JP2005180137A - Dynamic loading testing method - Google Patents

Dynamic loading testing method Download PDF

Info

Publication number
JP2005180137A
JP2005180137A JP2003426481A JP2003426481A JP2005180137A JP 2005180137 A JP2005180137 A JP 2005180137A JP 2003426481 A JP2003426481 A JP 2003426481A JP 2003426481 A JP2003426481 A JP 2003426481A JP 2005180137 A JP2005180137 A JP 2005180137A
Authority
JP
Japan
Prior art keywords
pile
impact
hit
data
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003426481A
Other languages
Japanese (ja)
Other versions
JP4173089B2 (en
Inventor
Shinichi Kuwayama
晋一 桑山
Eiji Kojima
英治 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geotop Corp
Original Assignee
Geotop Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geotop Corp filed Critical Geotop Corp
Priority to JP2003426481A priority Critical patent/JP4173089B2/en
Publication of JP2005180137A publication Critical patent/JP2005180137A/en
Application granted granted Critical
Publication of JP4173089B2 publication Critical patent/JP4173089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic loading testing method capable of accurately measuring axial force of an impact object such as a pile, and capable of highly accurately calculating bearing power over the whole of the impact object. <P>SOLUTION: This dynamic loading testing method calculates the bearing power of the impact object/a ground system from its analytical data, by measuring a shock wave propagating in this impact object, by impacting a head part of the impact object such as the pile by using a hammer. The method calculates the bearing power of the impact object/the ground system, by integrating the analytical data on the shock wave measured by impact of respective times, by measuring the shock wave with every impact of the respective times, by applying a plurality of times of impacts to the impact object being a test object. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、動的載荷試験方法に関し、さらに詳細には、例えば杭頭を打撃した際に杭体中を伝播する衝撃波を計測して、その解析データから杭・地盤系の支持力を算定する動的載荷試験方法に関する。   The present invention relates to a dynamic loading test method, and more specifically, for example, by measuring a shock wave propagating in a pile body when hitting a pile head and calculating a bearing capacity of a pile / ground system from the analysis data. The present invention relates to a dynamic loading test method.

杭の鉛直載荷試験を大きく分類すると、静的載荷試験と動的載荷試験がある。静的載荷試験には、押込み載荷試験、先端載荷試験、引抜き載荷試験、鉛直交番載荷試験があり、動的載荷試験には、急速載荷試験と衝撃載荷試験がある。   Pile vertical loading tests can be broadly classified into static loading tests and dynamic loading tests. The static loading test includes an indentation loading test, a tip loading test, a pulling loading test, and a lead orthogonal number loading test, and the dynamic loading test includes a rapid loading test and an impact loading test.

急速載荷試験は、急速載荷による押込み力を用いた試験方法で、反力体慣性方式、軟クッション重錘落下方式及び急速ジャッキ方式などに分類される。衝撃載荷試験は、杭頭をハンマー等を用いて打撃し、杭体中を伝播する加速度波形及びひずみ波形を計測してその解析データから杭の支持力を算定する試験方法であり、最も低価格な載荷方法として知られている(非特許文献1参照)。   The rapid loading test is a test method using an indentation force by rapid loading, and is classified into a reaction force body inertia method, a soft cushion weight dropping method, a rapid jack method, and the like. The impact loading test is a test method in which the pile head is struck with a hammer, the acceleration waveform and strain waveform propagating in the pile body are measured, and the bearing capacity of the pile is calculated from the analysis data. It is known as a simple loading method (see Non-Patent Document 1).

