,スリーブ端面のアクセス孔により潤滑流体の界面レベル監視,潤滑流体注入等を容易にする事が出来る。さらに潤滑流体内に気泡が混入している場合には循環路内を潤滑流体と気泡とが循環する過程で確率的に気泡が前記アクセス孔内の大気との界面から解放され,時間と共に潤滑流体内の気泡を除去出来る。   When the access hole for the lubricating fluid that is connected to the circulation path in the sleeve and communicated with the atmosphere at the sleeve end face is gradually increased so that the lubricating fluid forms an interface with the air, the access hole on the sleeve end face This makes it easy to monitor the interface level of the lubricating fluid and inject the lubricating fluid. Further, when bubbles are mixed in the lubricating fluid, the bubbles are stochastically released from the interface with the atmosphere in the access hole in the process of circulating the lubricating fluid and bubbles in the circulation path, and the lubricating fluid is The bubbles inside can be removed.

ラジアルベアリングを不平衡のヘリングボーングルーブとして潤滑流体を軸端部に圧送して回転部支持の負荷容量の大部分を発生させる。径方向の間隙は小さく,また管理しやすいのでエネルギー効率は良く,強力でもあって小さな軸径程度のスパイラルグルーブと協働して精密な浮上量制御を可能とする。   A radial bearing is used as an unbalanced herringbone groove, and a lubricating fluid is pumped to the shaft end portion to generate most of the load capacity of the rotating portion support. The gap in the radial direction is small and easy to manage, so it is energy efficient, powerful, and capable of precise flying height control in cooperation with a spiral groove with a small shaft diameter.

本発明では精密加工が容易なスリーブ端部或いはカウンタープレートに循環路開口を設けて軸端移動と併せて実質的な可変開口を構成した。   In the present invention, a circulation path opening is provided in the sleeve end portion or the counter plate, which is easy to perform precision processing, and a substantial variable opening is formed together with the movement of the shaft end.

またスリーブ内の循環路に連続して大気との界面を有するアクセス孔を持つ構造は大気圧下でのオイル注入及びレベル管理が容易で軸受け部の組み立て工程をシンプルにしてさらなる低コスト化を可能にする。   In addition, the structure with an access hole that has an interface with the atmosphere continuously in the circulation path in the sleeve makes it easy to inject oil and control the level under atmospheric pressure, simplifying the assembly process of the bearing and further reducing the cost. To.

上記動圧流体軸受モータを用いる事により薄型化及び軸触れ小による高トラック密度記録化及び低軸損による低消費電力化の特徴を有する磁気ディスク装置が実現出来る。   By using the above-mentioned hydrodynamic bearing motor, it is possible to realize a magnetic disk device having the characteristics of thinning, high track density recording by small shaft touch, and low power consumption by low axial loss.

以下に本発明による動圧流体軸受モータについて,その実施例及び原理作用等を図面を参照しながら説明するが,本発明の実施例を説明する前に本発明の新規性を容易に理解できるように従来構造例を図10,11に示して説明する。   The hydrodynamic bearing motor according to the present invention will be described below with reference to the drawings, with respect to embodiments, principles, and actions. However, before describing the embodiments of the present invention, the novelty of the present invention can be easily understood. An example of a conventional structure will be described with reference to FIGS.

図10は特公昭48−4498に提案された構造で,ラジアルベアリングで潤滑流体を圧送(ポンピング)して回転部を軸方向に浮上させて位置制御する。同図に於いて,円筒軸101はスリーブ102と微小間隙を有して対向し,その先端部104は円錐状として静止時にはスリーブ102の底面に接している。円筒軸101の表面には回転時にスリーブ102底面方向に潤滑流体を圧送するスパイラルグルーブ103を配置し,スリーブ102の内周面には開口107を有する循環路106を構成する。開口107には円筒軸101が微小間隙で対向して実質的な可変開口を形成している。   FIG. 10 shows a structure proposed in Japanese Patent Publication No. 48-4498, in which a lubricating fluid is pumped by a radial bearing to lift the rotating portion in the axial direction to control the position. In this figure, a cylindrical shaft 101 is opposed to the sleeve 102 with a minute gap, and its tip 104 is conical and in contact with the bottom surface of the sleeve 102 when stationary. On the surface of the cylindrical shaft 101, a spiral groove 103 for pumping the lubricating fluid toward the bottom surface of the sleeve 102 during rotation is arranged, and a circulation path 106 having an opening 107 is formed on the inner peripheral surface of the sleeve 102. The cylindrical shaft 101 is opposed to the opening 107 with a minute gap to form a substantially variable opening.

円筒軸101が回転すると,スパイラルグルーブ103は潤滑流体をスリーブ102底面方向に圧送して圧力室105における潤滑流体の圧力を高めるので円筒軸101は押し上げられ,開口107の潤滑流体流入面積は大となって循環路106に流入する潤滑流体は増え,圧力室105の潤滑流体圧力は下がるので円筒軸101を含む回転部の重量を支える位置で浮上量は安定する。   When the cylindrical shaft 101 rotates, the spiral groove 103 pumps the lubricating fluid toward the bottom surface of the sleeve 102 to increase the pressure of the lubricating fluid in the pressure chamber 105, so that the cylindrical shaft 101 is pushed up, and the lubricating fluid inflow area of the opening 107 is large. Thus, the lubricating fluid flowing into the circulation path 106 increases and the lubricating fluid pressure in the pressure chamber 105 decreases, so that the flying height is stabilized at a position where the weight of the rotating part including the cylindrical shaft 101 is supported.

一般にラジアルベアリングは径方向の間隙管理が容易で効率的かつ強力であるのでかなり大きな回転部重量でも対応できる。しかしながら,図10の従来例では開口107に対向する円筒軸101とその先端部104との境界及び円錐状テーパー面の角度等は精密に制御することは困難であり,また開口107のスリーブ102底面からの位置精度を出し難いこと等の欠点は特開昭58−24615に指摘される通りであって回転部浮上量の精密制御は出来ない。今日のHDDでは回転部浮上量を5ないし10ミクロンメートルの範囲に制御することを要求されるが,適合させ難い構造である。   In general, radial bearings are easy to manage in the radial direction and are efficient and strong, so that they can cope with a considerably large rotating part weight. However, in the conventional example of FIG. 10, it is difficult to precisely control the boundary between the cylindrical shaft 101 facing the opening 107 and its tip end 104 and the angle of the conical tapered surface, and the bottom surface of the sleeve 102 of the opening 107. The drawbacks such as difficulty in obtaining the position accuracy from the above are as pointed out in Japanese Patent Laid-Open No. 58-24615, and precise control of the flying height of the rotating part is not possible. In today's HDDs, it is required to control the flying height of the rotating part within the range of 5 to 10 microns, but it is difficult to adapt.

図11は特公昭48−4498を改善させたとする特開昭58−24616の構造例を示す。同図に於いて,円筒軸111は外周面に図10と同様なスパイラルグルーブを有し,微小間隙でスリーブ112と対向すると共に軸端ではスリーブ112に固定されたボール113に対向する。円筒軸111内には循環路114を有してその開口115は円筒軸111の軸端に設けられている。   FIG. 11 shows an example of the structure of Japanese Patent Laid-Open No. 58-24616, which is an improvement of Japanese Patent Publication No. 48-4498. In the figure, a cylindrical shaft 111 has a spiral groove similar to that shown in FIG. 10 on the outer peripheral surface, and is opposed to the sleeve 112 at a minute gap and is opposed to the ball 113 fixed to the sleeve 112 at the shaft end. A circulation path 114 is provided in the cylindrical shaft 111, and the opening 115 is provided at the shaft end of the cylindrical shaft 111.

静止時に円筒軸111の軸端はボール113に接触して開口115をほぼ塞ぎ,円筒軸111が回転すると図示していないスパイラルグルーブは潤滑流体を軸端方向に圧送し,開口115がボール113により塞がれているので圧力室116に於ける潤滑流体の圧力を高め,円筒軸111を含む回転部を軸方向に浮上させる。円筒軸111の軸端がボール113から離れると開口115に流入する潤滑流体の量は増えて圧力室116の潤滑流体圧力は減少するので回転部重量を支持する適当な位置で円筒軸111は浮上する。   When stationary, the shaft end of the cylindrical shaft 111 comes into contact with the ball 113 and substantially closes the opening 115. When the cylindrical shaft 111 rotates, a spiral groove (not shown) pumps the lubricating fluid in the axial direction, and the opening 115 is pushed by the ball 113. Since it is blocked, the pressure of the lubricating fluid in the pressure chamber 116 is increased, and the rotating part including the cylindrical shaft 111 is floated in the axial direction. When the shaft end of the cylindrical shaft 111 moves away from the ball 113, the amount of lubricating fluid flowing into the opening 115 increases and the lubricating fluid pressure in the pressure chamber 116 decreases, so that the cylindrical shaft 111 floats at an appropriate position for supporting the weight of the rotating part. To do.

円筒軸111の浮上量により軸端とボール113との間で可変開口が形成されるのであるが,制御可能な浮上量は円筒軸111とスリーブ112との径方向間隙と同程度の値に限られる。HDDの動圧流体軸受モータで径方向間隙はほぼ2ミクロンメートル程度に設定され,軸方向の浮上量は想定される衝撃力及び使用温度範囲等を考慮して常温で5ないし10ミクロンメートル程度に設定したいが,それには適当な方法と成らない。   Although a variable opening is formed between the shaft end and the ball 113 by the flying height of the cylindrical shaft 111, the controllable flying height is limited to a value similar to the radial clearance between the cylindrical shaft 111 and the sleeve 112. It is done. With the hydrodynamic bearing motor of HDD, the radial clearance is set to about 2 microns, and the axial flying height is about 5 to 10 microns at room temperature considering the expected impact force and operating temperature range. I want to set it, but it's not the right way.

