JP2005179768A - Heating element cvd system, and film deposition method by heating element cvd method - Google Patents

Heating element cvd system, and film deposition method by heating element cvd method Download PDF

Info

Publication number
JP2005179768A
JP2005179768A JP2004097194A JP2004097194A JP2005179768A JP 2005179768 A JP2005179768 A JP 2005179768A JP 2004097194 A JP2004097194 A JP 2004097194A JP 2004097194 A JP2004097194 A JP 2004097194A JP 2005179768 A JP2005179768 A JP 2005179768A
Authority
JP
Japan
Prior art keywords
heating element
source gas
gas
shielding member
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097194A
Other languages
Japanese (ja)
Other versions
JP4493379B2 (en
Inventor
Akihiko Ikeda
昭彦 池田
Tetsuya Kawakami
哲哉 川上
Tomomi Fukaya
知巳 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004097194A priority Critical patent/JP4493379B2/en
Publication of JP2005179768A publication Critical patent/JP2005179768A/en
Application granted granted Critical
Publication of JP4493379B2 publication Critical patent/JP4493379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition method by a heating element CVD (chemical vapor deposition) method of high performance where, even in the case a plurality of layers are film-deposited, the formation of the layers having desired properties can be performed. <P>SOLUTION: In the heating element CVD system provided with: a vacuum vessel 1 storing a substrate 2; a gas feeding means 7 feeding a gaseous starting material into the vacuum vessel 1; and a plurality of heating elements 4 arranged so as to be contacted with a gaseous starting material fed from the gas feeding means 7, and wherein, the gaseous starting material from the gas feeding means is cracked with heat generated by the heating elements 4, and the cracked gaseous starting material components are deposited on the substrate 2 to perform film deposition, the plurality of heating elements 4 are at least composed of the first heating element 4a for thermally cracking the first gaseous starting material fed from the gas feeding means 7 and the second heating element 4b for thermally cracking the second gaseous starting material fed from the gas feeding means 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原料ガスを発熱体の発する熱で分解することにより、分解成分を堆積させて成膜を行う発熱体CVD装置及び発熱体CVD法による成膜方法に関するものである。   The present invention relates to a heating element CVD apparatus and a film forming method using a heating element CVD method in which a source gas is decomposed by heat generated by a heating element to deposit a decomposition component to form a film.

各種半導体デバイスの成膜には、CVD法が多く用いられている。CVD法にはプラズマCVD法、熱CVD法、発熱体CVD法がある。このうち、発熱体CVD法は原料ガスを発熱体の熱によって分解し、これを基体上に成膜するという成膜方法であり、熱CVD法に比べて成膜中の基体の温度を低くできるため、基体材料の使用範囲を広くすることができる上に、プラズマCVD法のように基体上の膜がプラズマによってダメージを受けることもないことから、種々の基体上に良質の膜を得ることができる成膜方法として注目されている。   The CVD method is often used for film formation of various semiconductor devices. The CVD method includes a plasma CVD method, a thermal CVD method, and a heating element CVD method. Among them, the heating element CVD method is a film forming method in which the source gas is decomposed by the heat of the heating element and formed on the substrate, and the temperature of the substrate during film formation can be lowered as compared with the thermal CVD method. Therefore, the range of use of the substrate material can be widened, and the film on the substrate is not damaged by plasma unlike the plasma CVD method, so that a high-quality film can be obtained on various substrates. It is attracting attention as a possible film forming method.

かかる従来の発熱体CVD装置は、例えば図15に示す如く、基体22及び基体保持手段23を収容する真空容器21と、該真空容器21内に原料ガスを供給するガス供給手段27と、該ガス供給手段27より供給される原料ガスに接触するように真空容器21内に配置された発熱体24と、を備えた構造のものが知られている。   For example, as shown in FIG. 15, the conventional heating element CVD apparatus includes a vacuum vessel 21 that houses a base 22 and a base holding means 23, a gas supply means 27 that supplies a source gas into the vacuum vessel 21, and the gas A structure having a heating element 24 disposed in the vacuum vessel 21 so as to be in contact with the source gas supplied from the supply means 27 is known.

この発熱体CVD装置を用いて、例えば、基体上にa−Si層とa−SiC層とを順次積層させる場合、下記の工程を経て成膜される。   For example, when an a-Si layer and an a-SiC layer are sequentially laminated on a substrate using this heating element CVD apparatus, the film is formed through the following steps.

(1)真空ポンプを用いて真空容器21内を真空状態に保持した状態で、a−Si層を形成するための第1原料ガスを、ガス供給手段27を用いて真空容器21内に供給するとともに、該供給された第1原料ガスを発熱体24に接触させつつ発熱体24を1200℃〜2500℃で加熱し、その熱によって第1原料ガスを分解し、該分解によって生成されたSiを基体22上に堆積させることにより、基体22上にa−Si層を堆積させる。なお、第1原料ガスとしては、例えばSiHが使用され、その希釈ガスとしてHが使用される。また、SiHとHとの混合比はガスタンクの減圧弁やマスフローコントローラーなどを用いて調整される。 (1) Supplying the first source gas for forming the a-Si layer into the vacuum container 21 using the gas supply means 27 in a state where the vacuum container 21 is kept in a vacuum state using the vacuum pump. In addition, the heating element 24 is heated at 1200 ° C. to 2500 ° C. while the supplied first source gas is brought into contact with the heating element 24, the first source gas is decomposed by the heat, and Si generated by the decomposition is changed. By depositing on the substrate 22, an a-Si layer is deposited on the substrate 22. For example, SiH 4 is used as the first source gas, and H 2 is used as the dilution gas. Further, the mixing ratio of SiH 4 and H 2 is adjusted using a pressure reducing valve of a gas tank, a mass flow controller, or the like.

(2)次に、第1原料ガスの供給を一旦中断し、a−SiC層を形成するための第2原料ガスを真空容器21内に供給するための準備をする。第2原料ガスは、SiHとCとが混合されたガスが好適に使用され、また希釈ガスとしてHが使用される。ガスの混合比は、ガスタンクの減圧弁やマスフローコントローラーなどを用いて調整される。 (2) Next, supply of the first source gas is temporarily interrupted, and preparation for supplying the second source gas for forming the a-SiC layer into the vacuum vessel 21 is made. As the second source gas, a gas in which SiH 4 and C 2 H 2 are mixed is preferably used, and H 2 is used as a dilution gas. The gas mixing ratio is adjusted by using a gas tank pressure reducing valve, a mass flow controller, or the like.

(3)最後に、真空ポンプを用いて真空容器21内を真空状態に保持した状態で、上述の第2原料ガスを、ガス供給手段27を用いて真空容器21内に供給するとともに、該供給された第1原料ガスを発熱体24に接触させつつ発熱体24を1200℃〜2500℃で加熱し、その熱によって第2原料ガスを分解し、該分解によって生成されたSiCをa−Si層上に堆積させることにより、a−SiC層を形成する。
特許第3145536号公報
(3) Finally, the above-mentioned second source gas is supplied into the vacuum vessel 21 using the gas supply means 27 while the inside of the vacuum vessel 21 is kept in a vacuum state using a vacuum pump, and the supply The heating element 24 is heated at 1200 ° C. to 2500 ° C. while bringing the generated first source gas into contact with the heating element 24, the second source gas is decomposed by the heat, and SiC generated by the decomposition is converted into an a-Si layer. By depositing on the a-SiC layer.
Japanese Patent No. 3145536

ところで、上述の発熱体CVD法による成膜方法においては、第1原料ガスの分解、並びに、第2原料ガスの分解には同じ発熱体24を用いるのが一般的であった。   By the way, in the film-forming method by the above-mentioned heat generating body CVD method, it was common to use the same heat generating body 24 for decomposition | disassembly of 1st raw material gas and decomposition | disassembly of 2nd raw material gas.

しかしながら、第1原料ガスを分解する際に、第1原料ガスの分解成分は発熱体24の表面に付着することが多いことから、第2原料ガスを分解する際に、第1原料ガスの分解に用いた発熱体24と同じ発熱体24を用いると、発熱体24の表面に付着した第1原料ガスの分解成分が、第2層であるa−SiC層内に取り込まれてしまい、その結果、所望の特性を有したa−SiC層を得ることが困難となる課題があった。   However, when the first source gas is decomposed, the decomposition components of the first source gas often adhere to the surface of the heating element 24. Therefore, when the second source gas is decomposed, the first source gas is decomposed. When the same heating element 24 as the heating element 24 used in the above is used, the decomposition component of the first source gas adhering to the surface of the heating element 24 is taken into the a-SiC layer as the second layer, and as a result. There is a problem that it is difficult to obtain an a-SiC layer having desired characteristics.

このような課題は、発熱体の発熱温度が第1層の形成時よりも第2層の形成時の方が高い場合、第2層の形成時に発熱体24の発する熱によって発熱体表面の付着物が層中に取り込まれやすいため、特に発生しやすい。   Such a problem is that when the heating temperature of the heating element is higher when the second layer is formed than when the first layer is formed, the surface of the heating element is attached by the heat generated by the heating element 24 when the second layer is formed. Since the kimono is easily taken into the layer, it is particularly likely to occur.

本発明は上記課題に鑑み案出されたものであり、その目的は複数の層を成膜する場合であっても、所望する特性を有した層形成が可能な高性能の発熱体CVD装置、並びに、発熱体CVD法による成膜方法を提供することにある。   The present invention has been devised in view of the above problems, and the purpose thereof is a high-performance heating element CVD apparatus capable of forming a layer having desired characteristics even when a plurality of layers are formed, Another object of the present invention is to provide a film forming method using a heating element CVD method.

本発明の発熱体CVD装置は、基体を収容する真空容器と、該真空容器内に原料ガスを供給するガス供給手段と、該ガス供給手段より供給される原料ガスに接触するように配置された複数個の発熱体と、を備え、前記ガス供給手段からの原料ガスを前記発熱体の発する熱によって分解し、該分解された原料ガス成分を基体上に堆積させて成膜を行う発熱体CVD装置において、前記複数個の発熱体は、前記ガス供給手段より供給される第1原料ガスを熱分解するための第1発熱体と、前記ガス供給手段より供給される第2原料ガスを熱分解するための第2発熱体と、から少なくとも成っていることを特徴とする。   The heating element CVD apparatus of the present invention is disposed so as to contact a vacuum vessel that accommodates a substrate, a gas supply unit that supplies a source gas into the vacuum vessel, and a source gas supplied from the gas supply unit. A heating element CVD comprising: a plurality of heating elements, wherein the source gas from the gas supply means is decomposed by the heat generated by the heating element, and the decomposed source gas components are deposited on a substrate to form a film. In the apparatus, the plurality of heating elements thermally decomposes a first heating element for thermally decomposing the first source gas supplied from the gas supply means and a second source gas supplied from the gas supply means. And at least a second heating element.

また本発明の発熱体CVD装置は、上述の発熱体CVD装置において、前記第1原料ガス及び第2原料ガスはいずれか一方ずつ真空容器内に供給されることを特徴とする。   The heating element CVD apparatus of the present invention is characterized in that, in the above-described heating element CVD apparatus, either the first source gas or the second source gas is supplied into the vacuum vessel one by one.

更に本発明の発熱体CVD装置は、上述の発熱体CVD装置において、前記第1発熱体よりも前記第2発熱体の方が、発熱温度が高いことを特徴とする。   Furthermore, the heating element CVD apparatus of the present invention is characterized in that, in the above-described heating element CVD apparatus, the second heating element has a higher heating temperature than the first heating element.

また更に本発明の発熱体CVD装置は、上述の発熱体CVD装置において、前記第1発熱体及び第2発熱体が互いに隣接するように設けられ、該第1発熱体及び第2発熱体間に、両発熱体同士の表面が直接対向しないように遮蔽部材を介在させたことを特徴とする。   Furthermore, the heating element CVD apparatus of the present invention is the heating element CVD apparatus described above, wherein the first heating element and the second heating element are provided adjacent to each other, and the first heating element and the second heating element are disposed between the first heating element and the second heating element. A shielding member is interposed so that the surfaces of the heating elements do not directly face each other.