衝撃載荷試験では、通常、計測のアンプ倍率の設定のため、小さく打撃した後、本試験として杭頭を1回打撃して得られる計測から波形解析、例えば波形マッチング解析により支持力の算定を行っている。しかし、1回の打撃では打撃エネルギーが足りなく、杭先端まで打撃力が届かず、このため杭頭から杭先端部までの間の一部の抵抗しか評価できない場合が多かった。
杭の鉛直載荷試験方法・同解説編集委員会,「地盤工学会基準 杭の鉛直載荷試験方法・同解説−第一回改訂版−」,社団法人地盤工学会,2002年5月28日
In the impact loading test, the bearing capacity is usually calculated by waveform analysis, for example, waveform matching analysis from the measurement obtained by hitting the pile head once as a final test after setting a small impact to set the amplifier magnification for measurement. ing. However, the impact energy is insufficient in one impact and the impact force does not reach the tip of the pile, and therefore only a part of the resistance between the pile head and the tip of the pile can be evaluated in many cases.
Pile vertical loading test method / commentary editorial committee, “Ground Engineering Society Standard Pile vertical loading test method / commentary-First revised edition”, Geotechnical Society of Japan, May 28, 2002

この発明は上記のような技術的背景に基づいてなされたものであって、次の目的を達成するものである。
この発明の目的は、杭などの被打撃体の軸方向力などを精度良く計測することを可能とし、被打撃体の全体にわたって精度の高い支持力を算定することができる動的載荷試験方法を提供することにある。
The present invention has been made based on the technical background as described above, and achieves the following object.
An object of the present invention is to provide a dynamic loading test method capable of accurately measuring an axial force or the like of a hit body such as a pile and calculating a highly accurate support force over the entire hit body. It is to provide.

試験対象とする1本の杭に対して、打撃力を変化させて複数回の打撃を実施してその衝撃波データを解析すると、各回の打撃ごとに杭に作用する抵抗と深度との関係は図1に示すようになる。すなわち、打撃力が小さい場合、打撃1回目では杭頭に近い部分の杭周面の摩擦が切れる。打撃を複数回行うことで、杭頭より下の杭周面摩擦が切れる。これを順次繰り返し、下方の杭周面の摩擦を切る。図1においてNFの部分が摩擦の切れた箇所を示す。このように、打撃を複数回行うことにより、最後に杭先端部分の摩擦を切り、衝撃載荷試験を終了する。   For a single pile to be tested, the impact force is changed multiple times and the shock wave data is analyzed. The relationship between the resistance and depth acting on the pile at each impact is shown in the figure. As shown in FIG. That is, when the striking force is small, the friction of the pile peripheral surface near the pile head is cut in the first hit. The pile surface friction below the pile head is cut by hitting multiple times. This is repeated in sequence to cut the friction on the lower pile circumference. In FIG. 1, the NF portion shows a portion where the friction is cut. In this way, by performing the hitting a plurality of times, the friction at the tip of the pile is finally cut, and the impact loading test is completed.

杭の摩擦が切れるということは、杭周面の摩擦抵抗や杭先端の剛性が弾性領域から塑性領域に入ったことである。そこで、本試験で得られたデータから波形マッチング解析などを行い、杭周面及び杭先端の最大抵抗を求め、複数回打撃により得られた杭の抵抗のうち同じ箇所の抵抗の最大値を杭のその箇所の終局抵抗と評価することで、杭の終局支持力を評価することができる。   The fact that the friction of the pile is cut means that the frictional resistance of the pile peripheral surface and the rigidity of the tip of the pile have entered the plastic region from the elastic region. Therefore, waveform matching analysis etc. is performed from the data obtained in this test, the maximum resistance of the pile peripheral surface and the pile tip is obtained, and the maximum value of the resistance of the same place among the pile resistance obtained by multiple hits is piled. The ultimate bearing capacity of the pile can be evaluated by evaluating the ultimate resistance of that part of the pile.