以上,図10,11を用いて説明したように従来から知られているラジアルベアリングにより回転部の浮上位置を制御する方法では浮上量位置精度が不足する,或いは制御可能な浮上量範囲が適当でない等の理由が有ってそのままではHDDに適用できない。本発明はそれら従来構造の欠点を改善して軸とスリーブのみで構成するシンプルなベアリング構成によってもHDDに適用可能な動圧流体軸受を実現する。   As described above with reference to FIGS. 10 and 11, the conventionally known method of controlling the floating position of the rotating portion with the radial bearing has insufficient flying height position accuracy, or the controllable flying height range is not appropriate. Therefore, it cannot be applied to the HDD as it is. The present invention improves the drawbacks of these conventional structures and realizes a hydrodynamic bearing that can be applied to an HDD even with a simple bearing configuration including only a shaft and a sleeve.

図1は本発明の第一の実施例であるHDD用動圧流体軸受モータの縦断面及びスリーブ端面の図を示す。同図に於いて,動圧流体軸受は主として軸11,スリーブ12,カウンタープレート13,間隙に充填される潤滑流体等より構成され,軸11はディスク搭載面を有するハブ14に,さらにハブ14にはローターマグネット16が固定されて回転部を構成し,スリーブ12はベースプレート15に,ベースプレート15には回転駆動用のステータコア17,コイル18等を含んで固定部を構成する。番号19はローターマグネット16に対向してベースプレート15に固定される磁性体片で,回転部を軸方向に吸引する磁気吸引力を発生させる。番号1kは回転部の軸方向偏倚を規制する為の抜け止めである。   FIG. 1 shows a longitudinal section and a view of a sleeve end face of an HDD hydrodynamic bearing motor according to a first embodiment of the present invention. In the figure, a hydrodynamic bearing is mainly composed of a shaft 11, a sleeve 12, a counter plate 13, a lubricating fluid filled in a gap, and the shaft 11 is connected to a hub 14 having a disk mounting surface and further to the hub 14. The rotor magnet 16 is fixed to form a rotating portion, and the sleeve 12 includes a base plate 15, and the base plate 15 includes a rotating driving stator core 17, a coil 18, and the like to form a fixed portion. Reference numeral 19 denotes a magnetic piece that is fixed to the base plate 15 so as to face the rotor magnet 16 and generates a magnetic attractive force that attracts the rotating portion in the axial direction. Reference numeral 1k is a retainer for restricting the axial displacement of the rotating part.

スリーブ12は軸11と対向する内周面に不平衡なヘリングボーングルーブ1a,1bを有し,循環孔1d,1f,アクセス孔1hを有する。軸11の端面にはポンプインのスパイラルグルーブ1cを有する。循環孔1d,1fは直径0.4ミリメートル程度の小孔で構成し,アクセス孔1hは循環孔1dと連続して次第に径を大にしながらスリーブ12の上端面に開口する。循環孔1fは不平衡ヘリングボーングルーブ1a,1b間に通じる小孔で,軸端部に通じる凹部チャネル1e及び循環孔1dとで潤滑流体の循環路を形成する。   The sleeve 12 has unbalanced herringbone grooves 1a and 1b on the inner peripheral surface facing the shaft 11, and has circulation holes 1d and 1f and an access hole 1h. The end face of the shaft 11 has a pump-in spiral groove 1c. The circulation holes 1d and 1f are small holes having a diameter of about 0.4 millimeters, and the access hole 1h opens to the upper end surface of the sleeve 12 with the diameter gradually increasing continuously with the circulation hole 1d. The circulation hole 1f is a small hole that communicates between the unbalanced herringbone grooves 1a and 1b, and forms a circulation path for the lubricating fluid with the recessed channel 1e and the circulation hole 1d that communicate with the shaft end.

凹部チャネル1eはスリーブ端面にエッチング技術により精密に形成する。その寸法は軸受けの大小及び回転部重量等により異なるが,幅は数十から数百ミクロンメートル,深さは高々40ミクロンメートル程度である。他に放電加工,電解加工,イオンミリング,精密切削等が使用可能である。   The recessed channel 1e is precisely formed on the sleeve end face by an etching technique. The dimensions vary depending on the size of the bearing and the weight of the rotating part, but the width is several tens to several hundreds of micrometers and the depth is about 40 micrometers at most. In addition, electric discharge machining, electrolytic machining, ion milling, precision cutting, etc. can be used.

軸11とスリーブ12とは2ミクロンメートル程度の微小間隙を有して対向し,その間隙には潤滑流体を有するが,微小間隙の上端部では間隙が大となるよう軸11を縮径したシール部1jを有する。潤滑流体はシール部1j及びアクセス孔1hに於いて表面張力により空気との界面を有して実質的に封じられる。番号1gはアクセス孔1hにおける潤滑流体の界面を示す。   The shaft 11 and the sleeve 12 are opposed to each other with a minute gap of about 2 microns, and the gap has a lubricating fluid, but the shaft 11 is reduced in diameter so that the gap becomes large at the upper end of the minute gap. Part 1j. The lubricating fluid is substantially sealed at the seal portion 1j and the access hole 1h with an interface with air due to surface tension. Reference numeral 1g indicates an interface of the lubricating fluid in the access hole 1h.

ヘリングボーングルーブは回転と共に潤滑流体を逆方向に圧送する二つのスパイラルグルーブの組み合わせで構成するが,不平衡ヘリングボーングルーブ1a,1bはスリーブ12底部側のスパイラルグルーブの長さを短くして構成し,回転時にスリーブ12底部方向に潤滑流体を圧送する。スリーブ12に設けられた不平衡ヘリングボーングルーブ1a,1bの形状は図3を用いて説明する。図3はスリーブ12を縦に分割して斜視図として示し,内周面に形成した上下ヘリングボーングルーブ1a,1bが示されている。動圧発生用グルーブの形状寸法は間隙,潤滑流体粘度,目標性能等によって異なるが,上下のヘリングボーングルーブ1a,1bは通常深さ6ミクロンメートル程度に形成する。下部ヘリングボーングルーブ1bは軸方向の長さがL1,L2のスパイラルグルーブより構成され,下方に潤滑流体圧送能力を持たせるために図に示すようにL1をL2より大に設定する。番号31は軸11の回転方向を示す。番号1fはスリーブ12内に設けた循環孔の出口を示す。   The herringbone groove is composed of a combination of two spiral grooves that pump the lubricating fluid in the opposite direction as it rotates, but the unbalanced herringbone groove 1a, 1b is constructed by shortening the length of the spiral groove on the bottom side of the sleeve 12. , The lubricating fluid is pumped toward the bottom of the sleeve 12 during rotation. The shape of the unbalanced herringbone grooves 1a and 1b provided on the sleeve 12 will be described with reference to FIG. FIG. 3 shows a perspective view of the sleeve 12 divided vertically, and shows upper and lower herringbone grooves 1a and 1b formed on the inner peripheral surface. The shape and size of the dynamic pressure generating groove varies depending on the gap, the viscosity of the lubricating fluid, the target performance, etc., but the upper and lower herringbone grooves 1a and 1b are usually formed to a depth of about 6 microns. The lower herringbone groove 1b is composed of spiral grooves having axial lengths L1 and L2, and L1 is set to be larger than L2 as shown in FIG. Number 31 indicates the direction of rotation of the shaft 11. Reference numeral 1 f indicates an outlet of a circulation hole provided in the sleeve 12.

磁性体片19は珪素鋼板,フェライト,パーマロイ等の磁性体で構成してローターマグネット16と協働して回転部と固定部間に磁気吸引力を発生させるが,磁気吸引力の目安は搭載する磁気ディスク,ハブ14,ローターマグネット16,軸11等を含む回転部重量の3から5倍程度に設定する。磁性体片19のみで磁気吸引力が不足する場合にはステータコア17とローターマグネット16の位置を軸方向に変位させて磁気吸引力を発生させ,或いは軸11先端に磁石を埋め込みカウンタープレート13を磁性体として磁気吸引力を補う。   The magnetic piece 19 is made of a magnetic material such as a silicon steel plate, ferrite, or permalloy, and generates a magnetic attractive force between the rotating portion and the fixed portion in cooperation with the rotor magnet 16. It is set to about 3 to 5 times the weight of the rotating part including the magnetic disk, hub 14, rotor magnet 16, shaft 11 and the like. When the magnetic attractive force is insufficient only by the magnetic piece 19, the positions of the stator core 17 and the rotor magnet 16 are displaced in the axial direction to generate the magnetic attractive force, or the counter plate 13 is magnetized by embedding a magnet at the tip of the shaft 11. Supplement the magnetic attraction as a body.

図2はスリーブ12の端面と軸11の端部とを示して図1の補足説明をする為の斜視図である。同図に於いて,スリーブ12端面に形成された凹部チャネル1eはスリーブ12内周面にほぼ長方形の開口21を有し,軸11の端面には回転と共に潤滑流体を軸芯方向に圧送するポンプインのスパイラルグルーブ1cを有する。図2では見やすいように軸11は通常の使用時より奥に配置して示している。   FIG. 2 is a perspective view illustrating the end face of the sleeve 12 and the end portion of the shaft 11 for supplementary explanation of FIG. In this figure, a recessed channel 1e formed on the end surface of the sleeve 12 has a substantially rectangular opening 21 on the inner peripheral surface of the sleeve 12, and the end surface of the shaft 11 pumps the lubricating fluid in the axial direction along with rotation. In spiral groove 1c. In FIG. 2, the shaft 11 is shown behind the normal use for easy viewing.