また本発明の発熱体CVD装置は、前記遮蔽部材が成膜に回転することを特徴とする。   The heating element CVD apparatus of the present invention is characterized in that the shielding member is rotated for film formation.

更に本発明の発熱体CVD装置は、前記遮蔽部材の回転軸が遮蔽部材の長手方向に略平行であることを特徴とする。   Furthermore, the heating element CVD apparatus of the present invention is characterized in that the rotating shaft of the shielding member is substantially parallel to the longitudinal direction of the shielding member.

一方、本発明の発熱体CVD法による成膜方法は、基体及び第1発熱体、第2発熱体を収容する真空容器内に第1原料ガスを供給するとともに、該第1原料ガスを前記第1発熱体の発する熱によって分解し、その分解成分を基体上に堆積させて第1層を形成する第1の工程と、前記第1原料ガスに代わって前記真空容器内に第2原料ガスを供給するとともに、該第2原料ガスを前記第2発熱体の発する熱によって分解し、その分解成分を堆積させて第2層を形成する第2の工程と、を備えたことを特徴とする。   On the other hand, in the film forming method by the heating element CVD method of the present invention, the first source gas is supplied into the vacuum container that accommodates the base body, the first heating element, and the second heating element, and the first source gas is supplied to the first source gas. (1) a first step of decomposing by heat generated by a heating element and depositing the decomposed component on a substrate to form a first layer; and a second source gas in the vacuum vessel in place of the first source gas And a second step of decomposing the second source gas by heat generated by the second heating element and depositing the decomposition component to form a second layer.

また本発明の発熱体CVD法による成膜方法は、上述の成膜方法において、前記第1発熱体よりも前記第2発熱体の方が、発熱温度が高いことを特徴とする。   Further, the film forming method by the heating element CVD method of the present invention is characterized in that, in the above-described film forming method, the second heating element has a higher heat generation temperature than the first heating element.

更に本発明の発熱体CVD法による成膜方法は、上述の成膜方法において、前記第1原料ガスの供給中断後、第2原料ガスの供給開始前の間に、前記第2発熱体を、第1層の構成材料の蒸気圧温度以上、発熱体の構成材料の蒸気圧温度以下で発熱させることを特徴とする。   Furthermore, the film forming method by the heating element CVD method of the present invention is the above-described film forming method, wherein the second heating element is disposed between the interruption of the supply of the first source gas and the start of the supply of the second source gas. Heat generation is performed at a temperature equal to or higher than the vapor pressure temperature of the constituent material of the first layer and equal to or lower than the vapor pressure temperature of the constituent material of the heating element.

また更に本発明の発熱体CVD法による成膜方法は、上述の成膜方法において、前記第1発熱体及び第2発熱体が互いに隣接するように設けられ、該第1発熱体及び第2発熱体間に、両発熱体同士の表面が直接対向しないように遮蔽部材を介在させたことを特徴とする。   Still further, the film forming method by the heating element CVD method of the present invention is the above-described film forming method, wherein the first heating element and the second heating element are provided adjacent to each other, and the first heating element and the second heating element are provided. A shielding member is interposed between the bodies so that the surfaces of the heating elements do not directly face each other.

更にまた本発明の発熱体CVD法による成膜方法は、上述の成膜方法において、前記第1層はa−Si系、第2層はa−SiC系の材料を主成分とすることを特徴とする。   Furthermore, the film forming method by the heating element CVD method of the present invention is characterized in that, in the film forming method described above, the first layer is mainly composed of an a-Si based material and the second layer is composed of an a-SiC based material. And

また本発明の発熱体CVD法による成膜方法は、前記遮蔽部材が成膜中に回転することを特徴とする。   Further, the film forming method by the heating element CVD method of the present invention is characterized in that the shielding member rotates during film formation.

更に本発明の発熱体CVD法による成膜方法は、前記遮蔽部材の回転軸が遮蔽部材の長手方向に略平行であることを特徴とする。   Furthermore, the film forming method by the heating element CVD method of the present invention is characterized in that the rotating shaft of the shielding member is substantially parallel to the longitudinal direction of the shielding member.

本発明によれば、第1原料ガスを分解して第1層を形成し、次いで、第2原料ガスを分解して第2層を形成する場合に、原料ガスを分解するための発熱体を複数個設けるようにしたことから、該発熱体を、第1原料ガスを熱分解するための第1発熱体と、第1原料ガスとは異なる種類の第2原料ガスを熱分解するための第2発熱体に分けることができる。従って、第1原料ガスの分解時に第1発熱体の表面に付着した第1原料ガスの分解成分が、第2原料ガスの分解時に、第2原料ガスを分解して形成される層中に取り込まれることが良好に抑制され、所望の特性を有した層を得ることが容易になる。なお、本発明は前記第1層及び第2層を同一の基体上に順次積層する場合のみならず、それぞれ別の基体上に成膜する場合にも適用可能である。   According to the present invention, when the first source gas is decomposed to form the first layer and then the second source gas is decomposed to form the second layer, the heating element for decomposing the source gas is provided. Since a plurality of heating elements are provided, the heating element includes a first heating element for thermally decomposing the first source gas and a second element for thermally decomposing a second source gas of a different type from the first source gas. It can be divided into two heating elements. Therefore, the decomposition component of the first source gas adhering to the surface of the first heating element when the first source gas is decomposed is taken into the layer formed by decomposing the second source gas when the second source gas is decomposed. It is easy to obtain a layer having desired characteristics. The present invention can be applied not only when the first layer and the second layer are sequentially laminated on the same substrate, but also when the films are formed on different substrates.

また本発明によれば、第1原料ガスの供給中断後、第2原料ガスの供給開始前に、第2発熱体を第1層の構成材料の蒸気圧温度以上、第2発熱体の構成材料の蒸気圧温度以下で発熱させるようにしたことから、第1原料ガスの分解成分が第2発熱体の表面に付着した場合、第2発熱体の熱によって第1原料ガスの分解成分を第2発熱体の表面より良好に取り除くことができる。従って、第2原料ガスの分解時に、第1原料ガスの分解成分が第2層中に取り込まれることが更に抑制される。   Further, according to the present invention, after the supply of the first source gas is interrupted and before the supply of the second source gas is started, the second heating element has a vapor pressure temperature equal to or higher than the vapor pressure temperature of the constituent material of the first layer. When the decomposition component of the first source gas adheres to the surface of the second heating element, the decomposition component of the first source gas is converted into the second by the heat of the second heating element. It can be removed better than the surface of the heating element. Therefore, when the second source gas is decomposed, the decomposition component of the first source gas is further suppressed from being taken into the second layer.

さらに本発明によれば、互いに隣接するように前記第1発熱体及び第2発熱体を設けるとともに、該第1発熱体及び第2発熱体間に、両発熱体同士の表面が直接対向しないように遮蔽部材を介在させたことから、第1原料ガスを分解する際に、第1発熱体の熱によって分解された成分が第2発熱体の表面に付着することが良好に防止され、これによっても第2原料ガスの分解時に第1原料ガスの分解成分が第2層中に取り込まれることをより一層抑制可能である。   Furthermore, according to the present invention, the first heating element and the second heating element are provided so as to be adjacent to each other, and the surfaces of the heating elements are not directly opposed to each other between the first heating element and the second heating element. Since the shielding member is interposed, the component decomposed by the heat of the first heating element is prevented from adhering to the surface of the second heating element when the first source gas is decomposed. In addition, it is possible to further suppress the decomposition component of the first source gas from being taken into the second layer when the second source gas is decomposed.

また更に本発明によれば、第1発熱体と第2発熱体との間に介在される遮蔽部材を、成膜中に回転させることにより、遮蔽部材によって遮蔽されたガスの分解成分が遮蔽部材の表面に均一に付着・堆積することとなり、遮蔽部材と堆積物との密着性を良好とすることができる。従って、遮蔽部材によって遮蔽されたガスの分解成分の堆積物が遮蔽部材より剥離することが抑制され、前記堆積物が成膜中に基体上に付着することが良好に防止される。   Still further, according to the present invention, by rotating the shielding member interposed between the first heating element and the second heating element during film formation, the decomposition component of the gas shielded by the shielding member is prevented. Therefore, the adhesion between the shielding member and the deposit can be improved. Therefore, the deposit of the decomposition component of the gas shielded by the shielding member is suppressed from peeling off from the shielding member, and the deposit is favorably prevented from adhering to the substrate during film formation.

以下、本発明を添付図面に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

(第1実施形態)
図1は第1実施形態にかかる発熱体CVD装置内の側面図、図2は図1の発熱体CVD装置内の上面図であり、同図に示す発熱体CVD装置は、大略的に、基体2を収容する真空容器1と、該真空容器1内に原料ガスを供給するガス供給手段7と、該ガス供給手段7より供給される原料ガスに接触するように配置された発熱体4と、を備えた構造を有している。
(First embodiment)
FIG. 1 is a side view of the heating element CVD apparatus according to the first embodiment, FIG. 2 is a top view of the heating element CVD apparatus of FIG. 1, and the heating element CVD apparatus shown in FIG. 2, a gas supply means 7 for supplying a raw material gas into the vacuum container 1, a heating element 4 disposed so as to contact the raw material gas supplied from the gas supply means 7, It has the structure provided with.

真空容器1は、その内部に基体2や基体支持体3、発熱体4、ガス供給手段7、を収容すべく中空状態に形成されており、基体2の出し入れができるように容器の一部、例えば上蓋が開閉可能に形成される。また真空容器1はガス供給手段7によって導入された原料ガスを排気する際に用いられるガス排気口6を有している。   The vacuum vessel 1 is formed in a hollow state so as to accommodate the base 2, the base support 3, the heating element 4, and the gas supply means 7 therein, and a part of the container is provided so that the base 2 can be taken in and out. For example, the upper lid is formed to be openable and closable. The vacuum vessel 1 also has a gas exhaust port 6 that is used when exhausting the source gas introduced by the gas supply means 7.

真空容器1内に収容される基体2としては、円筒状もしくは平板状のものなど、種々の形状のものが使用可能であり(図1では円筒状)、円筒状基体を用いる場合、その内部に円筒状を成す基体支持体を挿入することで真空容器1内にセットされる。また平板状基体を用いる場合、複数個の基体2を略円筒状あるいは多面体状になるように基体支持体上に配置することで真空容器1内にセットされる。   The base 2 accommodated in the vacuum vessel 1 can be of various shapes such as cylindrical or flat (cylindrical in FIG. 1), and when a cylindrical base is used, It is set in the vacuum vessel 1 by inserting a cylindrical substrate support. When a flat substrate is used, the plurality of substrates 2 are set in the vacuum container 1 by being arranged on the substrate support so as to be substantially cylindrical or polyhedral.

基体2の材質としては、導電性、または絶縁性、あるいは絶縁性基体の表面に導電層を形成したものが使用される。導電性基体としては、例えばアルミニウム(Al)、ステンレススチール(SUS)、鉄(Fe)、ニッケル(Ni)、クロム(Cr)、マンガン(Mn)、銅(Cu)、チタン(Ti)等の金属またはこれらの合金が挙げられる。絶縁性基体としては、ホウ珪酸ガラスやソーダガラス、パイレックスガラス等のガラスやセラミックス、石英、サファイアなどの無機絶縁物、あるいはフッ素樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ビニロン、エポキシ、マイラー等の合成樹脂絶縁物が挙げられる。また絶縁性基体上に導電層を形成する場合、導電層の材料としてはITO(インジウム、錫、酸化物)や酸化錫、酸化鉛、酸化インジウム、ヨウ化銅やAl、Ni、金(Au)等が挙げられ、かかる導電層は従来周知の薄膜形成技術、例えば、真空蒸着法、活性反応蒸着法、イオンプレーティング法、RFスパッタリング法、DCスパッタリング法、RFマグネトロンスパッタリング法、DCマグネトロンスパッタリング法、熱CVD法、プラズマCVD法、スプレー法、塗布法、浸漬法などで形成される。なお、基体2をAlにより円筒状に形成する場合、従来周知の押出加工法を採用することにより製作される。   As the material of the substrate 2, a conductive or insulating material or a material having a conductive layer formed on the surface of an insulating substrate is used. Examples of the conductive substrate include metals such as aluminum (Al), stainless steel (SUS), iron (Fe), nickel (Ni), chromium (Cr), manganese (Mn), copper (Cu), and titanium (Ti). Or these alloys are mentioned. Insulating substrates include borosilicate glass, soda glass, pyrex glass and other inorganic materials such as ceramics, quartz, sapphire, or fluororesin, polycarbonate, polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyamide, vinylon. And synthetic resin insulators such as epoxy and mylar. When a conductive layer is formed on an insulating substrate, the material of the conductive layer is ITO (indium, tin, oxide), tin oxide, lead oxide, indium oxide, copper iodide, Al, Ni, gold (Au) Such a conductive layer may be a conventionally known thin film forming technique such as vacuum deposition, active reaction deposition, ion plating, RF sputtering, DC sputtering, RF magnetron sputtering, DC magnetron sputtering, It is formed by a thermal CVD method, a plasma CVD method, a spray method, a coating method, a dipping method, or the like. In addition, when forming the base | substrate 2 in a cylindrical shape with Al, it manufactures by employ | adopting a conventionally well-known extrusion method.