このことを、打撃ごとに得られる反射波で示すと、図2のようになる。すなわち、打撃を複数回行うことで、軸方向力の反射波が変化する。なお、打撃で施工された杭の場合は、施工後時間が経てから求めると、時間とともに摩擦が回復する。例えば、打撃4回目で反射波が図2のようになった場合は、再度打撃を行うと打撃3回目、2回目、1回目のような軸方向力(反射波)が求められる。ここで、経過時間が充分であれば、1回目まで回復できる。これは時間経過とともに摩擦が戻ったことを意味している。   If this is shown by the reflected wave obtained for every impact, it will become like FIG. That is, the reflected wave of the axial force changes by performing the hitting a plurality of times. In addition, in the case of a pile constructed by striking, the friction recovers with time if it is obtained after a period of time after construction. For example, when the reflected wave becomes as shown in FIG. 2 at the fourth hit, the axial force (reflected wave) as in the third hit, the second hit, and the first hit is obtained by hitting again. Here, if the elapsed time is sufficient, it can be recovered to the first time. This means that the friction has returned over time.

したがって、複数回の打撃を実施して、杭の深度方向で最も卓越した抵抗を個別に抽出し、これを組み合わせると、図3に示すような抵抗と深度との関係が得られる。同様に、図4に示すような、荷重−変位関係が得られる。すなわち、1回の打撃であれば、一部の抵抗を反映した荷重−変位関係しか得られないが、複数回の打撃によって得られた各深度範囲ごとの最大の抵抗を評価することで、終局の荷重−変位関係が得られる。   Therefore, by performing multiple hits, individually extracting the most outstanding resistance in the depth direction of the pile, and combining them, the relationship between resistance and depth as shown in FIG. 3 is obtained. Similarly, a load-displacement relationship as shown in FIG. 4 is obtained. In other words, only one load-displacement relationship reflecting a part of resistance can be obtained with one hit, but by evaluating the maximum resistance for each depth range obtained by multiple hits, the ultimate The following load-displacement relationship is obtained.

この発明は、上記のような知見に基づくものであって、次のような手段を採用している。
すなわち、杭などの被打撃体の頭部をハンマー等を用いて打撃し、この被打撃体中を伝播する衝撃波を計測してその解析データから被打撃体・地盤系の支持力を算定する動的載荷試験方法において、
試験対象とする被打撃体に対して複数回の打撃を加えて、各回の打撃ごとに衝撃波を計測し、
各回の打撃で計測された衝撃波の解析データを総合して、当該被打撃体・地盤系の支持力を算定することを特徴とする動的載荷試験方法にある。
The present invention is based on the above knowledge and employs the following means.
That is, the head of a hit body such as a pile is hit with a hammer, etc., the shock wave propagating through the hit body is measured, and the bearing capacity of the hit body / ground system is calculated from the analysis data. In the dynamic loading test method,
Applying multiple hits to the test subject to be hit, measuring the shock wave for each hit,
The dynamic loading test method is characterized in that the bearing force of the hit object / ground system is calculated by combining analysis data of shock waves measured at each impact.

より具体的には、前記解析データは、深度範囲ごとの被打撃体周面抵抗と変位との関係を示す被打撃体周面地盤データ、及び被打撃体先端抵抗と変位との関係を示す被打撃体先端地盤データを含み、
各深度範囲及び杭先端に関して各回の打撃で得られた解析データのうち抵抗が最大となる被打撃体周面地盤データ及び被打撃体先端地盤データをそれぞれ抽出し、これら抽出データを総合することを特徴とする。
More specifically, the analysis data includes the hit object peripheral surface ground data indicating the relationship between the hit object peripheral surface resistance and the displacement for each depth range, and the hit target body tip resistance and the relationship indicated by the displacement. Including impact body tip ground data,
Of the analysis data obtained in each impact for each depth range and pile tip, the impacted body peripheral ground data and the impacted subject tip ground data with the maximum resistance are extracted, and these extracted data are combined. Features.