軸端の中心は番号22で示す点であるが,スパイラルグルーブ1cの中心は番号23で示すように軸端中心22より僅かにずらしてある。これはスパイラルグルーブ1cによって形成する潤滑流体の圧力分布が軸対称であると,軸中心に気泡が滞留しやすいことを考慮した構造である。   The center of the shaft end is a point indicated by reference numeral 22, but the center of the spiral groove 1c is slightly shifted from the shaft end center 22 as indicated by reference numeral 23. This is a structure that takes into account that if the pressure distribution of the lubricating fluid formed by the spiral groove 1c is axisymmetric, bubbles are likely to stay at the center of the axis.

また,回転起動時及び停止時に軸端はカウンタープレート13と接触摺動するが,損傷を避ける為にカウンタープレート13表面には二流化モリブデンを主とする固体潤滑剤を10ミクロンメートル程度塗布する。二流化モリブデンの他にDLCを数ミクロンメートル形成しても摺動抵抗を減じて摩耗対策に効果がある。   Further, the shaft end slides in contact with the counter plate 13 at the time of starting and stopping the rotation, but in order to avoid damage, the surface of the counter plate 13 is coated with a solid lubricant mainly composed of molybdenum disulfide of about 10 microns. Even if DLC is formed to a few micrometers in addition to diverted molybdenum, sliding resistance is reduced and it is effective for wear prevention.

軸11の外周部はスリーブ12の内周面と2ミクロンメートル程度の間隙を有するのみであり,また軸11の端面は少なくとも外周近傍で軸11とは直交するよう形成するので実質的に開口21を塞ぎ,軸11の浮上と共に開口21の開口面積を変化させで可変開口を形成する。開口21はスリーブ12端面の凹部チャネル1eの断面として形成されるので位置及び形状寸法の制御は容易である。潤滑流体は不平衡ヘリングボーングルーブ1b,凹部チャネル1e,循環孔1d,1fを循環するが,凹部チャネル1eが軸11で塞がれた時の実質的な潤滑流体の最小流入面積は軸11とスリーブ12で形成する間隙長と軸11外周長との積よりは当然に小さくなるように設定しなければならない。逆の場合は可変開口以前での流路抵抗が大となり,可変開口の効果が減殺される。   The outer peripheral portion of the shaft 11 only has a gap of about 2 microns with the inner peripheral surface of the sleeve 12, and the end surface of the shaft 11 is formed so as to be orthogonal to the shaft 11 at least in the vicinity of the outer periphery. The variable opening is formed by changing the opening area of the opening 21 as the shaft 11 floats. Since the opening 21 is formed as a cross section of the recessed channel 1e on the end face of the sleeve 12, the position and shape can be easily controlled. The lubricating fluid circulates through the unbalanced herringbone groove 1b, the recessed channel 1e, and the circulation holes 1d and 1f. When the recessed channel 1e is closed by the shaft 11, the substantial inflow area of the lubricating fluid is substantially the same as that of the shaft 11. Naturally, it should be set to be smaller than the product of the gap length formed by the sleeve 12 and the outer peripheral length of the shaft 11. In the opposite case, the flow resistance before the variable opening becomes large, and the effect of the variable opening is diminished.

軸11と開口21とで形成する可変開口21は浮上量と共に減少する第一の軸方向負荷容量を,軸端のスパイラルグルーブ1cは浮上量と共に減少する第二の軸方向負荷容量を発生させるが,本発明の第一の実施例では第一の軸方向負荷容量の最大値を磁気吸引力に回転部重量を加えた値以上に設定する。その趣旨と動作原理とを図4を用いて説明する。   The variable opening 21 formed by the shaft 11 and the opening 21 generates a first axial load capacity that decreases with the flying height, and the spiral groove 1c at the shaft end generates a second axial load capacity that decreases with the flying height. In the first embodiment of the present invention, the maximum value of the first axial load capacity is set to be equal to or greater than the value obtained by adding the rotating portion weight to the magnetic attractive force. The purpose and operating principle will be described with reference to FIG.

静止時には主として磁気吸引力により軸11はカウンタープレート13に接触している。回転起動と共にスパイラルグルーブ1cは軸端とカウンタープレート13間の潤滑流体を軸芯方向に圧送して第二の軸方向負荷容量を発生させ,同時に不平衡ヘリングボーングルーブ1bは潤滑流体を軸端方向に圧送して第一の軸方向負荷容量を発生させる。不平衡ヘリングボーングルーブ1bによって圧送された潤滑流体は凹部チャネル1e,循環孔1d,1f等で形成する循環路を介して不平衡ヘリングボーングルーブ1bの軸端より遠い側に環流する。一方不平衡ヘリングボーングルーブ1aも軸端方向に潤滑流体を圧送して不平衡ヘリングボーングルーブ1bに供給して起動時の速やかな浮上を助け,定常回転では不平衡ヘリングボーングルーブ1aの不平衡が解消される程度に潤滑流体界面を移動させる。   When stationary, the shaft 11 is in contact with the counter plate 13 mainly by magnetic attraction. As the rotation starts, the spiral groove 1c pumps the lubricating fluid between the shaft end and the counter plate 13 in the axial direction to generate a second axial load capacity. At the same time, the unbalanced herringbone groove 1b moves the lubricating fluid in the axial direction. To generate a first axial load capacity. The lubricating fluid pumped by the unbalanced herringbone groove 1b circulates to the side farther from the shaft end of the unbalanced herringbone groove 1b through a circulation path formed by the recessed channel 1e, the circulation holes 1d, 1f and the like. On the other hand, the unbalanced herringbone groove 1a also pumps the lubricating fluid in the axial direction and supplies it to the unbalanced herringbone groove 1b to help quick ascent at start-up. The lubricating fluid interface is moved to the extent that it is eliminated.

図4は横軸に浮上量FHを,縦軸に軸方向負荷容量LCを示して回転部の位置制御が為される動作原理を説明する。同図に於いて,番号41は不平衡ヘリングボーングルーブ1bと可変開口とで発生する第一の軸方向負荷容量を示している。浮上量がゼロの時に最大値を示し,浮上量の増大と共に徐々に減少する。番号42は軸端のスパイラルグルーブ1cによる第二の軸方向負荷容量を,番号43は第一及び第二の軸方向負荷容量の和をそれぞれ示す。   FIG. 4 illustrates the operating principle in which the position of the rotating unit is controlled with the flying height FH on the horizontal axis and the axial load capacity LC on the vertical axis. In the figure, reference numeral 41 denotes a first axial load capacity generated by the unbalanced herringbone groove 1b and the variable aperture. It shows the maximum value when the flying height is zero, and gradually decreases as the flying height increases. Reference numeral 42 denotes a second axial load capacity by the spiral groove 1c at the shaft end, and reference numeral 43 denotes a sum of the first and second axial load capacity.

HDDは図1に示す正立でも或いは上下逆にした倒立でも更には横置きでも使用され,モバイル用途では更に振動が加わる場合がある。この点がポリゴンスキャナー,VCR等の使用条件と大きく異なる点であり,設計仕様に関して考慮しなければならない点である。回転部と固定部間に加えられる力は姿勢によってその重量分が変化し,図1に示すような正立であれば磁気吸引力に回転部重量を加えた値が,倒立であれば磁気吸引力から回転部重量を差し引いた値が対応する。   The HDD is used in the upright position shown in FIG. 1 or upside down, or in the horizontal position, and in mobile applications, vibration may be further applied. This is a point that differs greatly from the usage conditions of polygon scanners, VCRs, and the like, and it is a point that must be considered with respect to design specifications. The force applied between the rotating part and the fixed part varies depending on the posture. If it is upright as shown in FIG. 1, the value obtained by adding the weight of the rotating part to the magnetic attraction force is reversed. The value obtained by subtracting the rotating part weight from the force corresponds.

番号44は磁気吸引力に回転部重量を加えた値を,番号45は磁気吸引力から回転部重量を差し引いた値を示している。したがって,正立では番号44と番号43とが交差する位置の浮上量f1に,倒立では番号45と番号43とが交差する位置の浮上量f2となる。   Reference numeral 44 indicates a value obtained by adding the rotating portion weight to the magnetic attractive force, and reference numeral 45 indicates a value obtained by subtracting the rotating portion weight from the magnetic attractive force. Accordingly, the flying height f1 at the position where the number 44 and the number 43 intersect in the upright state, and the flying height f2 at the position where the number 45 and the number 43 intersect in the inverted position.

正立及び倒立ではこのように浮上位置が異なるが,本発明の第一の実施例では第一の軸方向負荷容量の最大値を磁気吸引力に回転部重量を加えた値以上に設定する。第一の軸方向負荷容量の最大値はFHがゼロになる時の点線41の示す値である。したがって軸11の径が小さく,第二の軸方向負荷容量を十分に大きくできない場合でも回転部の浮上を確実にすることが出来る。もちろん,スパイラルグルーブ1cを有しない場合でも本発明の趣旨により浮上量の精密制御が可能である。しかし,振動,衝撃等の外部条件による浮上量変動を小さくする為に剛性値(LC/FH)を可能な限り大とする目的で図4から明らかなようにスパイラルグルーブ1cによる第二の軸方向負荷容量を寄与させる構成が望ましい。   In the first embodiment of the present invention, the maximum value of the first axial load capacity is set to be equal to or larger than the value obtained by adding the weight of the rotating part to the magnetic attraction force. The maximum value of the first axial load capacity is the value indicated by the dotted line 41 when FH becomes zero. Therefore, even when the diameter of the shaft 11 is small and the second axial load capacity cannot be sufficiently increased, the floating portion can be reliably lifted. Of course, even when the spiral groove 1c is not provided, the flying height can be precisely controlled according to the gist of the present invention. However, as is apparent from FIG. 4, the second axial direction by the spiral groove 1c is used for the purpose of increasing the rigidity value (LC / FH) as much as possible in order to reduce the flying height fluctuation due to external conditions such as vibration and shock. A configuration that contributes load capacity is desirable.