また上述の基体2を支持する基体支持体3は、円筒状基体を支持する場合には外形が円筒状に形成され、平板状基体を支持する場合には外形が平板状もしくは多角柱状に形成される(図1では円筒状)。この基体支持体3は、成膜時、回転モーター等の動力によって中心軸を中心に基体2と共に回転させることが好ましく、これによって発熱体4によって分解された原料ガスの分解成分を基体表面の全体にわたり被着させることができ、略一様な膜厚分布を得ることができる。なお、基体支持体3の回転速度としては、1rpm〜10rpmが好ましい。基体支持体3は、その端部に設けられる回転モーターなどの回転手段18の動力を利用して回転される。   The substrate support 3 for supporting the substrate 2 is formed in a cylindrical shape when supporting a cylindrical substrate, and is formed in a flat plate shape or a polygonal column shape when supporting a flat substrate. (Cylindrical in FIG. 1). The substrate support 3 is preferably rotated together with the substrate 2 around the central axis by power of a rotary motor or the like during film formation, whereby the decomposition component of the source gas decomposed by the heating element 4 is transferred over the entire surface of the substrate. A substantially uniform film thickness distribution can be obtained. The rotation speed of the substrate support 3 is preferably 1 rpm to 10 rpm. The substrate support 3 is rotated using the power of a rotating means 18 such as a rotary motor provided at the end thereof.

また基体支持体3は、その内部に加熱手段や冷却手段、温度検出手段を有しており、温度検出手段で基体支持体3の温度を検出するとともに、該検出した温度をモニタリングしながら、図示しない温度調節器を用いて加熱手段と冷却手段を制御することによって、基体温度を所望の温度に維持している。なお、成膜中の基体温度はa−Si系、あるいはa−SiC系の材料を堆積させる場合、100〜500℃、好適には200〜350℃の一定温度に制御される。また加熱手段としては、ニクロム線やシーズヒーター、カートリッジヒーターなどの電気的なものや、油などの熱媒体が使用され、冷却手段としては空気や窒素ガス等の気体や水、油などからなる冷却媒体が使用され、これらが基体支持体3の内部を循環するように流動させることが好ましい。温度検出手段としては、サーミスタや熱電対などが用いられる。   The substrate support 3 has heating means, cooling means, and temperature detection means inside thereof, and the temperature detection means detects the temperature of the substrate support 3 and monitors the detected temperature while monitoring the temperature. The substrate temperature is maintained at a desired temperature by controlling the heating means and the cooling means using a temperature controller that does not. Note that the substrate temperature during film formation is controlled to a constant temperature of 100 to 500 ° C., preferably 200 to 350 ° C. when an a-Si or a-SiC material is deposited. As heating means, electrical devices such as nichrome wires, sheathed heaters, cartridge heaters, and heat media such as oil are used. As cooling means, cooling is performed using gas such as air or nitrogen gas, water, oil, or the like. It is preferable that a medium is used and these are made to flow so as to circulate inside the substrate support 3. As the temperature detecting means, a thermistor or a thermocouple is used.

一方、真空容器1の内部には、上述の基体2に対して略平行に配される発熱体4が複数個配設され、これら発熱体4はガス供給手段7から供給される原料ガスに接触するように配設されている。   On the other hand, a plurality of heating elements 4 arranged substantially parallel to the above-described base 2 are disposed inside the vacuum vessel 1, and these heating elements 4 are in contact with the source gas supplied from the gas supply means 7. It is arranged to do.

この発熱体4は、ガス供給手段7から供給される第1原料ガスを熱分解するための第1発熱体4aと、第1原料ガスと異なる第2原料ガスを分解するための第2発熱体4bとで構成されている。   The heating element 4 includes a first heating element 4a for thermally decomposing the first source gas supplied from the gas supply means 7, and a second heating element for decomposing a second source gas different from the first source gas. 4b.

第1発熱体4a及び第2発熱体4bは、各々抵抗材料から成っており、両端に接続される電極5を介して電力が供給されると、ジュール発熱を起こし、対応する原料ガスを分解するのに必要な温度(例えば1200℃〜2500℃)となる。   Each of the first heating element 4a and the second heating element 4b is made of a resistance material, and when power is supplied through the electrodes 5 connected to both ends, Joule heating is generated and the corresponding source gas is decomposed. It becomes temperature required for this (for example, 1200 degreeC-2500 degreeC).

このように、ガス供給手段7によって複数種の原料ガス(第1原料ガスや第2原料ガス)が真空容器内に供給され、各原料ガス毎に熱分解される場合、第1原料ガスを熱分解する発熱体4と、第2原料ガスを熱分解する発熱体4とを分けるようにしたことから、第1原料ガスを分解して第1層を形成する際に第1発熱体の表面に付着した第1原料ガスの分解成分が、第2原料ガスを分解して第2層を形成する際に、該第2層中に取り込まれることが良好に抑制される。従って、所望の特性を有した第2層を得ることが容易になる。   As described above, when a plurality of types of source gases (first source gas and second source gas) are supplied into the vacuum vessel by the gas supply means 7 and thermally decomposed for each source gas, the first source gas is heated. Since the heating element 4 to be decomposed and the heating element 4 to thermally decompose the second source gas are separated, the first source gas is decomposed on the surface of the first heating element when forming the first layer. The decomposition component of the attached first source gas is satisfactorily suppressed from being taken into the second layer when the second source gas is decomposed to form the second layer. Therefore, it becomes easy to obtain the second layer having desired characteristics.

なお、発熱体4の抵抗材料としては、原料ガスと触媒反応あるいは熱分解反応を起こして、その反応生成物を堆積種とし、且つ発熱体自身が昇華や蒸発により堆積される膜中に混入しにくいものが用いられ、例えば、タングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、Ti、ニオブ(Nb)、タンタル(Ta)、コバルト(Co)、Ni,Cr,Mnやそれらの合金などが好適に使用される。発熱体4の抵抗材料は比較的融点が大きいことが好ましく、例えば融点が2600℃〜3400℃の抵抗材料が好ましい。   As the resistance material of the heating element 4, a catalytic reaction or a thermal decomposition reaction with the raw material gas occurs, the reaction product is used as a deposition species, and the heating element itself is mixed in a film deposited by sublimation or evaporation. For example, tungsten (W), platinum (Pt), palladium (Pd), molybdenum (Mo), Ti, niobium (Nb), tantalum (Ta), cobalt (Co), Ni, Cr, Mn And alloys thereof are preferably used. The resistance material of the heating element 4 preferably has a relatively high melting point. For example, a resistance material having a melting point of 2600 ° C. to 3400 ° C. is preferable.

また発熱体4の抵抗材料は、第1発熱体4aと第2発熱体4bとで同じであっても良いし、異なっていても良いが、第1発熱体4aと第2発熱体4bとで発熱温度が異なる場合、発熱温度が高い発熱体は、発熱温度が低い発熱体よりも融点の高い抵抗材料で形成しておくことが好ましい。   The resistance material of the heating element 4 may be the same between the first heating element 4a and the second heating element 4b or may be different, but the first heating element 4a and the second heating element 4b are different. When the heat generation temperatures are different, it is preferable that the heat generating element having a high heat generation temperature is formed of a resistance material having a higher melting point than the heat generation element having a low heat generation temperature.

発熱体4の形状としては、本実施形態のような線状や、あるいは、図3、図4に示すように、円筒状基体2よりもひと周り大きな径を有する筒状が挙げられる。線状に成す場合、上述の電気抵抗材料で製作されたワイヤやフィラメント、リボン等を1本単体で構成したり、複数本を束ねて構成したりすることが考えられる。また筒状を成す場合、上述の抵抗材料で製作されたワイヤやフィラメント、リボン等を格子状、網目状に組み合わせて筒状としたり、筒状板体に円形や三角形、正方形、長方形、菱形、六角形など種々の形状の通気孔をパンチングや電気鋳造法などを用いて多数設けたりしたものなどが考えられる。   Examples of the shape of the heating element 4 include a linear shape as in the present embodiment, or a cylindrical shape having a diameter larger than that of the cylindrical substrate 2 as shown in FIGS. 3 and 4. In the case of forming in a linear shape, it is conceivable to form a single wire, filament, ribbon, or the like made of the above-described electrical resistance material, or to bundle a plurality of wires. Also, when forming a cylindrical shape, the wire, filament, ribbon, etc. made of the above-described resistance material are combined in a lattice shape or a mesh shape to form a cylindrical shape, or a cylindrical plate with a circular shape, a triangular shape, a square shape, a rectangular shape, a rhombus shape, It can be considered that a large number of hexagonal ventilation holes are provided by punching or electroforming.

発熱体4の配設位置は、発熱体4の発熱によって生成された堆積種(分解成分)を基体に向けて効率的に輸送するため、あるいは、発熱体4からの輻射熱による基体や膜への損傷を防止するため、基体2に対して3〜100mm、好適には5〜50mm、更に好適には10〜40mmの間隔を空けた箇所に設定される。また発熱体4が筒状を成す場合、基体2と発熱体4が略等しい距離の間隔を空けるように両者の中心軸が略一致するように配置される。   The heating element 4 is disposed in order to efficiently transport the deposition species (decomposition component) generated by the heat generation of the heating element 4 toward the substrate, or to the substrate or film by the radiant heat from the heating element 4. In order to prevent damage, the base 2 is set at a position 3 to 100 mm, preferably 5 to 50 mm, more preferably 10 to 40 mm apart. Further, when the heating element 4 has a cylindrical shape, the base 2 and the heating element 4 are arranged so that their central axes substantially coincide with each other so as to have a substantially equal distance.

また発熱体4の両端には電極5が接続されている。この電極5は、外部からの電源電力を発熱体4に供給するための給電配線として機能するものであり、例えばAlやCu、Au、Agなどの金属材料により形成される。このような電極5と発熱体4との電気的接続は、例えば、両者を、圧着端子を介して接続することが考えられる。   Electrodes 5 are connected to both ends of the heating element 4. The electrode 5 functions as a power supply wiring for supplying power from the outside to the heating element 4 and is made of a metal material such as Al, Cu, Au, or Ag. As for the electrical connection between the electrode 5 and the heating element 4, for example, it is conceivable to connect the two via a crimp terminal.

一方、原料ガスを真空容器1内に供給するガス供給手段7は、供給される第1原料ガス、あるいは第2原料ガスが発熱体4の表面に接触するように配置されており、例えば、発熱体4が基体2とガス供給手段7との間に位置するように配置される。   On the other hand, the gas supply means 7 for supplying the raw material gas into the vacuum vessel 1 is arranged so that the supplied first raw material gas or the second raw material gas contacts the surface of the heating element 4. It arrange | positions so that the body 4 may be located between the base | substrate 2 and the gas supply means 7. FIG.