この発明は、杭の衝撃載荷試験方法として特に開発されたものであるが、この発明による技術思想は衝撃載荷試験に限らず、急速載荷試験を含む動的載荷試験一般に適用できる。また、載荷する方向に関しても同様であり、鉛直載荷試験に限らず水平載荷試験についても適用できる。さらに動的な平板載荷試験にも適用できる。さらに被打撃体は杭に限らず、鋼矢板などであっても適用できる。さらに、被打撃体が杭の場合、既製杭、現場打ち杭などの全ての杭を対象としており、工法についても埋込杭、打撃杭など全ての工法によって施工された杭を対象としている。また、杭種もコンクリート杭、鋼管杭、プレストレス杭、異種杭などの全ての杭種を対象としている。   The present invention has been particularly developed as an impact loading test method for piles, but the technical idea according to the present invention is not limited to the impact loading test, and can be applied to a dynamic loading test including a rapid loading test in general. The same applies to the loading direction, and is applicable not only to the vertical loading test but also to the horizontal loading test. It can also be applied to dynamic plate loading tests. Further, the hit object is not limited to a pile, and can be applied to a steel sheet pile or the like. Furthermore, when the hit object is a pile, all piles such as ready-made piles and on-site piles are targeted, and piles constructed by all methods such as embedded piles and hammered piles are also targeted. The pile types are all pile types such as concrete piles, steel pipe piles, pre-stress piles, and different types of piles.

この発明によれば、杭などの被打撃体の頭部に複数回の打撃を加え、各回の打撃ごとに波形データを得る。この結果、計測器のアンプ倍率の調整が可能となり、計測のSN比が改善される。また、1回の打撃では、計測器のアンプ倍率の設定ミスから、計測で波がサチったり(saturation)、小さくなりすぎたりすることがあるが、このような計測失敗の恐れも激減する。このことにより、杭などの被打撃体の軸方向力などを精度良く計測することが可能となり、被打撃体の全体にわたって精度の高い支持力を算定することができる。   According to this invention, a plurality of hits are applied to the head of the hit body such as a pile, and waveform data is obtained for each hit. As a result, the amplifier magnification of the measuring instrument can be adjusted, and the SN ratio of measurement is improved. In addition, in a single impact, the measurement may cause a wave to be saturated (saturation) or become too small due to a setting error of the amplifier magnification of the measuring instrument, but the risk of such measurement failure is drastically reduced. This makes it possible to accurately measure the axial force of the hit body such as a pile, and to calculate the support force with high accuracy over the entire hit body.

図5は、この発明の実施形態を示すブロックチャートである。この発明では、試験対象とする1本の杭に対し、複数回の打撃を実施する(ステップS1)。図6は打撃状況を示す模式図である。杭1の頭部付近に2種類のセンサー2を設置する。すなわち、1つは加速度センサーで、もう1つはひずみセンサーである。杭1の頭部をハンマー3などにより打撃し、センサー2,2で検出した加速度データ及びひずみデータをアンプ5及びA/D変換器6を介してコンピューター4に取り込む。コンピューター4は、これらのデータに基づき、図7に示すように、計測した加速度波及びひずみ波から打撃で生じた入力波及び反射波を演算し表示する。   FIG. 5 is a block chart showing an embodiment of the present invention. In the present invention, multiple hits are performed on one pile to be tested (step S1). FIG. 6 is a schematic diagram showing a hitting situation. Two types of sensors 2 are installed near the head of the pile 1. That is, one is an acceleration sensor and the other is a strain sensor. The head of the pile 1 is hit with a hammer 3 or the like, and acceleration data and strain data detected by the sensors 2 and 2 are taken into the computer 4 via the amplifier 5 and the A / D converter 6. Based on these data, the computer 4 calculates and displays an input wave and a reflected wave generated by hitting from the measured acceleration wave and distortion wave as shown in FIG.

このような衝撃波データ(入力波及び反射波)が得られたら、波形マッチング解析を行う(ステップS2)。この波形マッチング解析は、衝撃載荷試験において従来から行われている手法であるが、以下、その概要を説明する。   When such shock wave data (input wave and reflected wave) is obtained, waveform matching analysis is performed (step S2). This waveform matching analysis is a technique conventionally performed in the impact loading test, and the outline thereof will be described below.

まず、衝撃載荷試験の解析に通常適用される杭・地盤系モデルについて、図8を参照して説明する。各層(杭長を複数に分割した深度範囲に対応する杭・地盤系の層)及び杭先端部分の抵抗は、バネ10とスライダー11による静的な抵抗部分と、ダッシュポット12による動的な抵抗部分とにモデル化される。このうち、静的な抵抗部分は、バネとスライダーとによって、図9に示すように、完全弾塑性モデルとしてモデル化されている。すなわち、ある一定の変位量まではバネの抵抗に比例して力が大きくなるが、その地盤の極限抵抗に達するとスライダーによって完全に摩擦が切れるモデルとしている。この実施形態では波形マッチング解析により最大の抵抗fmax 及びバネ剛性kを求めることとなる。   First, a pile / ground system model usually applied to the analysis of the impact loading test will be described with reference to FIG. The resistance of each layer (pile / ground system layer corresponding to the depth range in which the pile length is divided into a plurality of piles) and the tip of the pile are the static resistance portion by the spring 10 and the slider 11, and the dynamic resistance by the dashpot 12. Modeled with parts. Among these, the static resistance portion is modeled as a complete elasto-plastic model by a spring and a slider as shown in FIG. In other words, the force increases in proportion to the resistance of the spring up to a certain amount of displacement, but when the ultimate resistance of the ground is reached, the friction is completely cut by the slider. In this embodiment, the maximum resistance fmax and spring stiffness k are obtained by waveform matching analysis.

波形マッチング解析は、図7に示される入力波を、図8のようにモデル化した杭・地盤系に入力したと仮定して、杭頭に戻ってくる反射波の波形を計算し、図7に示される実測された反射波形と一致する計算波形を見出す工程を含む。すなわち、計算された反射波と実測された反射波を比較し、もし、両者に違いがあれば、仮定した杭・地盤系のモデルのパラメータ(杭長の分割厚さ、抵抗、バネ剛性k、減衰率)を再設定し、再度反射波形を計算し、両者を比較する。以上のことを繰り返して、計算された反射波形と実測から求めた反射波形を一致させることにより、杭・地盤系モデルを同定する。   In the waveform matching analysis, assuming that the input wave shown in FIG. 7 is input to the pile / ground system modeled as shown in FIG. 8, the waveform of the reflected wave returning to the pile head is calculated. And finding a calculated waveform that matches the actually measured reflected waveform shown in FIG. That is, the calculated reflected wave is compared with the actually measured reflected wave. If there is a difference between them, the parameters of the assumed pile / ground system model (division thickness of pile length, resistance, spring stiffness k, (Attenuation rate) is reset, the reflected waveform is calculated again, and both are compared. By repeating the above, the pile / ground system model is identified by matching the calculated reflection waveform with the reflection waveform obtained from the actual measurement.

実施形態では打撃4回の例が示されている。図10及び図11は、これら4回打撃のうちのそれぞれ打撃2回目及び4回目の波形マッチング解析例を示している。打撃2回目は杭周面摩擦がある場合の反射波形であり、打撃4回目は杭周面摩擦が切れて杭先端抵抗のみの場合の反射波形である。この波形マッチング解析の結果、各回の打撃に関しての図8に示した杭・地盤系モデルのパラメータが同定される。この実施形態では、地盤データとして深度範囲ごと及び杭先端の最大の抵抗と地盤のバネ剛性kが得られる(ステップS3)。表1及び表2は、それぞれ打撃2回目及び4回目に関しての波形マッチング解析の結果、同定されたパラメータ値を示している。   In the embodiment, an example of four hits is shown. FIGS. 10 and 11 show examples of waveform matching analysis for the second and fourth strikes of these four strikes, respectively. The second hit is a reflected waveform when there is pile peripheral surface friction, and the fourth hit is a reflected waveform when the pile peripheral surface friction is cut and only the pile tip resistance is present. As a result of this waveform matching analysis, the parameters of the pile / ground system model shown in FIG. 8 for each hit are identified. In this embodiment, the maximum resistance of the pile tip and the ground spring stiffness k are obtained as the ground data (step S3). Tables 1 and 2 show the parameter values identified as a result of the waveform matching analysis for the second and fourth strikes, respectively.

Figure 2005180137
Figure 2005180137

Figure 2005180137
Figure 2005180137

すべての打撃に関しての波形マッチング解析を行ったら(ステップS4)、各深度範囲及び杭先端に関して各回の打撃で得られたデータのうち、抵抗が最大となる地盤データ(抵抗及びバネ剛性k)をそれぞれ抽出し、これらの抽出データを組み合わせ・総合する。その結果が表3に示されている。表3において、下線が付されているデータが、各深度範囲に関して抵抗が最大であるものとして抽出されたデータである。この抽出データを総合したものを用いて、荷重伝達法により図4に示したような荷重−変位関係が求められる(ステップS5)。   When waveform matching analysis is performed for all striking (step S4), the ground data (resistance and spring stiffness k) with the maximum resistance among the data obtained in each striking for each depth range and pile tip is respectively Extract and combine / synthesize these extracted data. The results are shown in Table 3. In Table 3, the underlined data is data extracted as having the maximum resistance for each depth range. A load-displacement relationship as shown in FIG. 4 is obtained by a load transmission method using a combination of the extracted data (step S5).

Figure 2005180137
Figure 2005180137

杭頭打撃回数と杭周面の摩擦の切れ具合のイメージ図である。It is an image figure of the frequency of pile head hits and the degree of frictional breakage of the pile circumference. 杭頭打撃回数と軸方向力(反射)のイメージ図である。It is an image figure of a pile head hit count and axial direction force (reflection). 深さ方向と複数回の打撃結果から得られた最大抵抗を示す図である。It is a figure which shows the maximum resistance obtained from the depth direction and the impact result of multiple times. 杭頭の荷重−変位量曲線を示す図である。It is a figure which shows the load-displacement amount curve of a pile head. 実施形態のブロックチャートである。It is a block chart of an embodiment. 杭頭の打撃状況を示す模式図である。It is a schematic diagram which shows the hit condition of a pile head. 入力波及び反射波の一例を示す図である。It is a figure which shows an example of an input wave and a reflected wave. 杭・地盤系をモデル化して示す図である。It is a figure which shows a pile and ground system as a model. 杭・地盤系を完全弾塑性モデルとしてモデル化して示す図である。It is a figure which models a pile and ground system as a complete elastoplastic model. 波形マッチング解析により一致した実測反射波と計算反射波の一例を示す図である。It is a figure which shows an example of the measurement reflected wave and calculation reflected wave which were matched by the waveform matching analysis. 波形マッチング解析により一致した実測反射波と計算反射波の他の例を示す図である。It is a figure which shows the other example of the actual measurement reflected wave and calculation reflected wave which were matched by the waveform matching analysis.

符号の説明Explanation of symbols

1 試験杭
2 センサー
3 ハンマー
4 ポータブルコンピューター
1 Test pile 2 Sensor 3 Hammer 4 Portable computer

Claims (2)

杭などの被打撃体の頭部をハンマー等を用いて打撃し、この被打撃体中を伝播する衝撃波を計測してその解析データから被打撃体・地盤系の支持力を算定する動的載荷試験方法において、
試験対象とする被打撃体に対して複数回の打撃を加えて、各回の打撃ごとに衝撃波を計測し、
各回の打撃で計測された衝撃波の解析データを総合して、当該被打撃体・地盤系の支持力を算定することを特徴とする動的載荷試験方法。
Dynamic loading that strikes the head of an impacted body such as a pile with a hammer, etc., measures the shock wave propagating through the impacted body, and calculates the bearing capacity of the impacted body / ground system from the analysis data In the test method,
Applying multiple hits to the test subject to be hit, measuring the shock wave for each hit,
A dynamic loading test method characterized in that the bearing force of the hit object / ground system is calculated by combining the analysis data of shock waves measured at each impact.
前記解析データは、深度範囲ごとの被打撃体周面抵抗と変位との関係を示す被打撃体周面地盤データ、及び被打撃体先端抵抗と変位との関係を示す被打撃体先端地盤データを含み、
各深度範囲及び杭先端に関して各回の打撃で得られた解析データのうち抵抗が最大となる被打撃体周面地盤データ及び被打撃体先端地盤データをそれぞれ抽出し、これら抽出データを総合することを特徴とする請求項1記載の動的載荷試験方法。
The analysis data includes an impacted body peripheral surface ground data indicating a relationship between the impacted body peripheral surface resistance and displacement for each depth range, and an impacted body distal end ground data indicating a relationship between the impacted body distal end resistance and displacement. Including
Of the analysis data obtained in each impact for each depth range and pile tip, the impacted body peripheral ground data and the impacted subject tip ground data with the maximum resistance are extracted, and these extracted data are combined. The dynamic loading test method according to claim 1, wherein:
JP2003426481A 2003-12-24 2003-12-24 Dynamic loading test method Expired - Lifetime JP4173089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426481A JP4173089B2 (en) 2003-12-24 2003-12-24 Dynamic loading test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426481A JP4173089B2 (en) 2003-12-24 2003-12-24 Dynamic loading test method

Publications (2)

Publication Number Publication Date
JP2005180137A true JP2005180137A (en) 2005-07-07
JP4173089B2 JP4173089B2 (en) 2008-10-29

Family

ID=34786005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426481A Expired - Lifetime JP4173089B2 (en) 2003-12-24 2003-12-24 Dynamic loading test method

Country Status (1)

Country Link
JP (1) JP4173089B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138625A (en) * 2005-11-21 2007-06-07 Geotop Corp Dynamic horizontal loading test method and dynamic horizontal loading test device for pile
KR100792211B1 (en) 2007-09-21 2008-01-07 지에스이앤씨(주) Method of calculating the bearing capacity of augered pile
JP2008111286A (en) * 2006-10-31 2008-05-15 Japan Pile Corp Pile head partial hitting adjusting device
JP2008285918A (en) * 2007-05-18 2008-11-27 Japan Pile Corp Dynamic horizontal load testing method and dynamic horizontal load testing device for pile
KR101600477B1 (en) * 2015-07-03 2016-03-07 광일종합건설 주식회사 Top down construction method for developping stability through improved process of piller
JP2018062738A (en) * 2016-10-11 2018-04-19 多摩火薬機工株式会社 Dynamic load test apparatus and method of determining bearing capacity of foundation at excavation tip of concrete pile cast in place using thereof
JP2019032303A (en) * 2017-08-07 2019-02-28 清水建設株式会社 Pile evaluation method
KR20210071137A (en) * 2019-12-05 2021-06-16 한국교통대학교산학협력단 Method for evaluating the embedment depth and ground bearing capacity of unknown bridge foundation
JP2022024592A (en) * 2020-07-28 2022-02-09 戸田建設株式会社 Pile performance estimation method
CN116290141A (en) * 2023-03-01 2023-06-23 盐城市天恒建设工程质量检测有限公司 Portable pile foundation nondestructive detector

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138625A (en) * 2005-11-21 2007-06-07 Geotop Corp Dynamic horizontal loading test method and dynamic horizontal loading test device for pile
JP2008111286A (en) * 2006-10-31 2008-05-15 Japan Pile Corp Pile head partial hitting adjusting device
JP4623596B2 (en) * 2006-10-31 2011-02-02 ジャパンパイル株式会社 Pile head bias adjustment device
JP2008285918A (en) * 2007-05-18 2008-11-27 Japan Pile Corp Dynamic horizontal load testing method and dynamic horizontal load testing device for pile
KR100792211B1 (en) 2007-09-21 2008-01-07 지에스이앤씨(주) Method of calculating the bearing capacity of augered pile
KR101600477B1 (en) * 2015-07-03 2016-03-07 광일종합건설 주식회사 Top down construction method for developping stability through improved process of piller
JP2018062738A (en) * 2016-10-11 2018-04-19 多摩火薬機工株式会社 Dynamic load test apparatus and method of determining bearing capacity of foundation at excavation tip of concrete pile cast in place using thereof
JP2019032303A (en) * 2017-08-07 2019-02-28 清水建設株式会社 Pile evaluation method
JP7257748B2 (en) 2017-08-07 2023-04-14 清水建設株式会社 Pile evaluation method
KR20210071137A (en) * 2019-12-05 2021-06-16 한국교통대학교산학협력단 Method for evaluating the embedment depth and ground bearing capacity of unknown bridge foundation
KR102283609B1 (en) * 2019-12-05 2021-07-29 한국교통대학교산학협력단 Method for evaluating the embedment depth and ground bearing capacity of unknown bridge foundation
JP2022024592A (en) * 2020-07-28 2022-02-09 戸田建設株式会社 Pile performance estimation method
JP7046126B2 (en) 2020-07-28 2022-04-01 戸田建設株式会社 Pile performance estimation method
CN116290141A (en) * 2023-03-01 2023-06-23 盐城市天恒建设工程质量检测有限公司 Portable pile foundation nondestructive detector

Also Published As

Publication number Publication date
JP4173089B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
Lin et al. Interaction between laterally loaded pile and surrounding soil
JP4173089B2 (en) Dynamic loading test method
US6349590B1 (en) Method and apparatus for estimating load bearing capacity of piles
JP4675756B2 (en) Pile performance evaluation device
JP4696243B2 (en) Young&#39;s modulus estimation method, Young&#39;s modulus estimation program, and Young&#39;s modulus estimation apparatus
Atamturktur et al. Full-scale modal testing of vaulted gothic churches: lessons learned
Schellingerhout et al. Pseudo static pile load tester
JP2019032303A (en) Pile evaluation method
JP4863796B2 (en) Pile bearing capacity measurement method
JP5700802B2 (en) Rock quality evaluation method and rock quality evaluation apparatus
RU2398936C1 (en) Method for assessment of drilled pipe bearing capacity
JP3023508B1 (en) Evaluation method of physical properties of elasto-plastic body by percussion sound
JP4093580B2 (en) Measuring method for bearing capacity of foundation pile
Basarkar et al. High strain dynamic pile testing practices in India-favourable situations and correlation studies
JP4358728B2 (en) Determination of physical properties of reinforced concrete structures
Liang et al. Effect of soil resistance on the low strain mobility response of piles using impulse transient response method
JP2008020424A (en) Measurement precision improving method using accelerometer for compact fwd
JP2009162507A (en) Stable state evaluation device, stable state evaluation method, and stable state evaluation program
Alvarez et al. Dynamic pile analysis using CAPWAP and multiple sensors
JP5078952B2 (en) Crack depth measurement method
Kechidi et al. Effective use of ambient vibration measurement for modal updating
Jorna Pile tip deformation caused by obstacles
JP7398175B1 (en) Rapid loading test method for piles using CASE method
EP1235082A1 (en) Method and apparatus to generate shear wave signals and measure seismic parameters in penetrable media
JP2008134070A (en) Inspection method for pile existing under fundamental structure and its measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Ref document number: 4173089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term