本実施例では循環孔1dに連続するアクセス孔1hを有して潤滑流体の界面を有する構造とした。不平衡ヘリングボーングルーブ1aは回転中に潤滑流体を軸端方向に圧送して回転浮上に伴って容積が大となった軸端部に潤滑流体を収容させ,それに伴って不平衡ヘリングボーングルーブ1aの不平衡を解消する位置に潤滑流体界面を移動させる。その際軸端部で過不足を生じた潤滑流体はアクセス孔1hに於ける潤滑流体で調整する構造である。アクセス孔1hは必須ではないが,潤滑流体調整で重要な役割を持ち,各部の寸法公差を軽減して製造容易とする役割がある。   In this embodiment, the access hole 1h is continuous with the circulation hole 1d and has a structure having an interface of the lubricating fluid. The unbalanced herringbone groove 1a pumps the lubricating fluid in the axial direction during rotation and accommodates the lubricating fluid in the shaft end portion whose volume has increased with the rotation and floating, and accordingly, the unbalanced herringbone groove 1a. The interface of the lubricating fluid is moved to a position where the imbalance is eliminated. In this case, the lubricating fluid that has caused excess or deficiency at the shaft end is adjusted by the lubricating fluid in the access hole 1h. Although the access hole 1h is not essential, it has an important role in adjusting the lubricating fluid, and has a role of facilitating manufacture by reducing the dimensional tolerance of each part.

回転中に不平衡ヘリングボーングルーブ1bは潤滑流体を循環路を介して常に循環させ,循環路はアクセス孔1hに連結して大気開放されているので初期に潤滑流体中に気泡が混入しても循環路を介して循環する過程で気泡は確率的にアクセス孔1hから大気に逃げ,潤滑流体から気泡が排除される。したがって,組み立て工程での潤滑流体注入は大気圧下で実施可能であり,組み立て後にアクセス孔1hから潤滑流体の界面1gの監視或いは潤滑流体の追加注入等が可能である。   During the rotation, the unbalanced herringbone groove 1b always circulates the lubricating fluid through the circulation path, and the circulation path is connected to the access hole 1h and opened to the atmosphere. In the process of circulating through the circulation path, the bubbles probabilistically escape to the atmosphere from the access hole 1h, and the bubbles are excluded from the lubricating fluid. Therefore, the lubrication fluid injection in the assembly process can be performed under atmospheric pressure, and the interface 1g of the lubrication fluid can be monitored or additional lubrication fluid can be injected from the access hole 1h after the assembly.

アクセス孔1hに対応してハブ14に観察する為の小孔を設ければ完成後にも随時潤滑流体の監視が出来るし,アクセス孔1hを図1とは逆の底部側に設けるよう修正すればHDD外部から潤滑流体の監視が可能となる。   If a small hole for observation is provided in the hub 14 corresponding to the access hole 1h, the lubricating fluid can be monitored at any time after the completion, and if the access hole 1h is modified to be provided on the bottom side opposite to FIG. The lubricating fluid can be monitored from the outside of the HDD.

アクセス孔1h及び循環路1d,1f等での最小間隙には特に留意する必要がある。潤滑流体の大気との界面はシール部1j及びアクセス孔1hとで静止時には同じ曲率を有して平衡に達するのでアクセス孔1hに於ける最小間隙が大きすぎると潤滑流体漏れを起こしやすい。アクセス孔1h内に間隙調整用部材を配置して最小間隙を調整する事が出来るが,第三の実施例はその点を容易にする。   Special attention should be paid to the minimum gap in the access hole 1h and the circulation paths 1d and 1f. The interface of the lubricating fluid with the atmosphere has the same curvature at rest with the seal portion 1j and the access hole 1h and reaches equilibrium. Therefore, if the minimum gap in the access hole 1h is too large, the lubricating fluid is liable to leak. A gap adjusting member can be arranged in the access hole 1h to adjust the minimum gap, but the third embodiment facilitates this point.

シール部1j及びアクセス孔1hでは潤滑流体を表面張力により効果的に封止するが,シール部1j及びアクセス孔1hを構成する面には撥油剤を塗布して潤滑流体のマイグレーションによるシミ出しを止める。また抜け止め部1kに於いて回転部と固定部との摺動摩擦は通常発生しないが,過大な振動衝撃が印可された場合には接触する可能性がある。その場合に摩耗粉が発生する事は好ましくなく,対処策として一方の部材を硬質部材で構成する,或いはDLC,二流化モリブデン等固体潤滑剤を塗布しておく事が望ましい。   The sealing portion 1j and the access hole 1h effectively seal the lubricating fluid by surface tension, but an oil repellent agent is applied to the surfaces constituting the sealing portion 1j and the access hole 1h to stop the smear due to the migration of the lubricating fluid. . In the retaining portion 1k, sliding friction between the rotating portion and the fixed portion does not normally occur, but there is a possibility of contact when an excessive vibration shock is applied. In this case, it is not preferable that abrasion powder is generated. As a countermeasure, it is desirable that one member is formed of a hard member or a solid lubricant such as DLC or molybdenum disulfide is applied.

図5は本発明の第二の実施例を説明する為の図である。動圧流体軸受モータ全体の構成は図1,図2,図3に示した第一の実施例と同一であり,磁気吸引力,回転部重量,第一の軸方向負荷容量の関係を変えることで第二の実施例としている。すなわち,第一の軸方向負荷容量の最大値を[磁気吸引力から回転部重量を差し引いた値]及び[磁気吸引力に回転部重量を加えた値」の間に設定して第二の実施例とする。スパイラルグルーブ1cによる軸方向の支持剛性を最大限に寄与させて精密な浮上量制御を可能にする特徴がある。   FIG. 5 is a view for explaining a second embodiment of the present invention. The configuration of the hydrodynamic bearing motor as a whole is the same as that of the first embodiment shown in FIGS. 1, 2 and 3, and the relationship between the magnetic attractive force, the rotating portion weight, and the first axial load capacity is changed. In the second embodiment. That is, the maximum value of the first axial load capacity is set between [the value obtained by subtracting the rotating part weight from the magnetic attractive force] and [the value obtained by adding the rotating part weight to the magnetic attractive force] in the second embodiment. Take an example. There is a feature that enables precise control of the flying height by making the maximum support rigidity in the axial direction by the spiral groove 1c.

図4及び図5に於ける各番号41,42,43,44,45の示す意味は全く同一であるが,それらの設定条件が異なる。番号41は第一の軸方向負荷容量を示し,その最大値(FHがゼロの時の値)は番号44及び番号45の間に設定される。したがって,正立では図5において番号44と番号43とが交差する位置の浮上量f3に,倒立では番号45と番号43とが交差する位置の浮上量f4となる。第一の実施例に比してスパイラルグルーブ1cによる近接反力がより比重を増して剛性値(LC/FH)を大とするが,軸11径が大或いは回転速度が大の条件に適している。   The meanings of the numbers 41, 42, 43, 44, and 45 in FIGS. 4 and 5 are exactly the same, but their setting conditions are different. Number 41 indicates the first axial load capacity, and the maximum value (value when FH is zero) is set between number 44 and number 45. Therefore, in the upright position, the flying height f3 at a position where the number 44 and the number 43 intersect in FIG. 5 is obtained, and in the inverted position, the flying height f4 is a position at which the number 45 and the number 43 intersect. Compared to the first embodiment, the proximity reaction force by the spiral groove 1c increases the specific gravity and increases the rigidity value (LC / FH), but is suitable for conditions where the shaft 11 has a large diameter or a high rotational speed. Yes.

図6は本発明の第三の実施例を説明する為の図で動圧流体軸受モータの縦断面図及びスリーブ端面の平面図をそれぞれ示す。第三の実施例は第一の実施例とは動作原理を同じくし,スリーブ構造が主に異なる。図6には図1と異なる部分のみ番号を変えて示している。   FIG. 6 is a view for explaining a third embodiment of the present invention, and shows a longitudinal sectional view of a hydrodynamic bearing motor and a plan view of an end face of a sleeve. The third embodiment has the same operating principle as the first embodiment, but mainly differs in the sleeve structure. FIG. 6 shows only parts different from those in FIG.

図6に於いて,スリーブは内筒61,外筒62の二重構造とし,内筒61の外周面の一部を平坦化して内筒61,外筒62間に断面が三日月状の間隙を形成し,図1に於ける循環路1d及びアクセス孔1hの機能を持たせる。すなわち間隙の断面は三日月状として両端に狭間隙部64,中央は0.3ミリメートル程度以上の広間隙部65とする。この間隙部の一端が潤滑流体に接すると,表面張力により潤滑流体は両端の狭間隙部64に集中し,中央の広間隙部65は大気の通路となる。図6においては不平衡ヘリングボーングルーブ1bに環流する循環路1fは前記狭間隙部64から形成するので潤滑流体は凹部チャネル1e,狭間隙部64,循環路1fを介して不平衡ヘリングボーングルーブ1bに環流する。   In FIG. 6, the sleeve has a double structure of an inner cylinder 61 and an outer cylinder 62, and a part of the outer peripheral surface of the inner cylinder 61 is flattened to create a crescent-shaped gap between the inner cylinder 61 and the outer cylinder 62. These are formed to have the functions of the circulation path 1d and the access hole 1h in FIG. In other words, the cross section of the gap is a crescent shape, with narrow gap portions 64 at both ends, and a wide gap portion 65 of about 0.3 millimeters or more at the center. When one end of the gap is in contact with the lubricating fluid, the lubricating fluid concentrates in the narrow gap 64 at both ends due to surface tension, and the central wide gap 65 becomes an air passage. In FIG. 6, the circulation path 1f that circulates to the unbalanced herringbone groove 1b is formed from the narrow gap 64, so that the lubricating fluid passes through the recess channel 1e, the narrow gap 64, and the circulation path 1f. To recirculate.