ガス供給手段7は、中空構造を有する筐体に多数のガス吹き出し孔8を形成した構造を有しており、その一部が図示しないガス導入管を介して複数のガスタンクに接続されている。これらのガスタンクにはSiHやH、Cなど各種のガスが貯蔵されており、これらのガスタンクの減圧弁やマスフローコントローラーなどを用いることでガス供給手段7に導入されるガス成分が調整される。そして、ガス供給手段7に導入された原料ガスは、ガス吹き出し孔8を介して真空容器1内に供給され、該供給された原料ガスが発熱体4に接触する。原料ガスの発熱体4に対する接触を容易にするためには、ガス吹き出し孔8は筐体の発熱体側表面に設けることが好ましい。なお、ガス吹き出し孔8の形状としては、円形や三角形、正方形、長方形、菱形、六角形、スリット形状など、種々の形状が考えられる。 The gas supply means 7 has a structure in which a large number of gas blowing holes 8 are formed in a casing having a hollow structure, and a part of the gas supply means 7 is connected to a plurality of gas tanks via a gas introduction pipe (not shown). Various gases such as SiH 4 , H 2 , and C 2 H 2 are stored in these gas tanks, and the gas components introduced into the gas supply means 7 by using a pressure reducing valve or a mass flow controller of these gas tanks are stored. Adjusted. Then, the source gas introduced into the gas supply means 7 is supplied into the vacuum container 1 through the gas blowing holes 8, and the supplied source gas contacts the heating element 4. In order to facilitate the contact of the source gas with the heating element 4, the gas blowing holes 8 are preferably provided on the surface of the casing on the heating element side. As the shape of the gas blowing hole 8, various shapes such as a circle, a triangle, a square, a rectangle, a rhombus, a hexagon, and a slit shape can be considered.

ガス供給手段7の筐体は、筒状や線状(長尺状)など種々の形状が考えられ、真空容器1と別体としても良いし、少なくとも一部一体化させても良いが、一体化させた方が装置の部品点数を少なくすることができるため、発熱体CVD装置の構成を簡素化できる点でメリットがある。ガス供給手段7の筐体と真空容器1とを別体化する場合、真空容器1の内壁と、該内壁よりも内側に内周面を設け、該内周面と内壁とで筐体を構成するようにしても良いし、ガス供給手段7の筐体を真空容器1の内壁に嵌め合わせるようにしても良く、前者の例として図4のガス供給手段7が考えられる。なお、ガス供給手段7を線状(長尺状)とする場合、例として図1のガス供給手段7が考えられ、この場合、原料ガスを効率的に発熱体4に接触させるため、発熱体4を線状にすることが好ましい。   The casing of the gas supply means 7 may have various shapes such as a cylindrical shape or a linear shape (long shape), and may be separated from the vacuum vessel 1 or may be at least partially integrated. Since the number of parts of the apparatus can be reduced, there is an advantage in that the configuration of the heating element CVD apparatus can be simplified. When the casing of the gas supply means 7 and the vacuum container 1 are separated, an inner peripheral surface is provided on the inner wall of the vacuum container 1 and the inner wall, and the inner peripheral surface and the inner wall constitute the casing. Alternatively, the housing of the gas supply means 7 may be fitted to the inner wall of the vacuum vessel 1, and the gas supply means 7 of FIG. 4 can be considered as the former example. When the gas supply means 7 is linear (elongate), the gas supply means 7 in FIG. 1 is considered as an example. In this case, in order to efficiently bring the source gas into contact with the heating element 4, the heating element 4 is preferably linear.

このようなガス供給手段7より供給される原料ガスは、成膜対象が電子写真用感光体に使用されるa−Si系の膜である場合、SiとHとからなる化合物やシリコンと水素以外のハロゲン元素とからなる化合物、例えば、SiH、Si、Si、SiF、SiCl、SiCl等が用いられ、これらの原料ガスが本実施形態における第1原料ガスとなる。 The source gas supplied from such a gas supply means 7 is a compound composed of Si and H or a compound other than silicon and hydrogen when the film formation target is an a-Si film used for an electrophotographic photoreceptor. A compound comprising a halogen element, for example, SiH 4 , Si 2 H 6 , Si 3 H 8 , SiF 4 , SiCl 4 , SiCl 2 H 2, etc. is used, and these source gases are the first source material in the present embodiment. It becomes gas.

また第1原料ガスとともに供給される希釈用ガスとしては、H、N、He、Ar、Ne、Xe等が用いられる。原料ガスとともに供給される価電子制御ガス(膜中の価電子数を制御するガス)には、P型不純物として元素周期律表第III族Bの元素(B,Al,Gaなど)を含む化合物、例えばB.B(CH、Al(CH,Al(C、Ga(CHなどが用いられる。N型不純物としては元素周期律表第V族Bの元素(P,As,Sbなど)を含む化合物、例えばPH、P、AsH、SbHなどが用いられる。またバンドギャップ調整用ガスとしては、バンドギャップを拡大する元素であるC、N、Oを含む化合物、例えばCH、C、C、N、NH、NO、NO、NO、O、CO、CO等やバンドギャップを狭める元素であるGe,Snを含む化合物、例えばGeH、SnH、Sn(CH等が用いられる。 As the diluent gas supplied together with the first source gas, H 2, N 2, He , Ar, Ne, Xe or the like is used. The valence electron control gas (gas for controlling the number of valence electrons in the film) supplied together with the source gas includes a compound containing group B elements (B, Al, Ga, etc.) of the periodic table of elements as P-type impurities. For example, B 2 H 6 . B (CH 3 ) 3 , Al (CH 3 ) 3 , Al (C 2 H 5 ) 3 , Ga (CH 3 ) 3 and the like are used. As the N-type impurity, a compound containing a group V element (P, As, Sb, etc.) of the periodic table of elements such as PH 3 , P 2 H 4 , AsH 3 , SbH 3 or the like is used. As the band gap adjusting gas, a compound containing C, N, or O, which is an element that expands the band gap, for example, CH 4 , C 2 H 2 , C 3 H 8 , N 2 , NH 3 , NO, N 2 O, NO 2 , O 2 , CO, CO 2 and the like, and compounds containing Ge and Sn, which are elements that narrow the band gap, such as GeH 4 , SnH 4 , Sn (CH 3 ) 3, and the like are used.

また成膜対象が電子写真用感光体に使用されるa−SiC系の膜である場合、原料ガスとしてはa−Si系の膜を形成するのと同様のガスに加え、CH、C、C、CO、COなど、Cを含んだ化合物が使用され、これらの化合物を含んだ原料ガスが本実施形態における第2原料ガスとなる。 When the film formation target is an a-SiC film used for an electrophotographic photoreceptor, the raw material gas is CH 4 , C 2 in addition to the same gas as that used to form the a-Si film. A compound containing C, such as H 2 , C 3 H 8 , CO, CO 2 , is used, and the source gas containing these compounds is the second source gas in the present embodiment.

第2原料ガスとともに供給される希釈ガスとしては、a−Si系の膜と同様のガスが用いられる。またバンドギャップ調整用ガスとしては、バンドギャップを拡大する元素であるC、N、Oを含む化合物、例えばCH、C、C、N、NH、NO、NO、NO、O、CO、CO等が用いられる。 As the dilution gas supplied together with the second source gas, the same gas as that of the a-Si film is used. As the band gap adjusting gas, a compound containing C, N, or O, which is an element that expands the band gap, for example, CH 4 , C 2 H 2 , C 3 H 8 , N 2 , NH 3 , NO, N 2 O, NO 2 , O 2 , CO, CO 2 or the like is used.

なお、上述した原料ガスや価電子制御ガス、バンドギャップ調整用ガスの流量やこれらのガスの混合比は、減圧弁やマスフローコントローラー等を用いることにより所望の値に調整される。また成膜時のガス圧力は、供給された原料ガスが発熱体の熱によって効率的に分解されるとともに、反応生成物同士の2次反応を抑制するために、0.1〜300Pa,好適には2〜6Paに設定される。なお、良質の膜を得る為には、成膜開始に先立って、基体2がセットされた真空容器1内を一旦1×10−2Pa程度まで高真空に排気することで真空容器1内の水分や残留ガスを除去しておくことが好ましい。 Note that the flow rates of the source gas, the valence control gas, the band gap adjusting gas, and the mixing ratio of these gases are adjusted to desired values by using a pressure reducing valve, a mass flow controller, or the like. The gas pressure during film formation is preferably 0.1 to 300 Pa in order to efficiently decompose the supplied source gas by the heat of the heating element and to suppress the secondary reaction between the reaction products. Is set to 2-6 Pa. In order to obtain a high-quality film, prior to the start of film formation, the inside of the vacuum container 1 in which the substrate 2 is set is evacuated to a high vacuum of about 1 × 10 −2 Pa. It is preferable to remove moisture and residual gas.

かくして上述の発熱体CVD装置は、ガス供給手段7から真空容器1内に供給される原料ガスを発熱体4に接触させつつ発熱体4を発熱させるとともに、その熱によって原料ガスを分解し、該分解された原料ガス成分を基体2上に堆積させることによって成膜を行うことにより発熱体CVD装置として機能する。   Thus, the heating element CVD apparatus described above causes the heating element 4 to generate heat while bringing the source gas supplied from the gas supply means 7 into the vacuum vessel 1 into contact with the heating element 4, and decomposes the source gas by the heat, It functions as a heating element CVD apparatus by forming a film by depositing the decomposed source gas component on the substrate 2.

次に、第1実施形態における発熱体CVD法による成膜方法を、上述の発熱体CVD装置を用いて円筒状基体上に第1層であるa−Si層及び第2層であるa−SiC層を順次積層する場合を例に説明する。   Next, the film forming method by the heating element CVD method in the first embodiment is applied to the a-Si layer as the first layer and the a-SiC as the second layer on the cylindrical substrate using the heating element CVD apparatus described above. A case where layers are sequentially stacked will be described as an example.

工程(1):真空ポンプを用いてガス排気口6から真空容器1内のガスを排気して真空容器1内を真空状態に保持した状態で、a−Si層を形成するための第1原料ガスや希釈ガス等を、ガス供給手段7を用いて真空容器1内に供給するとともに、該供給された第1原料ガスを第1発熱体4aに接触させつつ第1発熱体4aを高温で加熱し、その熱によって第1原料ガスを分解し、該分解によって生成されたSiを基体2上に堆積させることにより、基体2上にa−Si層を堆積させる。   Step (1): A first raw material for forming an a-Si layer in a state where the gas in the vacuum vessel 1 is exhausted from the gas exhaust port 6 using a vacuum pump and the vacuum vessel 1 is kept in a vacuum state. Gas, dilution gas, etc. are supplied into the vacuum vessel 1 using the gas supply means 7, and the first heating element 4a is heated at a high temperature while the supplied first source gas is brought into contact with the first heating element 4a. Then, the first source gas is decomposed by the heat, and Si generated by the decomposition is deposited on the substrate 2, thereby depositing an a-Si layer on the substrate 2.

第1原料ガスとしては例えばSiHが、希釈ガスとしてはHが用いられる。また、SiHとHとの混合比は、上述した如く、ガスタンクの減圧弁やマスフローコントローラーなどを用いて調整される。また価電子制御ガスやバンドギャップ調整ガスなどを混入しても良い。 For example, SiH 4 is used as the first source gas, and H 2 is used as the dilution gas. Moreover, the mixing ratio of SiH 4 and H 2 is adjusted using a pressure reducing valve of a gas tank, a mass flow controller, or the like as described above. Further, a valence electron control gas, a band gap adjusting gas, or the like may be mixed.

また第1発熱体4aの発熱温度としては、1200℃〜2500℃の範囲に設定することが好ましい。   Further, the heating temperature of the first heating element 4a is preferably set in the range of 1200 ° C to 2500 ° C.

工程(2):次に、第1原料ガスなどの供給を一旦中断し、a−SiC層を形成するための第2原料ガスや希釈ガスなどを真空容器1内に供給するための準備をする。   Step (2): Next, supply of the first source gas and the like is temporarily interrupted, and preparation for supplying the second source gas, dilution gas, and the like for forming the a-SiC layer into the vacuum vessel 1 is made. .

第2原料ガスは、SiHとCとを所定の混合比で混合したものが使用される。また希釈ガスとしてはHが使用される。これらに上述の価電子制御ガスやバンドギャップ調整ガスを所定量混合しても良い。またガスの混合比は、第1原料ガスと同様にガスタンクの減圧弁やマスフローコントローラーなどを用いて調整される。 As the second source gas, a mixture of SiH 4 and C 2 H 2 at a predetermined mixing ratio is used. The H 2 is used as a diluent gas. These may be mixed with a predetermined amount of the above-described valence electron control gas or band gap adjusting gas. Further, the gas mixing ratio is adjusted using a pressure reducing valve of a gas tank, a mass flow controller, or the like in the same manner as the first source gas.

工程(3):最後に、真空ポンプを用いて真空容器1内を真空状態に保持した状態で、上述の第2原料ガスや希釈ガスなどを、ガス供給手段7を用いて真空容器1内に供給するとともに、該供給された第2原料ガスを第2発熱体4bに接触させつつ第2発熱体4bを加熱し、その熱によって第2原料ガスを分解し、その分解成分であるSiCをa−Si層上に堆積させることにより、a−SiC層を形成する。   Step (3): Finally, the above-mentioned second source gas, dilution gas, and the like are introduced into the vacuum container 1 using the gas supply means 7 while the vacuum container 1 is kept in a vacuum state using a vacuum pump. While supplying, the 2nd heating element 4b is heated, making the supplied 2nd source gas contact the 2nd heating element 4b, the 2nd source gas is decomposed by the heat, and SiC which is the decomposition component is changed to a An a-SiC layer is formed by depositing on the -Si layer.

このように、第1層であるa−Si層と、第2層であるa−SiC層とを異なる発熱体4a、4bを用いてそれぞれ成膜するようにしたことから、第1原料ガスの分解時に第1発熱体4aの表面に付着したとしても、第2原料ガスの分解時に第1発熱体4aを発熱させる必要がなくなり、第1原料ガスの分解成分が第2原料ガスの分解時にa−SiC層中に取り込まれることが良好に抑制される。従って、所望の特性を有した層を得ることが容易になる。   As described above, the a-Si layer as the first layer and the a-SiC layer as the second layer are formed using different heating elements 4a and 4b, respectively. Even if it adheres to the surface of the first heating element 4a at the time of decomposition, it is not necessary to generate heat at the time of decomposition of the second raw material gas, and the decomposition component of the first raw material gas becomes a at the time of decomposition of the second raw material gas. -Incorporation into the SiC layer is well suppressed. Therefore, it becomes easy to obtain a layer having desired characteristics.

(第2実施形態)
本発明の第2の実施形態について図5および図6を用いて詳細に説明する。図5は本発明の第2実施形態にかかる発熱体CVD装置内の側面図、図6は図5の発熱体CVD装置内の上面図である。なお、第1実施形態と同様の構成については同一の参照符を付している。
(Second Embodiment)
A second embodiment of the present invention will be described in detail with reference to FIGS. FIG. 5 is a side view of the inside of the heating element CVD apparatus according to the second embodiment of the present invention, and FIG. 6 is a top view of the inside of the heating element CVD apparatus of FIG. Note that components similar to those in the first embodiment are given the same reference numerals.

本実施形態が第1実施形態と異なる点は、第1発熱体4a及び第2発熱体4bの表面が対向するように設けられている場合、図5,6に示すように、第1発熱体及び第2発熱体間に両発熱体同士の表面が直接対向しないように遮蔽部材9を介在させたことである。   This embodiment is different from the first embodiment in that when the surfaces of the first heating element 4a and the second heating element 4b are provided to face each other, as shown in FIGS. In addition, the shielding member 9 is interposed between the second heating elements so that the surfaces of the heating elements do not directly face each other.

この場合、第1原料ガスを分解する際に、第1発熱体4aの熱によって分解された成分が第2発熱体4bの表面に付着することが良好に防止され、第2原料ガスの分解時に、第1原料ガスの分解成分が第2層中に取り込まれることが更に抑制される。   In this case, when the first source gas is decomposed, it is possible to prevent the components decomposed by the heat of the first heating element 4a from adhering to the surface of the second heating element 4b. Further, the decomposition component of the first source gas is further suppressed from being taken into the second layer.

遮蔽部材9としては、第1発熱体4aや第2発熱体4bからの輻射熱に耐えうる材料であれば、金属材料、無機絶縁材料、有機絶縁材料等、種々の材料を広範囲に選択することができる。例えば、金属材料としては、アルミニウム(Al)、ステンレススチール(SUS)、鉄(Fe)、ニッケル(Ni)、クロム(Cr)、マンガン(Mn)、銅(Cu)、チタン(Ti)等が挙げられる。無機絶縁材料としては、ホウ珪酸ガラス、ソーダガラス、パイレックスガラス等のガラスや、アルミナ、ジルコニア等のセラミックス、石英、サファイア等が挙げられる。有機絶縁材料としては、フッ素樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ビニロン、エポキシ、マイラー等が挙げられる。   As the shielding member 9, various materials such as a metal material, an inorganic insulating material, and an organic insulating material can be selected over a wide range as long as the material can withstand radiant heat from the first heating element 4 a and the second heating element 4 b. it can. For example, examples of the metal material include aluminum (Al), stainless steel (SUS), iron (Fe), nickel (Ni), chromium (Cr), manganese (Mn), copper (Cu), titanium (Ti), and the like. It is done. Examples of the inorganic insulating material include glass such as borosilicate glass, soda glass, and Pyrex glass, ceramics such as alumina and zirconia, quartz, and sapphire. Examples of the organic insulating material include fluororesin, polycarbonate, polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyamide, vinylon, epoxy, mylar, and the like.

この遮蔽部材9の形状は、円柱状、多角柱状、平面状など種々の形状が考えられるが、発熱体4の形状に応じて適した形状にすることが好ましい。例えば、本実施形態においては発熱体4が線状であるため、遮蔽部材9も円柱状、多角柱状などの線状に形成することが好ましいが、例えば図3や図4に示すように発熱体4が円筒状である場合、遮蔽部材9を図7,8に示すように円筒状に成すことが好ましい。なお、遮蔽部材9を円筒状に成す場合、遮蔽部材9によってガスが第2発熱体4bや基体2に接触しなくなるのを防止すると同時に、第1発熱体4a及び第2発熱体4bの表面同士の対向を防止するため、第1発熱体4aに設けられた通気孔の位置に対応するように遮蔽部材9に通気孔を設ける。   Various shapes such as a cylindrical shape, a polygonal column shape, and a planar shape are conceivable as the shape of the shielding member 9, but it is preferable to make the shape suitable for the shape of the heating element 4. For example, in the present embodiment, since the heating element 4 is linear, it is preferable that the shielding member 9 is also formed in a linear shape such as a cylindrical shape or a polygonal column shape. For example, as shown in FIGS. When 4 is cylindrical, it is preferable to make the shielding member 9 cylindrical as shown in FIGS. When the shielding member 9 is formed in a cylindrical shape, the shielding member 9 prevents the gas from coming into contact with the second heating element 4b and the base 2 and at the same time, the surfaces of the first heating element 4a and the second heating element 4b In order to prevent this, the shielding member 9 is provided with a vent so as to correspond to the position of the vent provided in the first heating element 4a.

また遮蔽部材9の形状は、発熱体4の熱を良好に遮断するため、第1発熱体4aや第2発熱体4bよりも一回り大きな形状、すなわち、発熱体4よりも幅広で、且つ長いものが好ましい。   Further, the shape of the shielding member 9 is slightly larger than the first heating element 4a and the second heating element 4b, that is, wider and longer than the heating element 4 in order to effectively block the heat of the heating element 4. Those are preferred.

遮蔽部材9の配設位置は、先に述べたように、第1発熱体4aと第2発熱体4bの間に配設されるが、基体2への成膜の妨げにならないようにすべく、発熱体4と基体2との間に遮蔽部材9が介在されないようにすることが好ましい。   As described above, the shielding member 9 is disposed between the first heating element 4a and the second heating element 4b, but should not interfere with film formation on the substrate 2. It is preferable that the shielding member 9 is not interposed between the heating element 4 and the base 2.

尚、遮蔽部材9は、金属材料から成る場合、従来周知の引抜き法、あるいは押出し法により所定形状に製作される。またセラミックスから成る場合、アルミナやジルコニアなどのセラミック原料にYなどの焼結助剤を所定量添加・混合し、中和共沈または加水分解などの方法により反応・固溶させ、しかる後、得られた原料を押出成形やプレス成形、射出成形などにより所定形状に成形し、しかる後、これを高温で焼成することにより形成される。 When the shielding member 9 is made of a metal material, the shielding member 9 is manufactured in a predetermined shape by a conventionally known drawing method or extrusion method. In the case of ceramics, a predetermined amount of a sintering aid such as Y 2 O 3 is added to and mixed with ceramic raw materials such as alumina and zirconia, and reacted and dissolved by a method such as neutralization coprecipitation or hydrolysis. Thereafter, the obtained raw material is formed into a predetermined shape by extrusion molding, press molding, injection molding, or the like, and then fired at a high temperature.

第2の実施形態における発熱体CVD法を用いた成膜方法は、基本的に第1実施形態における成膜方法と同様である。   The film forming method using the heating element CVD method in the second embodiment is basically the same as the film forming method in the first embodiment.

(第3実施形態)
本発明の第3の実施形態について図9及び図10を用いて詳細に説明する。図9は本発明の第3実施形態にかかる発熱体CVD装置内の側面図、図10は図9の発熱体CVD装置内の上面図である。なお、第2実施形態と同様の構成については同一の参照符を付している。
(Third embodiment)
A third embodiment of the present invention will be described in detail with reference to FIGS. 9 is a side view of the inside of the heating element CVD apparatus according to the third embodiment of the present invention, and FIG. 10 is a top view of the inside of the heating element CVD apparatus of FIG. Note that components similar to those in the second embodiment are given the same reference numerals.

本実施形態が第2実施形態と異なる点は、遮蔽部材9を、成膜中に所定の回転軸を中心に回転させるようにしたことである。   This embodiment is different from the second embodiment in that the shielding member 9 is rotated around a predetermined rotation axis during film formation.

このため、遮蔽部材9によって遮蔽されたガスの分解成分が遮蔽部材9の表面に均一に付着・堆積することとなり、遮蔽部材9と堆積物との密着性を良好とすることができる。従って、遮蔽部材9によって遮蔽されたガスの分解成分の堆積物が遮蔽部材9より剥離することが抑制され、前記堆積物が成膜中に基体2上に付着することが良好に防止される。遮蔽部材9の回転軸は、その長手方向に略平行とすることが好ましい。また、遮蔽部材9が図9に示すように線状である場合、その長手方向に略平行で、且つ遮蔽部材9を通過する軸を中心に回転させることが好ましい。また遮蔽部材9が図7や図8に示すような円筒状である場合、その円筒の中心軸を回転軸として遮蔽部材9を回転させることが好ましい。遮蔽部材9の回転速度は1rpm〜10rpmに設定することが好ましい。   For this reason, the decomposition component of the gas shielded by the shielding member 9 is uniformly adhered and deposited on the surface of the shielding member 9, and the adhesion between the shielding member 9 and the deposit can be improved. Therefore, the deposit of the decomposition component of the gas shielded by the shielding member 9 is suppressed from peeling off from the shielding member 9, and the deposit is favorably prevented from adhering to the substrate 2 during film formation. The rotation axis of the shielding member 9 is preferably substantially parallel to the longitudinal direction. Moreover, when the shielding member 9 is linear as shown in FIG. 9, it is preferable that the shielding member 9 is rotated about an axis that is substantially parallel to the longitudinal direction and passes through the shielding member 9. When the shielding member 9 has a cylindrical shape as shown in FIGS. 7 and 8, it is preferable to rotate the shielding member 9 with the central axis of the cylinder as a rotation axis. The rotation speed of the shielding member 9 is preferably set to 1 rpm to 10 rpm.