図6の下部には内筒61及び外筒62で構成されたスリーブ端面が示され,狭間隙部64,広間隙部65,凹部チャネル1eが示されている。   In the lower part of FIG. 6, a sleeve end face constituted by an inner cylinder 61 and an outer cylinder 62 is shown, and a narrow gap portion 64, a wide gap portion 65, and a recessed channel 1e are shown.

狭間隙部64はスリーブの上端面まで連続しているので潤滑流体がスリーブ上端面からしみ出す可能性がある。懸念される量であれば,狭間隙部64のスリーブ上端近傍に撥油剤を塗布する,比較的粘度の高い接着剤でスリーブ上端近傍の狭間隙部64に充填する等で回避出来る。さらに完全を期するには封止板63を用いる。   Since the narrow gap portion 64 continues to the upper end surface of the sleeve, there is a possibility that the lubricating fluid may ooze out from the upper end surface of the sleeve. If the amount is of concern, it can be avoided by applying an oil repellent agent near the upper end of the sleeve of the narrow gap portion 64, or filling the narrow gap portion 64 near the upper end of the sleeve with a relatively high viscosity adhesive. For further completeness, a sealing plate 63 is used.

封止板63は透明な薄板でスリーブの上端面で内筒61及び外筒62間の間隙部を覆うように配置する。図7の下部にスリーブ上端面の図を示すように封止板63は前記間隙部の広間隙部65に対応する位置に直径0.3ミリメートル程度以上の円孔71を有する。円孔71が表面張力によるシール部を形成して潤滑流体のシミ出しを防ぐ。封止板63は透明板であるので狭間隙部64に於ける潤滑流体を視認出来,境界の位置により潤滑流体の多寡を知る事が出来る。   The sealing plate 63 is a transparent thin plate and is disposed so as to cover the gap between the inner cylinder 61 and the outer cylinder 62 at the upper end surface of the sleeve. 7, the sealing plate 63 has a circular hole 71 having a diameter of about 0.3 mm or more at a position corresponding to the wide gap portion 65 of the gap portion. The circular hole 71 forms a seal portion due to surface tension to prevent the lubricating fluid from bleeding out. Since the sealing plate 63 is a transparent plate, the lubricating fluid in the narrow gap portion 64 can be visually recognized, and the amount of the lubricating fluid can be known from the position of the boundary.

実施例1及び2に於けるアクセス孔1hの最小間隙の管理が潤滑流体封止の観点から重要であり間隙調整用の部材を要する可能性があった。本実施例のように内筒61及び外筒62間に間隙部を設ける構造でば,その間隙部に於ける最小間隙を容易に0.1ないし0.2ミリメートル程度に設定管理が出来,潤滑流体封止能力を向上出来る。   The management of the minimum gap of the access hole 1h in the first and second embodiments is important from the viewpoint of sealing the lubricating fluid, and there is a possibility that a member for adjusting the gap is required. If a gap is provided between the inner cylinder 61 and the outer cylinder 62 as in the present embodiment, the minimum gap in the gap can be easily set and managed to about 0.1 to 0.2 mm, and lubrication can be achieved. The fluid sealing ability can be improved.

スリーブを上記のように二重筒構成としてその間の間隙として循環路と通気孔を形成する構造は間隙部の寸法管理を容易とするが,内筒61の外径及び外筒62の内径管理は精密さを要しコストアップとなりかねない。この外筒62を樹脂で構成し,さらに外筒62の内径を内筒61の外径より僅かに小として外筒62の弾性或いは両者間の温度膨張差を利用して内筒61及び外筒62を組み立てる事で改善出来る。その際には内筒61外周面の一部を平坦として間隙部を構成する代わりに外筒62の内周面に型成形により間隙部を構成しても良い。   The structure in which the sleeve is formed as a double cylinder as described above and the circulation path and the vent hole are formed as a gap therebetween facilitates the size control of the gap portion, but the outer diameter of the inner cylinder 61 and the inner diameter of the outer cylinder 62 are controlled. It requires precision and can increase costs. The outer cylinder 62 is made of resin, and the inner cylinder 61 and the outer cylinder are made smaller by making the inner diameter of the outer cylinder 62 slightly smaller than the outer diameter of the inner cylinder 61 and utilizing the elasticity of the outer cylinder 62 or the temperature expansion difference therebetween. It can be improved by assembling 62. In that case, instead of forming a gap portion by making a part of the outer peripheral surface of the inner cylinder 61 flat, the gap portion may be formed on the inner peripheral surface of the outer cylinder 62 by molding.

図8及び図9は本発明の第四の実施例を説明する為の図で動圧流体軸受モータの縦断面図及びカウンタープレートの詳細構造図をそれぞれ示す。図1に示す第一及び第二の実施例とはスリーブ構造と軸端近傍が,図6に示す第三の実施例とは軸端近傍の循環路構造が異なり,相違する部分を中心に構成を説明する。図8,9に於ける各部の番号も同一形状の部分には図1,図6と同一の番号を付している。   FIGS. 8 and 9 are views for explaining a fourth embodiment of the present invention, and show a longitudinal sectional view of a hydrodynamic bearing motor and a detailed structural view of a counter plate, respectively. 1 differs from the first and second embodiments in the sleeve structure and the vicinity of the shaft end, and differs from the third embodiment shown in FIG. 6 in the circulation path structure in the vicinity of the shaft end. Will be explained. 8 and 9, the same number is assigned to the same shape as in FIGS.

特に図6と図8の相違点はスリーブ端とカウンタープレート構造であり,スリーブ端面に設けた凹部チャネル1eをカウンタプレート83側に設けている。図8に於いて,スリーブは内筒81及び外筒82とより構成され,それらの間に狭間隙部64,広間隙部65及び循環孔1fを有する事は同じであるが,軸方向の長さが若干短く構成され,その分カウンタープレート83が図6のカウンタープレート13より厚くしてある。カウンタープレート83にはスリーブ内筒81の内周面の延長として軸11を収容する円形凹部85が形成され,円形凹部85と狭間隙部64とに接続されるように凹部チャネル84が形成される。図8では凹部チャネル84は2カ所に形成されている。図8下部に於いて,番号86は内筒81及び外筒82の境界,番号64は狭間隙部,番号65は広間隙部がカウンタープレート83表面にそれぞれ当接する位置を示す。   In particular, the difference between FIG. 6 and FIG. 8 is the sleeve end and the counter plate structure, and the recessed channel 1e provided on the sleeve end surface is provided on the counter plate 83 side. In FIG. 8, the sleeve is composed of an inner cylinder 81 and an outer cylinder 82, and it is the same that a narrow gap portion 64, a wide gap portion 65 and a circulation hole 1f are provided between them. The counter plate 83 is made thicker than the counter plate 13 of FIG. The counter plate 83 is formed with a circular recess 85 that accommodates the shaft 11 as an extension of the inner peripheral surface of the sleeve inner cylinder 81, and a recess channel 84 is formed so as to be connected to the circular recess 85 and the narrow gap portion 64. . In FIG. 8, the recessed channel 84 is formed in two places. In the lower part of FIG. 8, reference numeral 86 denotes a boundary between the inner cylinder 81 and the outer cylinder 82, reference numeral 64 denotes a narrow gap portion, and reference numeral 65 denotes a position where the wide gap portion contacts the surface of the counter plate 83.

図9(a)はカウンタープレート83の平面図を,図9(b)は同図(a)のA−A’で示した凹部チャネル84の開口部断面図を示している。番号91は凹部チャネル84の開口部を,番号92は開口部91の断面形状をそれぞれ示している。   9A is a plan view of the counter plate 83, and FIG. 9B is a sectional view of the opening of the recessed channel 84 indicated by A-A 'in FIG. 9A. Reference numeral 91 denotes an opening of the recessed channel 84, and reference numeral 92 denotes a cross-sectional shape of the opening 91.

動作原理は図6に示す第三の実施例と同じであるので説明は省略する。カウンタープレート83に円形凹部85及び凹部チャネル84を形成する方法は図6での凹部チャネル1eの加工形成と同一であり,スリーブより薄いカウンタープレート83上に形成するので加工は図6の場合より容易であり,精度も出しやすい。   The operation principle is the same as that of the third embodiment shown in FIG. The method of forming the circular recess 85 and the recess channel 84 in the counter plate 83 is the same as the processing of the recess channel 1e in FIG. 6, and the processing is easier than in the case of FIG. 6 because it is formed on the counter plate 83 thinner than the sleeve. It is easy to get accuracy.

第一,第二,第三の実施例に於いて,回転部の浮上力のかなりの部分はラジアルベアリング1bが潤滑流体を軸端方向へ圧送する能力と軸端近傍に於ける可変開口とで生成する潤滑流体圧力に依存している。動作原理から容易に判明するように回転部が上下方向への加速度を受けた場合に所定の浮上位置範囲に留めようとする軸方向剛性は軸端近傍のスパイラルグルーブ1cの寄与分を別に考えるとして[開口部面積変化量]/[軸端位置変化量]に比例する。従って本発明を具現化する上で回転部の浮上位置精度を確保するには回転部の所定浮上位置近傍に於いて,[開口部面積変化量]/[軸端位置変化量]が所定の値となるよう凹部チャネル1e,84の開口部形状を設定する事であり,所定の浮上位置からさらに浮上して軸端が図1,図6,図8に於いて上方に移動した時に開口部断面積が急激に大となる構成である。   In the first, second and third embodiments, a considerable part of the floating force of the rotating part is due to the ability of the radial bearing 1b to pump the lubricating fluid in the axial direction and the variable opening near the axial end. Depends on the generated lubricating fluid pressure. As can be easily understood from the operating principle, the axial rigidity to be kept in a predetermined floating position range when the rotating part receives vertical acceleration is considered separately from the contribution of the spiral groove 1c near the shaft end. It is proportional to [aperture area change amount] / [shaft end position change amount]. Therefore, in order to ensure the floating position accuracy of the rotating part in realizing the present invention, [aperture area change amount] / [shaft end position change amount] is a predetermined value near the predetermined floating position of the rotating part. The opening shape of the recessed channels 1e and 84 is set so that the opening portion breaks when the shaft end further moves upward from the predetermined flying position and moves upward in FIGS. In this configuration, the area rapidly increases.