遮蔽部材9の回転は、その端部に別途、回転モーター等の回転手段19を設け、該回転手段19の動力を利用して行ってもよいし(図9参照)、あるいは、基体支持体3を回転させる回転手段18の動力をギアなどによって遮蔽部材9に伝達させて行っても良い。   The rotation of the shielding member 9 may be performed by separately providing a rotating means 19 such as a rotary motor at its end and using the power of the rotating means 19 (see FIG. 9), or the substrate support 3 The power of the rotating means 18 that rotates the power may be transmitted to the shielding member 9 by a gear or the like.

また遮蔽部材9の回転方向は、基体2の回転方向と反対にしても良いし、一致させても良い。   Further, the rotation direction of the shielding member 9 may be opposite to or coincident with the rotation direction of the base 2.

第3実施形態における発熱体CVD法による成膜方法は、遮蔽部材9を成膜中に回転させる点以外は第1実施形態における成膜方法と基本的に同様であるが、遮蔽部材9は成膜中、連続的に回転させても良いし、間欠的に回転させても良い。また遮蔽部材9は成膜中以外においても回転させるようにしても良い。   The film forming method by the heating element CVD method in the third embodiment is basically the same as the film forming method in the first embodiment except that the shielding member 9 is rotated during film formation. The film may be rotated continuously or intermittently. Further, the shielding member 9 may be rotated even during film formation.

なお、本発明の要旨を逸脱しない範囲内において種々の変更・改良が可能である。例えば上述の第1〜第3実施形態においては、a−Si層とa−SiC層とを順次積層する場合について説明したが、少しでも異なる組成を有する複数の層を成膜する場合であれば、あらゆる場合に適用可能であることはいうまでもない。   Various changes and improvements can be made without departing from the scope of the present invention. For example, in the first to third embodiments described above, the case where the a-Si layer and the a-SiC layer are sequentially stacked has been described. However, if a plurality of layers having slightly different compositions are formed, Needless to say, it is applicable to all cases.

また上述の第1〜第3実施形態においては、発熱体4を2個設けるようにしたが、3個以上であっても適用可能であるし、これらの発熱体4を3グループ以上(すなわち第3発熱体、第4発熱体を設ける)に分けるようにしても良い。また各グループ毎の発熱体4(例えば第1発熱体4aや第2発熱体4b)が複数本ずつあっても構わない。   In the first to third embodiments described above, two heating elements 4 are provided. However, three or more heating elements 4 can be applied, and three or more heating elements 4 (that is, the first heating element 4) can be applied. 3 heating elements and a fourth heating element may be provided). Further, there may be a plurality of heating elements 4 (for example, the first heating element 4a and the second heating element 4b) for each group.

更に上述の第1〜第3実施形態においては、主として基体支持体3、基体2ともに円筒状の場合について説明したが、基体支持体3、基体2ともに平板状の場合にも適用可能であり、この場合、例えば、図11のように発熱体CVD装置を構成する。かかる装置においては、複数個の発熱体4を、例えば紙面と垂直な方向に配列する。   Furthermore, in the first to third embodiments described above, the case where both the base support 3 and the base 2 are cylindrical has been described. However, the present invention can also be applied to the case where the base support 3 and the base 2 are both flat. In this case, for example, a heating element CVD apparatus is configured as shown in FIG. In such an apparatus, the plurality of heating elements 4 are arranged, for example, in a direction perpendicular to the paper surface.

また更に上述の第1〜第3実施形態においては、第1層及び第2層を単一の基体2に積層する場合について説明したが、第1層と第2層とを異なる基体上に成膜する場合についても適用可能である。例えば、第1層を第1発熱体4aの熱を利用して基体上に形成した後、該基体を別の基体に入れ替え、該入れ替えられた基体上に第2層を第2発熱体4bの熱を利用して形成するようにしても良く、この場合であっても、第2層の形成時に、第1原料ガスの分解成分が第2層中に取り込まれることが良好に抑制される。   Further, in the first to third embodiments described above, the case where the first layer and the second layer are laminated on the single substrate 2 has been described. However, the first layer and the second layer are formed on different substrates. The present invention can also be applied to the case of film formation. For example, after the first layer is formed on the substrate using the heat of the first heating element 4a, the substrate is replaced with another substrate, and the second layer is formed on the replaced substrate by the second heating element 4b. It may be formed using heat. Even in this case, the decomposition of the first source gas into the second layer is well suppressed during the formation of the second layer.

更にまた上述の第1〜第3実施形態の工程(2)において、第1原料ガスの供給中断から第2原料ガスの供給開始までの間に、第2発熱体4bを高温で発熱させるようにしても良い。この場合、第1原料ガスを分解する際に、第1発熱体4aの熱によって分解された成分が第2発熱体4bの表面に付着したとしても、第1原料ガスの分解成分が蒸発して外部へ排気されるため、第1原料ガスの残留成分を第2発熱体4bの表面より良好に取り除くことができ、第2層の成膜中に第1原料ガスの分解成分が第2層中に取り込まれることがより一層抑制される。なお、第2発熱体4bの熱によって蒸発させた第1原料ガスの分解成分は、真空ポンプの吸引により真空容器内に設けられたガス排気口6から排気される。   Furthermore, in step (2) of the first to third embodiments described above, the second heating element 4b generates heat at a high temperature between the supply interruption of the first source gas and the start of supply of the second source gas. May be. In this case, even when the component decomposed by the heat of the first heating element 4a adheres to the surface of the second heating element 4b when the first source gas is decomposed, the decomposition component of the first source gas evaporates. Since it is exhausted to the outside, the residual component of the first source gas can be removed better than the surface of the second heating element 4b, and the decomposition component of the first source gas is in the second layer during the formation of the second layer. It is further suppressed that it is taken in. The decomposition component of the first source gas evaporated by the heat of the second heating element 4b is exhausted from the gas exhaust port 6 provided in the vacuum container by suction of a vacuum pump.

第1原料ガスの供給中断から第2原料ガスの供給開始までの間における第2発熱体4bの発熱温度は、第2発熱体4bの表面に付着した第1原料ガスの分解成分を良好に取り除くために、第1層の構成材料の蒸気圧温度以上とすることが好ましい。また発熱によって第2発熱体4bが急激に劣化することを防止すべく、発熱温度を第2発熱体4bの蒸気圧温度以下とすることが好ましい。例えば、本実施形態の場合、第1層の構成材料がSiであるので、第2発熱体4bの発熱温度の下限値はSiの蒸気圧温度以上、すなわち、1300℃以上に設定することが好ましい。また第2発熱体4bがタンタルからなる場合、第2発熱体4bの発熱温度の上限値は、タンタルの蒸気圧温度以下、すなわち、3250℃以下に設定することが好ましい。   The heating temperature of the second heating element 4b during the period from the interruption of the supply of the first source gas to the start of the supply of the second source gas favorably removes the decomposition component of the first source gas adhering to the surface of the second heating element 4b. Therefore, the vapor pressure temperature of the constituent material of the first layer is preferably set to be equal to or higher. In order to prevent the second heating element 4b from rapidly deteriorating due to heat generation, it is preferable to set the heating temperature to be equal to or lower than the vapor pressure temperature of the second heating element 4b. For example, in the case of the present embodiment, since the constituent material of the first layer is Si, the lower limit value of the heat generation temperature of the second heating element 4b is preferably set to the vapor pressure temperature of Si or higher, that is, 1300 ° C. or higher. . When the second heating element 4b is made of tantalum, the upper limit value of the heating temperature of the second heating element 4b is preferably set to be equal to or lower than the vapor pressure temperature of tantalum, that is, 3250 ° C. or lower.

また第1原料ガスの供給中断から第2原料ガスの供給開始までの間における第2発熱体4bの発熱は、連続的であっても良いし、間欠的であっても良いが、第2発熱体4bの表面に付着した第1原料ガスの分解成分を良好に取り除くためには、第2発熱体4bを第1原料ガスの供給中断から第2原料ガスの供給開始までの間中、連続的に発熱させ続けることが好ましい。また第2発熱体4bの総発熱時間は、発熱が連続的、間欠的にかかわらず、好適には10分以上、より好適には20分以上である。   The heat generation of the second heating element 4b during the period from the interruption of the supply of the first raw material gas to the start of the supply of the second raw material gas may be continuous or intermittent. In order to satisfactorily remove the decomposition component of the first source gas adhering to the surface of the body 4b, the second heating element 4b is continuously used from the interruption of the supply of the first source gas to the start of the supply of the second source gas. It is preferable to continue to generate heat. The total heat generation time of the second heating element 4b is preferably 10 minutes or more, more preferably 20 minutes or more, regardless of whether heat generation is continuous or intermittent.

(第1実施例)
次に上述した作用効果を具体的な実施例で確かめる。この第1実施例は本発明の範囲を限定するものではない。この実施例は、図12に示すようなAl基体10の上面にキャリア注入阻止層11、光導電層12、表面保護層13からなる感光層を有するa−Si感光体14を、本発明の発熱体CVD装置(実施例1〜3)と、従来の発熱体CVD装置(比較例1)を用いてそれぞれ作製し、作製したa−Si感光体の感光層の帯電特性を評価するというものである。
(First embodiment)
Next, the above-described operation and effect will be confirmed by specific examples. This first embodiment does not limit the scope of the present invention. In this embodiment, an a-Si photosensitive member 14 having a photosensitive layer composed of a carrier injection blocking layer 11, a photoconductive layer 12, and a surface protective layer 13 on the upper surface of an Al base 10 as shown in FIG. This was prepared using a body CVD apparatus (Examples 1 to 3) and a conventional heating element CVD apparatus (Comparative Example 1), and the charging characteristics of the photosensitive layer of the produced a-Si photoreceptor were evaluated. .

帯電特性の評価は、作製したa−Si感光体14の周囲に、感光体14の表面を帯電させるコロナ帯電器15と、感光体14の表面電位を測定する表面電位測定器16と、感光体14の表面を除電する除電手段としてのイレースLED17とを、図13に示すように配置させ、コロナ帯電器15によって感光体14に与える表面電荷量Q(μC/cm)を段階的に上昇させた場合における感光体14の表面電位を測定し、該測定値によって帯電能力を調べることにより行われる。感光体14の帯電能力を測定する際の感光体14の周速度は0.094m/sec、イレースLED17の波長は650nm、光量は4.0μJ/cmにそれぞれ設定した。表面電位の測定は各表面電荷量Qについて感光体の2回転目で行った。 The evaluation of the charging characteristics is carried out by using a corona charger 15 for charging the surface of the photoconductor 14 around the produced a-Si photoconductor 14, a surface potential measuring device 16 for measuring the surface potential of the photoconductor 14, and a photoconductor. As shown in FIG. 13, an erase LED 17 serving as a static elimination means for neutralizing the surface of 14 is disposed as shown in FIG. 13, and the surface charge amount Q (μC / cm 2 ) applied to the photoconductor 14 by the corona charger 15 is increased stepwise. In this case, the surface potential of the photoconductor 14 is measured, and the charging ability is examined by the measured value. The peripheral speed of the photosensitive member 14 when measuring the charging ability of the photosensitive member 14 was set to 0.094 m / sec, the wavelength of the erase LED 17 was set to 650 nm, and the light amount was set to 4.0 μJ / cm 2 . The surface potential was measured at the second rotation of the photoreceptor for each surface charge amount Q.

なお、実施例・比較例で用いた発熱体CVD装置としては、実施例1・実施例3では図1の構成に相当する装置、実施例2では図5の構成に相当する装置、比較例1では図15の構成に相当する装置をそれぞれ用いた。実施例1〜3では、第1発熱体でキャリア注入阻止層11及び光導電層12を、第2発熱体で表面保護層13を形成するようにしている点で共通しているものの、実施例2では光導電層12を形成した後、第2発熱体を2200℃の温度で20分間連続的に発熱させ、しかる後、第2発熱体を用いて表面保護層13を形成した点で実施例1や実施例3と相違している。比較例1では一本の発熱体でキャリア注入阻止層11、光導電層12、表面保護層13を形成した。   As the heating element CVD apparatus used in the examples and comparative examples, the apparatus corresponding to the configuration of FIG. 1 is used in the examples 1 and 3, the apparatus corresponding to the configuration of FIG. Then, devices corresponding to the configuration of FIG. 15 were used. Examples 1 to 3 are common in that the carrier heating blocking layer 11 and the photoconductive layer 12 are formed by the first heating element, and the surface protective layer 13 is formed by the second heating element. In Example 2, after the photoconductive layer 12 was formed, the second heating element was continuously heated at a temperature of 2200 ° C. for 20 minutes, and then the surface protection layer 13 was formed using the second heating element. 1 and the third embodiment. In Comparative Example 1, the carrier injection blocking layer 11, the photoconductive layer 12, and the surface protective layer 13 were formed with a single heating element.

また実施例・比較例に用いられた発熱体CVD装置においては、径が0.5mmで純度99.9%のタンタルワイヤー1本を用いて発熱体を線状に構成した。また基体の加熱手段にはカートリッジヒーターを用いた。実施例3で用いた発熱体CVD装置では、ステンレススチールからなる円柱状の遮光部材を用いた。   In the heating element CVD apparatus used in the examples and comparative examples, the heating element was linearly formed using one tantalum wire having a diameter of 0.5 mm and a purity of 99.9%. A cartridge heater was used as a heating means for the substrate. In the heating element CVD apparatus used in Example 3, a cylindrical light shielding member made of stainless steel was used.

a−Si感光体14の作製は、上述の発熱体CVD装置の真空容器内に表面を鏡面仕上げした直径30mm、長さ254mmの円筒状Al基体を1本セットし、成膜前に基体温度を250℃に保持しながら真空容器内の真空度を1×10−2Paに設定し、次に表1の条件のもとで基体10上にキャリア注入阻止層11、光導電層12、表面保護層13を順次積層することにより行った。

Figure 2005179768
The a-Si photosensitive member 14 was prepared by setting one cylindrical Al substrate having a diameter of 30 mm and a length of 254 mm with a mirror-finished surface in the vacuum vessel of the above-described heating element CVD apparatus, and setting the substrate temperature before film formation. While maintaining the temperature at 250 ° C., the degree of vacuum in the vacuum vessel is set to 1 × 10 −2 Pa, and then the carrier injection blocking layer 11, the photoconductive layer 12, and the surface protection are formed on the substrate 10 under the conditions shown in Table 1. This was done by sequentially laminating layer 13.
Figure 2005179768

以上の実施結果を図14に示す。同図は実施例1〜3、比較例1で作製したa−Si感光体の表面電荷量と表面電位との関係を示す線図であり、同図の横軸はコロナ帯電によって感光体に与えた表面電荷量Q(μC/cm)を表し、縦軸は感光体の表面電位(V)を表す。図14より明らかなように、比較例1に比べて実施例1〜3は同じ表面電荷量に対してより高い表面電位を示しており、高い帯電能力が得られた。また遮蔽部材を発熱体間に介在させた実施例2、並びに、光導電層12の形成後で表面保護層3の形成前に他方の発熱体を発熱させた実施例3は実施例1よりも若干高い帯電能力が得られた。これは、実施例2では遮蔽部材の介在によって光導電層12の原料ガスの分解成分が第2発熱体の表面に付着することが抑制されることにより、上記分解成分が表面保護層13内に混入することを実施例1よりも良好に防止できたことが原因と考えられる。また実施例3では、光導電層12の形成後に第2発熱体を発熱させることにより第2発熱体の表面に付着した光導電層12の原料ガスの分解成分が取り除かれ、上記分解成分が表面保護層13に混入することを実施例1よりも良好に防止できたことが原因と考えられる。 The above implementation results are shown in FIG. This figure is a diagram showing the relationship between the surface charge amount and the surface potential of the a-Si photoreceptors produced in Examples 1 to 3 and Comparative Example 1, and the horizontal axis of the figure is given to the photoreceptor by corona charging. The surface charge amount Q (μC / cm 2 ), and the vertical axis represents the surface potential (V) of the photoreceptor. As is clear from FIG. 14, Examples 1 to 3 showed higher surface potentials for the same surface charge amount as compared with Comparative Example 1, and high charging ability was obtained. Further, Example 2 in which a shielding member is interposed between the heating elements, and Example 3 in which the other heating element is heated after the formation of the photoconductive layer 12 and before the formation of the surface protective layer 3 are more than in Example 1. A slightly high charging ability was obtained. This is because in Example 2, the decomposition component of the source gas of the photoconductive layer 12 is suppressed from adhering to the surface of the second heating element due to the intervention of the shielding member, so that the decomposition component is contained in the surface protective layer 13. It is thought that the mixing was better prevented than in Example 1. In Example 3, the second heating element is heated after the formation of the photoconductive layer 12 to remove the decomposition component of the source gas of the photoconductive layer 12 attached to the surface of the second heating element. It is considered that the mixing into the protective layer 13 was better prevented than in Example 1.

(第2実施例)
第2実施例では、遮蔽部材の回転による作用効果を確かめる。この第2実施例は本発明の範囲を限定するものではない。この実施例は、図12に示すa−Si感光体を、図5に示す本発明の発熱体CVD装置(実施例4)、図9に示す本発明の発熱体CVD装置(実施例5、6)を用いてそれぞれ作製し、作製したa−Si感光体を京セラミタ製レーザープリンタ(ECOSYS FS−3800)に搭載して画像出力を行い、画像の黒点数を評価するというものである。
(Second embodiment)
In 2nd Example, the effect by rotation of a shielding member is confirmed. This second embodiment does not limit the scope of the present invention. In this embodiment, the a-Si photosensitive member shown in FIG. 12 is used as the heating element CVD apparatus (Example 4) of the present invention shown in FIG. 5, and the heating element CVD apparatus (Examples 5 and 6) of the present invention shown in FIG. ), And the produced a-Si photoreceptor is mounted on a Kyocera Mita laser printer (ECOSYS FS-3800) to output an image, and the number of black spots in the image is evaluated.

画像の黒点数の評価は、実施例4〜6のいずれにおいても、上記レーザープリンタを用いてA4用紙に白ベタ印刷を行い、得られた画像から感光体表面に存在する直径0.1mm以上0.2mm未満の黒点の数量と、直径0.2mm以上の黒点の数量とをそれぞれ測定する作業を10回行い、これらの平均黒点数を算出することにより行った。   In any of Examples 4 to 6, the evaluation of the number of black spots in the image was performed by performing solid white printing on A4 paper using the laser printer, and the diameter of 0.1 mm or more existing on the surface of the photoconductor from the obtained image was 0. The operation of measuring the number of sunspots less than 2 mm and the number of sunspots having a diameter of 0.2 mm or more was performed 10 times, and the average number of sunspots was calculated.

なお、画像の黒点は、遮蔽部材から剥離した堆積物が基体に付着することによって、その部分に成膜欠陥が生じた場合に発生するものであり、例えば黒点数が大きい場合は、基体上に付着する堆積物が多く、黒点数が小さい場合は、基体上に付着する堆積物が少ないことを意味する。   Note that black spots in the image are generated when deposits peeled off from the shielding member adhere to the substrate, resulting in film formation defects in that portion. For example, when the number of black spots is large, When there are many deposits that adhere and the number of sunspots is small, it means that there are few deposits that adhere on the substrate.

また実施例4〜6のいずれにおいても、第1発熱体でキャリア注入阻止層11及び光導電層12を、第2発熱体で表面保護層13を形成するようにした。実施例2のような空焼きは行っていない。   In any of Examples 4 to 6, the carrier injection blocking layer 11 and the photoconductive layer 12 were formed by the first heating element, and the surface protective layer 13 was formed by the second heating element. Empty baking like Example 2 is not performed.

実施例4〜6に用いられた発熱体CVD装置においては、径が0.5mmで純度99.9%のタンタルワイヤー1本を用いて発熱体を線状に構成し、基体の加熱手段にはカートリッジヒーターを用いた。また遮光部材としてはステンレススチールからなる円柱状のものを使用し、実施例5〜6では遮光部材の回転速度を1rpm、10rpmにそれぞれ設定した。   In the heating element CVD apparatus used in Examples 4 to 6, the heating element is linearly formed using one tantalum wire having a diameter of 0.5 mm and a purity of 99.9%. A cartridge heater was used. Further, a cylindrical member made of stainless steel was used as the light shielding member, and in Examples 5 to 6, the rotation speed of the light shielding member was set to 1 rpm and 10 rpm, respectively.

a−Si感光体14の作製は、上述の発熱体CVD装置の真空容器内に表面を鏡面仕上げした直径30mm、長さ254mmの円筒状Al基体を1本セットし、成膜前に基体温度を250℃に保持しながら真空容器内の真空度を1×10−2Paに設定し、次に表1の条件のもとで基体10上にキャリア注入阻止層11、光導電層12、表面保護層13を順次積層することにより行った。 The a-Si photosensitive member 14 was prepared by setting one cylindrical Al substrate having a diameter of 30 mm and a length of 254 mm with a mirror-finished surface in the vacuum vessel of the above-described heating element CVD apparatus, and setting the substrate temperature before film formation. While maintaining the temperature at 250 ° C., the degree of vacuum in the vacuum vessel is set to 1 × 10 −2 Pa, and then the carrier injection blocking layer 11, the photoconductive layer 12, and the surface protection are formed on the substrate 10 under the conditions shown in Table 1. This was done by sequentially laminating layer 13.

以上の実施結果を表2に示す。

Figure 2005179768
The results of the above implementation are shown in Table 2.
Figure 2005179768

表2によれば、平均黒点数は実施例4に比べて実施例5、6の方が少なく、良好な結果が得られている。これは実施例5、6では遮蔽部材の回転によって遮蔽部材に付着したガス分解成分が遮蔽部材の表面に均一な厚みで堆積されているため、該堆積物と遮蔽部材との密着性が良好となり、遮蔽部材の表面より堆積物が剥離することが抑制されたためであると考えられる。   According to Table 2, the average number of sunspots is smaller in Examples 5 and 6 than in Example 4, and good results are obtained. In Examples 5 and 6, gas decomposition components adhering to the shielding member due to the rotation of the shielding member are deposited on the surface of the shielding member with a uniform thickness, so that the adhesion between the deposit and the shielding member is improved. It is considered that this is because the deposits are suppressed from peeling from the surface of the shielding member.

本発明の第1実施形態にかかる発熱体CVD装置の側面図である。It is a side view of the heat generating body CVD apparatus concerning 1st Embodiment of this invention. 図1の発熱体CVD装置の上面図である。It is a top view of the heat generating body CVD apparatus of FIG. 図1の発熱体CVD装置の変形例の側面図である。It is a side view of the modification of the heat generating body CVD apparatus of FIG. 図1の発熱体CVD装置の変形例の上面図である。It is a top view of the modification of the heat generating body CVD apparatus of FIG. 本発明の第2実施形態にかかる発熱体CVD装置の側面図である。It is a side view of the heat generating body CVD apparatus concerning 2nd Embodiment of this invention. 図5の発熱体CVD装置の上面図である。It is a top view of the heat generating body CVD apparatus of FIG. 図5の発熱体CVD装置の変形例の側面図である。It is a side view of the modification of the heat generating body CVD apparatus of FIG. 図5の発熱体CVD装置の変形例の上面図である。It is a top view of the modification of the heat generating body CVD apparatus of FIG. 本発明の第3実施形態にかかる発熱体CVD装置の側面図である。It is a side view of the heat generating body CVD apparatus concerning 3rd Embodiment of this invention. 本発明の第3実施形態にかかる発熱体CVD装置の上面図である。It is a top view of the heat generating body CVD apparatus concerning 3rd Embodiment of this invention. 図1の発熱体CVD装置の第2の変形例の側面図である。It is a side view of the 2nd modification of the heat generating body CVD apparatus of FIG. 実施例、比較例において作製したa−Si感光体の断面図である。It is sectional drawing of the a-Si photoconductor produced in the Example and the comparative example. 実施例、比較例において帯電能力を測定する方法を説明するための図である。It is a figure for demonstrating the method to measure a charging capability in an Example and a comparative example. 実施例、比較例において作製したa−Si感光体の表面電荷量と表面電位との関係を示す線図である。It is a diagram which shows the relationship between the surface charge amount and surface potential of the a-Si photoconductor produced in the Example and the comparative example. 従来の発熱体CVD装置の側面図である。It is a side view of the conventional heat generating body CVD apparatus.