図1,図6では凹部チャネル1eをスリーブ端面側から彫り込む形で形成するのでその場合には凹部チャネル1eの表面での幅を小さく,奥で幅を大にする加工を必要とする。勿論このような加工はエッチング,スパッタリング或いは他の微細加工技術に於いて実現可能である。しかしながら,回転部の各浮上位置に於いて,[開口部面積変化量]/[軸端位置変化量]を変え,回転部浮上位置を精密に制御しようとする場合には凹部チャネル1eの開口部断面形状をさらに精密に形成する要求が出るが,現在の微細加工技術では限界がある。図8,図9に示す第四の実施例はこのような局面で有効な構造である。すなわち,凹部チャネル84をカウンタープレート83表面に形成してその開口部91の断面を番号92で示すように表面で幅を大に,奥で幅を小に形成する事によって上記条件を満たす事が出来,この場合には図1,図6の場合に比して断面形状制御の加工は容易となる。また精密プレス,或いは樹脂の精密モールドによっても上記カウンタープレート83は容易に製造可能となる。   In FIGS. 1 and 6, the recessed channel 1e is formed by carving from the sleeve end face side. In this case, it is necessary to reduce the width at the surface of the recessed channel 1e and increase the width at the back. Of course, such processing can be realized by etching, sputtering or other fine processing techniques. However, when changing the [opening area change amount] / [shaft end position change amount] at each floating position of the rotating portion to precisely control the rotating portion floating position, the opening portion of the recessed channel 1e is used. Although there is a demand for more precise formation of the cross-sectional shape, current micromachining technology has its limitations. The fourth embodiment shown in FIGS. 8 and 9 is a structure effective in such a situation. That is, the concave channel 84 is formed on the surface of the counter plate 83, and the cross section of the opening 91 is formed with a large width on the surface and a small width on the back as indicated by reference numeral 92, so that the above condition is satisfied. In this case, the cross-sectional shape control process is easier than in the case of FIGS. The counter plate 83 can be easily manufactured by a precision press or a resin precision mold.

上記実施例の説明に於いて,循環路開口を軸端部外周に配置して軸端のグルーブはポンプインのスパイラルグルーブで構成した。これは軸端のスパイラルグルーブに最大限の能力を発揮させ,循環路内のオリフィス或いは可変開口による負荷容量制御を容易にするよう相互の干渉を少なくした構成である。   In the description of the above embodiment, the circulation path opening is arranged on the outer periphery of the shaft end portion, and the shaft end groove is constituted by a pump-in spiral groove. This is a configuration in which mutual interference is reduced so that the spiral groove at the end of the shaft exhibits its maximum capability and load capacity control by an orifice or a variable opening in the circulation path is facilitated.

第一の実施例から第四の実施例まで動圧流体軸受モータは全て軸回転構造を例に挙げて本発明の具体的な構造例及び動作原理等を説明した。しかし,本発明の趣旨の範囲内で軸を固定し,スリーブ側を回転駆動する構造にも適用出来ることは明らかである。ただ,スリーブ側に循環路を持つ場合には循環路内の潤滑流体に遠心力を作用させることになり,軸回転構造より潤滑流体漏れの可能性が高くなる。   From the first embodiment to the fourth embodiment, all the hydrodynamic fluid bearing motors have been described with respect to specific structural examples and operating principles of the present invention by taking the shaft rotation structure as an example. However, it is apparent that the present invention can be applied to a structure in which the shaft is fixed and the sleeve side is rotationally driven within the scope of the present invention. However, if there is a circulation path on the sleeve side, centrifugal force is applied to the lubricating fluid in the circulation path, and the possibility of lubricating fluid leakage is higher than that of the shaft rotation structure.

さらに上記実施例でスラストベアリングは軸端部のスパイラルグルーブとして動作原理及び効果を説明したが,その他の構造,例えばスラストベアリングをスリーブ端面に構成した構造等にも適用できる事は明らかで浮上回転を速やかにして摺動摩耗低減に効果がある。   Further, in the above embodiment, the thrust bearing is described as a spiral groove at the end of the shaft, and the operation principle and effect have been described. However, it is clear that the thrust bearing can be applied to other structures such as a structure in which the thrust bearing is formed on the sleeve end surface. It is effective to reduce sliding wear quickly.

上記実施例の動圧流体軸受モータを用いた磁気ディスク装置の全体構造までは示さなかったが,磁気ディスク装置の縦断面構造をほぼ決めるに至る動圧流体軸受モータの縦断面構造を示した事で磁気ディスク装置の薄型構造は規定されている。このように本実施例では軸径より大のスラストベアリングを有さずとも磁気ディスクを含む回転部の浮上回転を高精度に支持できることを示した。上記動圧流体軸受モータを用いる事により薄型で低消費電力の磁気ディスク装置を実現できる。   Although the entire structure of the magnetic disk drive using the hydrodynamic bearing motor of the above embodiment was not shown, the vertical cross-sectional structure of the hydrodynamic bearing motor that almost determines the vertical cross-sectional structure of the magnetic disk drive was shown. Thus, the thin structure of the magnetic disk device is defined. Thus, in the present embodiment, it was shown that the floating rotation of the rotating part including the magnetic disk can be supported with high accuracy without having a thrust bearing larger than the shaft diameter. By using the hydrodynamic bearing motor, a thin and low power consumption magnetic disk device can be realized.

以上,本発明を実施例を挙げてその動作原理及び構造を説明した。上記実施例は本発明の動作原理を説明するために数例を挙げたのみであって本発明の趣旨を逸脱しない範囲で材料及び構造等の変形が可能なことはもちろんである。例えば,上記実施例で採用した循環孔に続く大気への通気部分で潤滑流体中の気泡除去が可能であることから潤滑流体の注入を大気圧下で行い,所定時間の回転で脱気を行わせるような工程を採用することも可能である。さらにまたそれらアクセス孔を利用して使用途次での潤滑流体交換,及び潤滑流体追加等を行って動圧流体軸受モータ及び磁気ディスク装置の可動可能な時間を延ばすことも可能となる。   The operation principle and structure of the present invention have been described with reference to the embodiments. In the above embodiment, only a few examples are given to explain the operation principle of the present invention, and it is needless to say that the materials and structures can be modified without departing from the spirit of the present invention. For example, since air bubbles in the lubricating fluid can be removed at the air vent part following the circulation hole adopted in the above embodiment, the lubricating fluid is injected at atmospheric pressure and deaerated by rotating for a predetermined time. It is also possible to adopt such a process. Furthermore, it is possible to extend the time during which the hydrodynamic fluid bearing motor and the magnetic disk device can be moved by exchanging the lubricating fluid during use and adding the lubricating fluid by using these access holes.

本発明の動圧流体軸受モータに依れば,軸径より大のスラストベアリングを有することなく回転部の浮上量を精密に制御可能とする動圧流体軸受モータを実現できる。潤滑流体の流動速度は最小限に留め得るので潤滑流体漏れの可能性を小にし軸損を低減させる。さらに本発明では潤滑流体中の気泡除去を回転中に可能とするので組み立て工程をシンプルとして低コスト化を可能にする。特に薄型で低消費電流の磁気ディスク装置に最適となる。   According to the hydrodynamic bearing motor of the present invention, it is possible to realize a hydrodynamic bearing motor capable of precisely controlling the flying height of the rotating portion without having a thrust bearing larger than the shaft diameter. Since the flow rate of the lubricating fluid can be kept to a minimum, the possibility of lubricating fluid leakage is reduced and axial loss is reduced. Furthermore, in the present invention, since the bubbles in the lubricating fluid can be removed during rotation, the assembling process is simplified and the cost can be reduced. It is particularly suitable for a thin and low current consumption magnetic disk device.

第一の実施例である動圧流体軸受モータの縦断面及びスリーブ端面を示す。The longitudinal cross-section and sleeve end surface of the hydrodynamic bearing motor which is a 1st Example are shown. 図1に於けるスリーブ12の端面と軸11の端部とを示す。The end surface of the sleeve 12 in FIG. 1 and the edge part of the axis | shaft 11 are shown. 図1に於けるスリーブ12を縦に分割して斜視図として示す。The sleeve 12 in FIG. 1 is divided vertically and shown as a perspective view. 第一の実施例に於いて回転部の浮上位置を説明する為の図を示す。The figure for demonstrating the floating position of a rotation part in a 1st Example is shown. 第二の実施例に於いて回転部の浮上位置を説明する為の図を示す。The figure for demonstrating the floating position of a rotation part in 2nd Example is shown. 第三の実施例である動圧流体軸受モータの縦断面及びスリーブ端面を示す。The longitudinal cross-section and sleeve end surface of the hydrodynamic bearing motor which is a 3rd Example are shown. 図6に於ける封止板63の構成を示す。The structure of the sealing board 63 in FIG. 6 is shown. 第四の実施例である動圧流体軸受モータの縦断面及びカウンタープレートを示す。The longitudinal cross-section and counterplate of the hydrodynamic bearing motor which are the 4th Example are shown. 図8に於けるカウンタープレートの形状詳細を示す。The details of the shape of the counter plate in FIG. 8 are shown. 従来技術の例として特公昭48−004498に記載された構造を示す。A structure described in Japanese Patent Publication No. 48-004498 is shown as an example of the prior art. 従来技術の例として特開昭58−024616に記載された構造を示す。As an example of the prior art, the structure described in JP-A-58-024616 is shown.

符号の説明Explanation of symbols

11・・・軸, 12・・・スリーブ,
13・・・カウンタープレート, 14・・・ハブ,
15・・・ベースプレート, 16・・・ローターマグネット,
17・・・ステータコア, 18・・・コイル,
19・・・磁性体片,
1a,1b・・不平衡なヘリングボーングルーブ,
1c・・・スパイラルグルーブ, 1d,1f・・循環孔,
1e・・・凹部チャネル, 1g・・・潤滑流体の界面,
1h・・・アクセス孔, 1j・・・シール部,
1k・・・抜け止め,
21・・・開口, 22・・・軸端中心,
23・・・スパイラルグルーブの中心,
31・・・軸11の回転方向,
41・・・第一の軸方向負荷容量, 42・・・第二の軸方向負荷容量,
43・・・第一及び第二の軸方向負荷容量の和,
44・・・磁気吸引力に回転部重量を加えた値,
45・・・磁気吸引力から回転部重量を差し引いた値,
61・・・内筒, 62・・・外筒,
63・・・封止板, 64・・・狭間隙部,
65・・・広間隙部,
71・・・円孔,
81・・・内筒, 82・・・外筒,
83・・・カウンタープレート, 84・・・凹部チャネル,
85・・・円形凹部, 86・・・内筒81及び外筒82の境界,
91・・・凹部チャネル84の開口部, 92・・・開口部の断面形状,
101・・・円筒軸, 102・・・スリーブ,
103・・・スパイラルグルーブ, 104・・・先端部,
105・・・圧力室, 106・・・循環路,
107・・・開口,
111・・・円筒軸, 112・・・スリーブ,
113・・・ボール, 114・・・循環路,
115・・・開口, 116・・・圧力室
11 ... shaft, 12 ... sleeve,
13 ... Counter plate, 14 ... Hub,
15 ... Base plate, 16 ... Rotor magnet,
17 ... stator core, 18 ... coil,
19: Magnetic piece,
1a, 1b .. unbalanced herringbone groove,
1c... Spiral groove, 1d, 1f .. circulation hole,
1e: recessed channel, 1g: interface of lubricating fluid,
1h ... access hole, 1j ... seal part,
1k ...
21 ... Opening, 22 ... Center of shaft end,
23 ... The center of the spiral groove,
31 ... Rotation direction of the shaft 11,
41 ... first axial load capacity, 42 ... second axial load capacity,
43 ... Sum of first and second axial load capacities,
44: Value obtained by adding the rotating part weight to the magnetic attractive force,
45... Value obtained by subtracting the rotating part weight from the magnetic attractive force,
61 ... Inner cylinder, 62 ... Outer cylinder,
63 ... sealing plate, 64 ... narrow gap,
65 ... wide gap part,
71 ... round hole,
81 ... inner cylinder, 82 ... outer cylinder,
83 ... counter plate, 84 ... recessed channel,
85 ... circular recess, 86 ... boundary between the inner cylinder 81 and the outer cylinder 82,
91: Opening of recess channel 84, 92: Cross-sectional shape of opening,
101 ... cylindrical shaft, 102 ... sleeve,
103 ... spiral groove, 104 ... tip
105 ... pressure chamber, 106 ... circulation path,
107 ... opening,
111 ... cylindrical shaft, 112 ... sleeve,
113 ... ball, 114 ... circulation path,
115 ... Opening, 116 ... Pressure chamber

Claims (12)

少なくとも外周近傍で軸方向に実質的に直交する軸端面を有する円筒状軸と,軸と相対的に回転自在に嵌合する有底スリーブと,軸及びスリーブ間間隙に満たされた潤滑流体と,軸及びスリーブ間に磁気吸引力を発生させる磁気的手段とを有して構成される動圧流体軸受モータに於いて,軸表面或いはスリーブ内周面に軸端方向に潤滑流体の圧送能力を有する不平衡ヘリングボーングルーブを有すると共に軸端近傍と不平衡ヘリングボーングルーブの軸端より遠い側とを結ぶ循環路をスリーブ内に有し,有底スリーブの底部近傍には前記循環路の開口を有して回転に伴って軸方向に移動する軸端と協働して流路面積を変え,その流路面積の最小値が軸外周面とスリーブ内周面間の間隙で構成する流路断面積より小の流路断面積として潤滑流体流入面積を実質的に可変とする可変開口を構成し,回転中に不平衡ヘリングボーングルーブは回転部姿勢を保持する為のラジアルベアリング動圧を発生させると共に軸端方向に潤滑流体を圧送し,圧送された潤滑流体と前記可変開口とにより軸端近傍の潤滑流体圧力を増大せしめて回転部を軸方向に支持する軸方向負荷容量を得,磁気吸引力及び回転部に加わる重力と前記軸方向負荷容量とを平衡させ,軸径より大のスラストベアリングを有することなく回転部の浮上量を精密に制御する事を特徴とする動圧流体軸受モータ A cylindrical shaft having a shaft end surface substantially orthogonal to the axial direction at least near the outer periphery, a bottomed sleeve that is rotatably fitted relative to the shaft, and a lubricating fluid filled in the space between the shaft and the sleeve; A hydrodynamic bearing motor having a magnetic means for generating a magnetic attractive force between a shaft and a sleeve, and having a pumping capability of lubricating fluid in the axial direction on the shaft surface or the inner peripheral surface of the sleeve The sleeve has an unbalanced herringbone groove and has a circulation path in the sleeve connecting the vicinity of the shaft end and the side far from the shaft end of the unbalanced herringbone groove, and the opening of the circulation path is provided near the bottom of the bottomed sleeve. Then, the channel area is changed in cooperation with the shaft end that moves in the axial direction with rotation, and the minimum value of the channel area is defined by the gap between the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve. Lubricating fluid as a smaller channel cross-sectional area A variable opening with a substantially variable entrance area is constructed. During rotation, the unbalanced herringbone groove generates radial bearing dynamic pressure to maintain the rotating part posture and pumps the lubricating fluid in the axial direction. An axial load capacity for supporting the rotating part in the axial direction is obtained by increasing the lubricating fluid pressure in the vicinity of the shaft end by the pumped lubricating fluid and the variable opening, and the magnetic attractive force and the gravity applied to the rotating part and the axial direction are obtained. A hydrodynamic bearing motor that balances the load capacity and precisely controls the flying height of the rotating part without having a thrust bearing larger than the shaft diameter. 請求項1記載の動圧流体軸受モータに於いて,前記有底スリーブは円筒スリーブ材と円筒スリーブ材端面に固定するカウンタープレートとで構成して軸端近傍の循環路は円筒スリーブ材端面に設けた凹部チャネルとカウンタープレートとで構成し,前記凹部チャネルは微細精密加工技術であるエッチング或いはレーザ加工或いは放電加工或いは電解加工或いはイオンミリング或いは切削加工により形成して開口の位置及び寸法精度を確保して回転部の精密浮上量制御を容易にする事を特徴とする動圧流体軸受モータ 2. The hydrodynamic bearing motor according to claim 1, wherein the bottomed sleeve is composed of a cylindrical sleeve material and a counter plate fixed to the end surface of the cylindrical sleeve material, and a circulation path near the shaft end is provided on the end surface of the cylindrical sleeve material. The recessed channel is formed by etching, laser processing, electric discharge processing, electrolytic processing, ion milling or cutting processing, which is a fine precision processing technique, to ensure the position and dimensional accuracy of the opening. Hydrodynamic bearing motor, which makes it easy to control the precise flying height of the rotating part 請求項2記載の動圧流体軸受モータに於いて,スリーブ端面に設けられた凹部チャネルのスリーブ内周面での開口形状はスリーブ端面より軸方向に離れた位置での開口幅を大に形成して,回転部の浮上時に於ける軸方向剛性を向上して回転部の精密浮上量制御を容易にする事を特徴とする動圧流体軸受モータ 3. The hydrodynamic bearing motor according to claim 2, wherein the opening shape of the recessed channel provided in the sleeve end surface on the inner peripheral surface of the sleeve is formed to have a large opening width at a position away from the sleeve end surface in the axial direction. The hydrodynamic bearing motor is characterized by improving the axial rigidity at the time of floating of the rotating part and facilitating precise floating amount control of the rotating part. 請求項1記載の動圧流体軸受モータに於いて,前記有底スリーブは円筒スリーブ材と円筒スリーブ材端面に固定するカウンタープレートとで構成してカウンタープレートはスリーブ内周面の延長上となるスリーブ内径とをほぼ同寸法の円形凹部と円形凹部に接続されている凹部チャネルとを有し,前記円形凹部及び凹部チャネルは微細精密加工技術であるエッチング或いはレーザ加工或いは放電加工或いは電解加工或いはイオンミリング或いはプレス或いはモールド或いは切削加工によりカウンタープレート面に形成して開口の位置及び寸法精度を確保して回転部の精密浮上量制御を容易にする事を特徴とする動圧流体軸受モータ 2. The hydrodynamic bearing motor according to claim 1, wherein the bottomed sleeve comprises a cylindrical sleeve material and a counter plate fixed to the end surface of the cylindrical sleeve material, and the counter plate is an extension of the inner peripheral surface of the sleeve. A circular recess having substantially the same inner diameter and a recess channel connected to the circular recess, and the circular recess and the recess channel are etching, laser processing, electric discharge processing, electrolytic processing, or ion milling, which are fine precision processing techniques. Alternatively, the hydrodynamic bearing motor is characterized in that it is formed on the counter plate surface by pressing, molding or cutting to ensure the position and dimensional accuracy of the opening and to facilitate the precise control of the flying height of the rotating part. 請求項4記載の動圧流体軸受モータに於いて,カウンタープレートに設けられた凹部チャネルの軸と対向する開口形状は表面の開口幅を大にして軸方向に離れた位置での開口幅を小に形成して,回転部の浮上時に於ける軸方向剛性を向上して回転部の精密浮上量制御を容易にする事を特徴とする動圧流体軸受モータ 5. The hydrodynamic bearing motor according to claim 4, wherein the opening shape facing the axis of the recessed channel provided in the counter plate has a large opening width on the surface and a small opening width at a position separated in the axial direction. The hydrodynamic bearing motor is characterized in that the precision in the axial direction at the time of floating of the rotating part is improved and the precise floating amount control of the rotating part is facilitated. 請求項1記載の動圧流体軸受モータに於いて,軸端或いはスリーブ底面にポンプインのスパイラルグルーブを有して軸端とスリーブ底面との距離にほぼ反比例する軸方向負荷容量を軸端近傍に発生させ,回転部支持の軸方向剛性を増した事を特徴とする動圧流体軸受モータ 2. The hydrodynamic bearing motor according to claim 1, wherein a pump-in spiral groove is provided at the shaft end or the bottom of the sleeve, and an axial load capacity that is substantially inversely proportional to a distance between the shaft end and the bottom of the sleeve is set near the shaft end. Hydrodynamic bearing motor characterized by increased axial rigidity of rotating part support 請求項6記載の動圧流体軸受モータに於いて,圧送された潤滑流体と実質的な可変開口とで発生する軸方向負荷容量の最大値を磁気吸引力に回転部重量を加えた値以上になるよう設定し,小径の軸で且つ軸径より大のベアリング部を有さずに正立,倒立,或いは横置き何れの姿勢においても回転部浮上を確実にして浮上量制御を可能にした事を特徴とする動圧流体軸受モータ 7. The hydrodynamic bearing motor according to claim 6, wherein the maximum value of the axial load capacity generated by the pumped lubricating fluid and the substantially variable opening is not less than the value obtained by adding the weight of the rotating part to the magnetic attraction force. It is possible to control the flying height by ensuring the rotation of the rotating part in any of the upright, inverted, and horizontal positions without a bearing with a small diameter shaft and larger than the shaft diameter. Hydrodynamic bearing motor characterized by 請求項6記載の動圧流体軸受モータに於いて,圧送された潤滑流体と実質的な可変開口とで発生する最大の軸方向負荷容量を磁気吸引力から回転部重量を差し引いた値及び磁気吸引力に回転部重量を加えた値の間に設定し,軸径より大のベアリング部を有さずに正立,倒立,或いは横置き何れの姿勢においてもスパイラルグルーブによる軸方向剛性を最大限に寄与させて回転部の精密な浮上量制御を可能にした事を特徴とする動圧流体軸受モータ 7. The hydrodynamic bearing motor according to claim 6, wherein the maximum axial load capacity generated by the pumped lubricating fluid and the substantially variable opening is a value obtained by subtracting the weight of the rotating part from the magnetic attraction force and the magnetic attraction Set between the values obtained by adding the weight of the rotating part to the force to maximize the axial rigidity of the spiral groove in any of the upright, inverted, and horizontal positions without bearings larger than the shaft diameter. A hydrodynamic bearing motor that contributes to precise flying height control of the rotating part. 請求項1記載の動圧流体軸受モータに於いて,循環路に接続されて潤滑流体が空気との界面を形成するよう徐々に間隙を大として軸及びスリーブ間間隙の潤滑流体を保持する為のテーパーシール部を有して大気に通じさせた通気孔を有し,潤滑流体が循環路を循環する過程で通気孔により潤滑流体中の気泡を大気に解放させることを特徴とする動圧流体軸受モータ 2. The hydrodynamic bearing motor according to claim 1, wherein the lubricating fluid is connected to the circulation path so that the lubricating fluid gradually forms a gap so as to form an interface with the air, and the lubricating fluid in the gap between the shaft and the sleeve is held. A hydrodynamic bearing characterized by having a vent hole that has a taper seal portion and communicated with the atmosphere, and that bubbles in the lubricating fluid are released to the atmosphere by the vent hole in the process of circulating the lubricating fluid in the circulation path. motor 請求項9記載の動圧流体軸受モータに於いて,スリーブ内の循環路に接続されて通気孔出口をスリーブ端面に設けて潤滑流体へのアクセス孔とし,スリーブ端面のアクセス孔により潤滑流体の界面レベル監視及び潤滑流体注入を可能にすることを特徴とする動圧流体軸受モータ 10. The hydrodynamic bearing motor according to claim 9, wherein the lubricating fluid is connected to a circulation path in the sleeve, and a vent hole outlet is provided on the sleeve end face to provide an access hole for the lubricating fluid. Hydrodynamic bearing motor capable of level monitoring and lubrication fluid injection 請求項10記載の動圧流体軸受モータに於いて,スリーブを内筒,外筒の二重筒構成とし,内筒の外周面を部分的に平坦面として,或いは外筒内周面に凹部を形成することにより内筒の外周面及び外筒の内周面間に軸方向の間隙を形成し,前記間隙断面に於ける狭間隙部を循環路,前記間隙断面に於ける広間隙部を通気部分として潤滑流体へのアクセス孔としたことを特徴とする動圧流体軸受モータ 11. The hydrodynamic bearing motor according to claim 10, wherein the sleeve has a double cylinder configuration of an inner cylinder and an outer cylinder, and the outer peripheral surface of the inner cylinder is partially flat, or the inner peripheral surface of the outer cylinder is provided with a recess. As a result, an axial gap is formed between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder. The narrow gap portion in the gap cross section is circulated and the wide gap portion in the gap cross section is vented. Hydrodynamic bearing motor characterized in that it has an access hole to the lubricating fluid as a part 請求項11記載の動圧流体軸受モータに於いて,スリーブの内筒及び外筒間で形成する間隙部の広間隙部の間隙以下の径を有する円形開口を持つ封止板でスリーブ端面に露出した前記間隙部を封じて潤滑流体の漏れを阻止する事を特徴とする動圧流体軸受モータ
12. The hydrodynamic bearing motor according to claim 11, wherein the sleeve is exposed to a sleeve end face with a sealing plate having a circular opening having a diameter equal to or smaller than a gap of a wide gap portion formed between an inner cylinder and an outer cylinder of the sleeve. The hydrodynamic bearing motor is characterized in that the gap is sealed to prevent leakage of the lubricating fluid.
JP2003417766A 2003-12-16 2003-12-16 Dynamic pressure fluid bearing motor with variable opening Pending JP2005180467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417766A JP2005180467A (en) 2003-12-16 2003-12-16 Dynamic pressure fluid bearing motor with variable opening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417766A JP2005180467A (en) 2003-12-16 2003-12-16 Dynamic pressure fluid bearing motor with variable opening

Publications (1)

Publication Number Publication Date
JP2005180467A true JP2005180467A (en) 2005-07-07

Family

ID=34780166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417766A Pending JP2005180467A (en) 2003-12-16 2003-12-16 Dynamic pressure fluid bearing motor with variable opening

Country Status (1)

Country Link
JP (1) JP2005180467A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139797A1 (en) * 2007-05-09 2008-11-20 Ntn Corporation Fluid bearing device
US20100189383A1 (en) * 2007-07-31 2010-07-29 Ntn Corporation Fluid dynamic bearing device and assembling method thereof
JP2011150770A (en) * 2010-01-25 2011-08-04 Alphana Technology Co Ltd Disk drive device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139797A1 (en) * 2007-05-09 2008-11-20 Ntn Corporation Fluid bearing device
US20100189383A1 (en) * 2007-07-31 2010-07-29 Ntn Corporation Fluid dynamic bearing device and assembling method thereof
US8454239B2 (en) * 2007-07-31 2013-06-04 Ntn Corporation Fluid dynamic bearing device and assembling method thereof
JP2011150770A (en) * 2010-01-25 2011-08-04 Alphana Technology Co Ltd Disk drive device
US8634160B2 (en) 2010-01-25 2014-01-21 Samsung Electro-Mechanics Japan Advanced Technology Co., Ltd. Disk drive device provided with lubricant-filled fluid dynamic bearing

Similar Documents

Publication Publication Date Title
KR102020251B1 (en) Fluid dynamic bearing device and motor with same
US20060039634A1 (en) Fluid dynamic bearing motor attached at both shaft ends
US5516212A (en) Hydrodynamic bearing with controlled lubricant pressure distribution
US7473034B2 (en) Hydrodynamic bearing device, motor, and disk driving apparatus
US20060039636A1 (en) Fluid dynamic bearing motor attached at both shaft ends
WO2002004825A1 (en) Hydrodynamic bearing device
WO1998048188A1 (en) Both ends open fluid dynamic bearing having a journal in combination with a conical bearing
US6005748A (en) Spindle motor with multiple thrust plate fluid dynamic bearing
JP2002266861A (en) Fluid dynamic pressure bearing device
KR100811201B1 (en) A hydrodynamic bearing motor
US8322927B2 (en) Fluid dynamic bearing
JP2005315357A (en) Dynamic pressure bearing, spindle motor and recording disk device
JP2864941B2 (en) Rotating body bearing device, motor and polygon mirror motor
JPS585518A (en) Dynamic pressure spindle apparatus
US20070014496A1 (en) Fluid dynamic bearing system
US6130802A (en) Both ends open fluid dynamic bearing having a journal in combination with a conical bearing
JP2005180467A (en) Dynamic pressure fluid bearing motor with variable opening
US7422371B2 (en) Active hybrid FDB motor
US6264368B1 (en) Fluid bearing motor
US6069767A (en) Both ends open fluid dynamic bearing with multiple thrust plates
JP2002122134A (en) Fluid bearing device
JP2005180468A (en) Dynamic pressure fluid bearing motor with floating booster
JP2007333004A (en) Hydrodynamic fluid bearing apparatus, spindle motor, and recording disk driving device equipped with this spindle motor
CN100356074C (en) Hydrodynamic bearing device
JP3549367B2 (en) Hydrodynamic bearing device and electric motor