符号の説明Explanation of symbols

1・・・真空容器
2・・・基体
3・・・基体支持体
4・・・発熱体
4a・・・第1発熱体
4b・・・第2発熱体
5・・・電極
6・・・ガス排気口
7・・・ガス供給手段
8・・・ガス吹き出し孔
9・・・遮蔽部材
10・・・Al基体
11・・・キャリア注入阻止層
12・・・光導電層
13・・・表面保護層
14・・・感光体
15・・・コロナ帯電器
16・・・表面電位測定器
17・・・イレースLED
18,19・・・回転手段
DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Base | substrate 3 ... Base | substrate support body 4 ... Heat generating body 4a ... 1st heat generating body 4b ... 2nd heat generating body 5 ... Electrode 6 ... Gas Exhaust port 7 ... gas supply means 8 ... gas blowing hole 9 ... shielding member 10 ... Al base 11 ... carrier injection blocking layer 12 ... photoconductive layer 13 ... surface protective layer 14: Photoconductor 15 ... Corona charger 16 ... Surface potential measuring device 17 ... Erase LED
18, 19 ... rotating means

Claims (13)

基体を収容する真空容器と、該真空容器内に原料ガスを供給するガス供給手段と、該ガス供給手段より供給される原料ガスに接触するように配置された複数個の発熱体と、を備え、前記ガス供給手段からの原料ガスを前記発熱体の発する熱によって分解し、該分解された原料ガス成分を基体上に堆積させて成膜を行う発熱体CVD装置において、
前記複数個の発熱体は、前記ガス供給手段より供給される第1原料ガスを熱分解するための第1発熱体と、前記ガス供給手段より供給される第2原料ガスを熱分解するための第2発熱体と、から少なくとも成っていることを特徴とする発熱体CVD装置。
A vacuum container that accommodates the substrate; a gas supply means that supplies a raw material gas into the vacuum container; and a plurality of heating elements that are arranged to contact the raw material gas supplied from the gas supply means. In the heating element CVD apparatus for decomposing the source gas from the gas supply means by the heat generated by the heating element and depositing the decomposed source gas component on the substrate to form a film,
The plurality of heating elements include a first heating element for thermally decomposing the first source gas supplied from the gas supply means and a second source gas supplied from the gas supply means. A heating element CVD apparatus comprising at least a second heating element.
前記第1原料ガス及び第2原料ガスはいずれか一方ずつ真空容器内に供給されることを特徴とする請求項1に記載の発熱体CVD装置。 2. The heating element CVD apparatus according to claim 1, wherein either the first source gas or the second source gas is supplied into the vacuum vessel one by one. 前記第1発熱体よりも前記第2発熱体の方が、発熱温度が高いことを特徴とする請求項1または請求項2に記載の発熱体CVD装置。 The heating element CVD apparatus according to claim 1 or 2, wherein the second heating element has a higher heating temperature than the first heating element. 前記第1発熱体及び第2発熱体が互いに隣接するように設けられ、該第1発熱体及び第2発熱体間に、両発熱体同士の表面が直接対向しないように遮蔽部材を介在させたことを特徴とする請求項1乃至請求項3のいずれかに記載の発熱体CVD装置。 The first heating element and the second heating element are provided so as to be adjacent to each other, and a shielding member is interposed between the first heating element and the second heating element so that the surfaces of the heating elements do not directly face each other. The heating element CVD apparatus according to any one of claims 1 to 3. 前記遮蔽部材が成膜中に回転することを特徴とする請求項4に記載の発熱体CVD装置。 The heating element CVD apparatus according to claim 4, wherein the shielding member rotates during film formation. 前記遮蔽部材の回転軸が遮蔽部材の長手方向に略平行であることを特徴とする請求項5に記載の発熱体CVD装置。 The heating element CVD apparatus according to claim 5, wherein a rotation axis of the shielding member is substantially parallel to a longitudinal direction of the shielding member. 基体及び第1発熱体、第2発熱体を収容する真空容器内に第1原料ガスを供給するとともに、該第1原料ガスを前記第1発熱体の発する熱によって分解し、その分解成分を基体上に堆積させて第1層を形成する第1の工程と、
前記第1原料ガスに代わって前記真空容器内に第2原料ガスを供給するとともに、該第2原料ガスを前記第2発熱体の発する熱によって分解し、その分解成分を堆積させて第2層を形成する第2の工程と、を備えたことを特徴とする発熱体CVD法による成膜方法。
The first raw material gas is supplied into a vacuum vessel that accommodates the base body, the first heating element, and the second heating element, and the first raw material gas is decomposed by the heat generated by the first heating element, and the decomposition component is decomposed into the base body. A first step of depositing thereon to form a first layer;
The second source gas is supplied into the vacuum vessel in place of the first source gas, the second source gas is decomposed by the heat generated by the second heating element, and the decomposition components are deposited to form the second layer. A film forming method using a heating element CVD method.
前記第1発熱体よりも前記第2発熱体の方が、発熱温度が高いことを特徴とする請求項7に記載の発熱体CVD法による成膜方法。 8. The film forming method according to claim 7, wherein the second heating element has a higher heating temperature than the first heating element. 前記第1原料ガスの供給中断後、第2原料ガスの供給開始前の間に、前記第2発熱体を、第1層の構成材料の蒸気圧温度以上、発熱体の構成材料の蒸気圧温度以下で発熱させることを特徴とする請求項7または請求項8に記載の発熱体CVD法による成膜方法。 After the supply of the first source gas is interrupted and before the supply of the second source gas is started, the second heating element is set to a vapor pressure temperature of the constituent material of the heating element that is equal to or higher than the vapor pressure temperature of the constituent material of the first layer. The film forming method according to claim 7 or 8, wherein heat generation is performed in the following manner. 前記第1発熱体及び第2発熱体が互いに隣接するように設けられ、該第1発熱体及び第2発熱体間に、両発熱体同士の表面が直接対向しないように遮蔽部材を介在させたことを特徴とする請求項7乃至請求項9のいずれかに記載の発熱体CVD法による成膜方法。 The first heating element and the second heating element are provided so as to be adjacent to each other, and a shielding member is interposed between the first heating element and the second heating element so that the surfaces of the heating elements do not directly face each other. A film forming method by a heating element CVD method according to any one of claims 7 to 9. 前記第1層はa−Si系、第2層はa−SiC系の材料を主成分とすることを特徴とする請求項7乃至請求項10のいずれかに記載の発熱体CVD法による成膜方法。 The film formation by a heating element CVD method according to any one of claims 7 to 10, wherein the first layer is composed mainly of an a-Si based material and the second layer is composed of an a-SiC based material. Method. 前記遮蔽部材が成膜中に回転することを特徴とする請求項10または請求項11に記載の発熱体CVD法による成膜方法。 12. The film forming method according to claim 10 or 11, wherein the shielding member rotates during film formation. 前記遮蔽部材の回転軸が遮蔽部材の長手方向に略平行であることを特徴とする請求項10乃至請求項12のいずれかに記載の発熱体CVD法による成膜方法。 The film forming method according to any one of claims 10 to 12, wherein a rotation axis of the shielding member is substantially parallel to a longitudinal direction of the shielding member.
JP2004097194A 2003-11-26 2004-03-29 Heating element CVD equipment Expired - Fee Related JP4493379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097194A JP4493379B2 (en) 2003-11-26 2004-03-29 Heating element CVD equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003396323 2003-11-26
JP2004097194A JP4493379B2 (en) 2003-11-26 2004-03-29 Heating element CVD equipment

Publications (2)

Publication Number Publication Date
JP2005179768A true JP2005179768A (en) 2005-07-07
JP4493379B2 JP4493379B2 (en) 2010-06-30

Family

ID=34797254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097194A Expired - Fee Related JP4493379B2 (en) 2003-11-26 2004-03-29 Heating element CVD equipment

Country Status (1)

Country Link
JP (1) JP4493379B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270220A (en) * 2006-03-30 2007-10-18 Kyocera Corp Cvd apparatus with heating element
WO2011106624A1 (en) * 2010-02-26 2011-09-01 Alliance For Sustainable Energy, Llc Hot wire chemical vapor deposition (hwcvd) with carbide filaments
US8815709B2 (en) 2008-10-03 2014-08-26 Veeco Instruments Inc. Chemical vapor deposition with energy input

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247020A (en) * 1985-04-24 1986-11-04 Canon Inc Deposition film forming method
JP2000150498A (en) * 1998-11-05 2000-05-30 Nec Corp Chemical vapor phase growth device and thin film forming method
JP2002069644A (en) * 2000-08-29 2002-03-08 Sony Corp Device and method for producing thin film
JP2003017422A (en) * 2002-04-01 2003-01-17 Ftl:Kk Method and equipment for manufacturing semiconductor device
JP2004211160A (en) * 2002-12-27 2004-07-29 Mitsui Chemicals Inc Method and equipment for chemical vapor deposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247020A (en) * 1985-04-24 1986-11-04 Canon Inc Deposition film forming method
JP2000150498A (en) * 1998-11-05 2000-05-30 Nec Corp Chemical vapor phase growth device and thin film forming method
JP2002069644A (en) * 2000-08-29 2002-03-08 Sony Corp Device and method for producing thin film
JP2003017422A (en) * 2002-04-01 2003-01-17 Ftl:Kk Method and equipment for manufacturing semiconductor device
JP2004211160A (en) * 2002-12-27 2004-07-29 Mitsui Chemicals Inc Method and equipment for chemical vapor deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270220A (en) * 2006-03-30 2007-10-18 Kyocera Corp Cvd apparatus with heating element
US8815709B2 (en) 2008-10-03 2014-08-26 Veeco Instruments Inc. Chemical vapor deposition with energy input
WO2011106624A1 (en) * 2010-02-26 2011-09-01 Alliance For Sustainable Energy, Llc Hot wire chemical vapor deposition (hwcvd) with carbide filaments

Also Published As

Publication number Publication date
JP4493379B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4493379B2 (en) Heating element CVD equipment
JP4986516B2 (en) Deposited film forming apparatus and deposited film forming method
JP4498032B2 (en) Heating element CVD apparatus and heating element CVD method
JP4467281B2 (en) Deposition method by heating element CVD method
JP2004091821A (en) Apparatus and method for manufacturing thin film device
JP4903473B2 (en) Heating element CVD equipment
EP0228870A2 (en) Method for forming deposited film
JP4741430B2 (en) Film forming apparatus and film forming method
JP2004115844A (en) Production apparatus for thin film device, and production method for thin film device
JP2005133162A (en) Film deposition method by heating body cvd device and heating body cvd method
JP4054234B2 (en) Thin film device manufacturing apparatus and thin film device manufacturing method
JP2004083981A (en) Method for manufacturing laminated thin-film device
JP7028730B2 (en) Sediment film forming device and sediment film forming method
JP4051233B2 (en) Cassette, thin film deposition apparatus equipped with the cassette, and thin film deposition method
JP4344521B2 (en) Hot wire CVD equipment
JP2004197209A (en) Hot wire cvd system
JP4901264B2 (en) Plasma CVD equipment
JP4383133B2 (en) Thin film deposition equipment
JP2004091820A (en) Cassette, thin film deposition apparatus, and thin film deposition method
JP2004190132A (en) Hot wire cvd system
JP2004091802A (en) Cassette for photoreceptor, thin film deposition apparatus, and thin film deposition method
JP2004099917A (en) Thin film deposition system
JP2004084012A (en) Cassette, thin film deposition system, and thin film deposition method
JP2004169153A (en) Thin film deposition system
JP2004060022A (en) Thin film deposition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees