JP2005179582A - Resin composition for optical semiconductor encapsulation, preform for optical semiconductor encapsulation and optical semiconductor device - Google Patents

Resin composition for optical semiconductor encapsulation, preform for optical semiconductor encapsulation and optical semiconductor device Download PDF

Info

Publication number
JP2005179582A
JP2005179582A JP2003425043A JP2003425043A JP2005179582A JP 2005179582 A JP2005179582 A JP 2005179582A JP 2003425043 A JP2003425043 A JP 2003425043A JP 2003425043 A JP2003425043 A JP 2003425043A JP 2005179582 A JP2005179582 A JP 2005179582A
Authority
JP
Japan
Prior art keywords
optical semiconductor
resin composition
molding
particles
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003425043A
Other languages
Japanese (ja)
Inventor
Ikuo Nakasuji
郁雄 中筋
Takayuki Yamamoto
剛之 山本
Takashi Toyama
貴志 外山
Takanori Kushida
孝則 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003425043A priority Critical patent/JP2005179582A/en
Publication of JP2005179582A publication Critical patent/JP2005179582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a granular resin composition for encapsulation, capable of remarkably suppressing the void formation and nonuniform flow to remarkably decrease the generation of optical nonuniformity by setting the particle diameter within a specific range. <P>SOLUTION: The resin composition for optical semiconductor encapsulation has an average particle diameter of 10-800μm and contains ≤5 mass% particles left on a 10 mesh sieve and ≤5 mass% particles passing through a 100 mesh sieve. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、LED、フォトトランジスター、フォトダイオード、CCD、CMOS、EPROMなどの光半導体素子を封止成形するために用いられる光半導体封止用樹脂組成物及び光半導体封止用予備成形体、またこのように封止成形して得られた光半導体装置に関するものである。   The present invention relates to a resin composition for optical semiconductor encapsulation and a preform for optical semiconductor encapsulation used for encapsulating optical semiconductor elements such as LEDs, phototransistors, photodiodes, CCDs, CMOS, EPROMs, The present invention relates to an optical semiconductor device obtained by sealing molding.

発光素子や受光素子などに用いられる上記の光半導体素子を封止する材料として、透明性、密着性、耐湿性、電気絶縁性、耐熱性等に優れる点からエポキシ樹脂組成物が、また耐光性、耐変色性、応力緩和性等に優れる点からアクリル樹脂組成物、ポリカーボネート樹脂組成物、シリコーン樹脂組成物が使用されている。これらの中でも、エポキシ樹脂組成物を用いたトランスファー成形による樹脂封止は、作業性や量産性に優れるために、最も優れているといえる。   As a material for sealing the above-mentioned optical semiconductor element used for a light emitting element or a light receiving element, an epoxy resin composition is also suitable for light resistance because of its excellent transparency, adhesion, moisture resistance, electrical insulation, heat resistance, etc. An acrylic resin composition, a polycarbonate resin composition, and a silicone resin composition are used because they are excellent in discoloration resistance, stress relaxation property, and the like. Among these, resin sealing by transfer molding using an epoxy resin composition is excellent because it is excellent in workability and mass productivity.

またトランスファー成形を行なう際の成形方式としては、封止用の樹脂組成物をタブレットに予備成形し、そして大型タブレットを用いて1回の成形で多数の光半導体装置を成形するコンベンショナル方式、またミニタブレットを用いたマルチプランジャー方式、粉粒状の樹脂組成物を用いて成形機内でスティック状に加圧成形した予備成形体を金型に挿入して成形する方式などが導入されている(例えば特許文献1、特許文献2、特許文献3等参照)。
特開平9−208805号公報 特開平11−111741号公報 特開2001−243033号公報
In addition, as a molding method when performing transfer molding, a conventional method in which a resin composition for sealing is preformed into a tablet, and a large number of optical semiconductor devices are molded by one molding using a large tablet, or mini- A multi-plunger system using a tablet and a system in which a preform formed by pressure molding in a molding machine using a powdered resin composition is inserted into a mold and molded are introduced (for example, patents) Reference 1, Patent Document 2, Patent Document 3, etc.).
JP-A-9-208805 Japanese Patent Application Laid-Open No. 11-111741 JP 2001-243033 A

上記のように光半導体素子を封止用樹脂組成物で封止して光半導体装置を成形するにあたって、封止成形品に小さなボイドが生じたり、成形時に樹脂組成物の流動ムラが生じたりすると、封止成形品内に光学ムラが発生するおそれがある。デジタルカメラ、カメラ付き携帯電話、セキュリティーシステムなどに光半導体装置を応用展開するにあたって、このような光学ムラがあると、画像認識の欠陥やゆらぎの発生の原因になるので、光学ムラの発生を低減することが課題となっている。   When molding the optical semiconductor device by sealing the optical semiconductor element with the sealing resin composition as described above, a small void occurs in the sealed molded product, or flow unevenness of the resin composition occurs during molding. There is a risk that optical unevenness may occur in the sealed molded product. When optical semiconductor devices are applied and deployed in digital cameras, camera-equipped mobile phones, security systems, etc., such optical irregularities can cause image recognition defects and fluctuations, reducing optical irregularities. It has become a challenge.

そこで、光半導体封止用樹脂組成物の配合組成を検討することが従来から行なわれており(例えば特許文献1、特許文献3等参照)、また金型構造の検討や、キャビティ内を真空にした状態で成形を行なうなどの成形条件の検討もおこなわれている。しかし、これらの検討だけでは、封止成形品に生じる非常に小さなボイドや成形時の流動ムラを十分に低減することは難しい。   Therefore, investigations have been made on the composition of the resin composition for encapsulating an optical semiconductor (see, for example, Patent Document 1 and Patent Document 3), and the mold structure and the inside of the cavity are evacuated. Examination of molding conditions such as molding in such a state has also been conducted. However, only by these studies, it is difficult to sufficiently reduce very small voids generated in a sealed molded product and flow unevenness during molding.

本発明は上記の点に鑑みてなされたものであり、粉粒状の光半導体封止用樹脂組成物において、その粒径を特定の範囲に規定することによって、ボイドの発生や流動ムラを大幅に低減し、光学ムラの発生を大きく低減することができるようにすることを目的とするものである。   The present invention has been made in view of the above points, and in the granular resin composition for optical semiconductor sealing, by regulating the particle size within a specific range, the generation of voids and flow unevenness are greatly reduced. The purpose is to reduce the occurrence of optical unevenness.

本発明の請求項1に係る光半導体封止用樹脂組成物は、粒子の平均粒径が10〜800μmであり、且つ、10メッシュ篩不通過の粒子が5質量%以下であると共に100メッシュ篩通過の粒子が5質量%以下の粉粒状に形成されたものであることを特徴とする。   The resin composition for encapsulating an optical semiconductor according to claim 1 of the present invention has an average particle diameter of 10 to 800 μm, a particle that does not pass through a 10 mesh sieve is 5% by mass or less, and a 100 mesh sieve. The passing particles are formed in a powder form of 5% by mass or less.

光半導体封止用樹脂組成物の粉粒体の粒径をこの範囲に設定することによって、光半導体封止用樹脂組成物の粉粒体をトランスファー成形装置やあるいは予備成形体を成形する成形機に供給する際の供給安定性が高まると共に成形時の溶融速度のバラツキを抑制することができ、ボイドの発生や成形の際の流動ムラを大幅に低減して、光学ムラの発生を大きく低減することができる。   A molding machine for molding the powder of the resin composition for sealing an optical semiconductor into a transfer molding device or a preform by setting the particle size of the powder of the resin composition for sealing an optical semiconductor in this range. The stability of the supply during the feeding is increased, and the variation in the melting rate at the time of molding can be suppressed. The generation of voids and the flow unevenness during the molding are greatly reduced, and the occurrence of optical unevenness is greatly reduced. be able to.

本発明の請求項2に係る光半導体封止用樹脂組成物は、粒子の平均粒径が50〜250μmであり、且つ、10メッシュ篩不通過の粒子が2質量%以下であると共に200メッシュ篩通過の粒子が10質量%以下の粉粒状に形成されたものであることを特徴とする。   The resin composition for encapsulating an optical semiconductor according to claim 2 of the present invention has an average particle size of 50 to 250 μm, a particle that does not pass through a 10 mesh sieve is 2 mass% or less, and a 200 mesh sieve. The passing particles are formed in a powder form of 10% by mass or less.

光半導体封止用樹脂組成物の粉粒体の粒径をこの範囲に設定することによって、光半導体封止用樹脂組成物の粉粒体をトランスファー成形装置やあるいは予備成形体を成形する成形機に供給する際の供給安定性が高まると共に成形時の溶融速度のバラツキを抑制することができ、ボイドの発生や成形の際の流動ムラを大幅に低減して、光学ムラの発生を大きく低減することができる。   A molding machine for molding the powder of the resin composition for sealing an optical semiconductor into a transfer molding device or a preform by setting the particle size of the powder of the resin composition for sealing an optical semiconductor in this range. The stability of the supply during the feeding is increased, and the variation in the melting rate at the time of molding can be suppressed. The generation of voids and the flow unevenness during the molding are greatly reduced, and the occurrence of optical unevenness is greatly reduced. be able to.

また請求項3の発明は、請求項1又は2において、粒子の最大粒径が2000μm以下であることを特徴とする。   The invention of claim 3 is characterized in that, in claim 1 or 2, the maximum particle diameter of the particles is 2000 μm or less.

粒子の最大粒径をこのように設定することによって、成形時の溶融速度のバラツキを抑制して、ボイドの発生や流動ムラをより一層に低減することができる。   By setting the maximum particle size of the particles in this way, it is possible to suppress the variation in the melting rate at the time of molding and further reduce the generation of voids and flow unevenness.

本発明の請求項4に係る光半導体封止用予備成形体は、請求項1乃至3のいずれかに記載の光半導体封止用樹脂組成物の粉粒体を加圧成形して、タブレット状あるいはスティック状に形成されたものであることを特徴とする。   The preform for optical semiconductor encapsulation according to claim 4 of the present invention is a tablet-like product obtained by pressure-molding the powder of the resin composition for optical semiconductor encapsulation according to any one of claims 1 to 3. Or it is formed in the shape of a stick.

この発明によれば、光半導体封止用樹脂組成物の粉粒体を予備成形した状態で、トランスファー成形に供することができ、またタブレット状あるいはスティック状に形成してトランスファー成形の成形方式に適応させることができる。   According to this invention, the powder of the resin composition for encapsulating an optical semiconductor can be subjected to transfer molding in a pre-formed state, and can be formed into a tablet shape or a stick shape and adapted to a molding method for transfer molding. Can be made.

また請求項5の発明は、請求項4において、圧縮率(見掛け比重と空隙を零にしたときの真比重との比率)が90〜98%になるよう加圧成形されたことを特徴とする。   The invention of claim 5 is characterized in that, in claim 4, the compression ratio (the ratio between the apparent specific gravity and the true specific gravity when the void is zero) is 90-98%. .

この発明によれば、空隙の少ない予備成形体を得ることができ、ボイドの発生や流動ムラをより一層に低減することができる。   According to this invention, a preform with few voids can be obtained, and the generation of voids and flow unevenness can be further reduced.

本発明の請求項6の光半導体装置は、請求項1乃至3のいずれかに記載の光半導体封止用樹脂組成物と、請求項4又は5に記載の光半導体封止用予備成形体のいずれかを用いて、トランスファー成形装置で光半導体素子を封止成形して得られたものであることを特徴とする。   An optical semiconductor device according to a sixth aspect of the present invention includes a resin composition for encapsulating an optical semiconductor according to any of claims 1 to 3 and a preform for the optical semiconductor encapsulating according to claim 4 or 5. Any one of them is obtained by sealing and molding an optical semiconductor element with a transfer molding apparatus.

この発明によれば、ボイドや流動ムラを大幅に低減して封止成形することができ、光学ムラの発生を大きく低減した光半導体装置を得ることができる。   According to this invention, voids and flow unevenness can be greatly reduced and sealing molding can be performed, and an optical semiconductor device in which occurrence of optical unevenness is greatly reduced can be obtained.

本発明によれば、ボイドの発生や成形の際の流動ムラを大幅に低減することができるものであり、光学ムラの発生を大きく低減した光半導体装置を得ることができるものである。   According to the present invention, generation of voids and flow unevenness during molding can be greatly reduced, and an optical semiconductor device in which generation of optical unevenness is greatly reduced can be obtained.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明に係る光半導体封止用樹脂組成物は、熱硬化性樹脂、硬化剤、硬化促進剤、シラン化合物、必要に応じて有機あるいは無機の充填材、さらにその他の添加剤を配合し、これらを溶融混合、あるいはミキサーやブレンダーでドライブレンドした後、3本ロールの混練ロールやニーダー等の連続混練機で溶融混練し、これを冷却・固化した後に、粉砕することによって、粉粒状に製造されるものである。   The resin composition for encapsulating an optical semiconductor according to the present invention contains a thermosetting resin, a curing agent, a curing accelerator, a silane compound, an organic or inorganic filler as necessary, and other additives, and these After being melt-mixed or dry blended with a mixer or blender, it is melt-kneaded with a continuous kneader such as a three-roll kneading roll or kneader, cooled and solidified, and then pulverized to produce a powder. Is.

ここで、上記の熱硬化性樹脂としては、特に制限されるものではないが、エポキシ樹脂が最も一般的である。エポキシ樹脂としては1分子中に2個以上のエポキシ基を持っているものであれば特に制限はないが、光半導体封止用には比較的着色の少ないものが好ましい。例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレート、脂肪族系エポキシ樹脂等を挙げることができ、またこれらのエポキシ樹脂の芳香格部に水素添加したエポキシ樹脂を用いることもできる。これらは単独で用いるようにしても、複数種を併用するようにしても、いずれでもよい。   Here, the thermosetting resin is not particularly limited, but an epoxy resin is the most common. The epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule, but a resin with relatively little coloring is preferable for sealing an optical semiconductor. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, orthocresol novolac type epoxy resin, alicyclic epoxy resin, triglycidyl isocyanurate, aliphatic epoxy resin, etc. It is also possible to use an epoxy resin hydrogenated to the aromatic part of these epoxy resins. These may be used alone or in combination of a plurality of types.

また熱硬化性樹脂としてエポキシ樹脂を用いる場合、硬化剤はエポキシ樹脂と反応するものであれば特に制限はないが、光半導体封止用には比較的着色の少ないものが好ましい。例えば無水ヘキサヒドロフタル酸、無水テトラヒドロフタル酸等の酸無水物、フェノール、クレゾール、キシレノール、レゾルシノール等とホルムアルデヒドとを縮合反応させて得られるノボラック型フェノール樹脂、液状ポリメルカプタンやポリサルファイド樹脂等のポリメルカプタン系硬化剤などを挙げることができる。これらの他にアミン系硬化剤も挙げることができるが、硬化時の変色が大きいために使用する際は添加量に注意を要する。これらは単独で用いるようにしても、複数種を併用するようにしても、いずれでもよい。エポキシ樹脂に対する硬化剤の配合量は、特に制限されるものではないが、色目や硬化物特性の点から、エポキシ樹脂/硬化剤の当量比で0.8〜2.0の範囲が好ましい。   In addition, when an epoxy resin is used as the thermosetting resin, the curing agent is not particularly limited as long as it reacts with the epoxy resin, but is preferably relatively less colored for optical semiconductor encapsulation. For example, polymer captanes such as novolak-type phenolic resins, liquid polymercaptans and polysulfide resins obtained by condensation reaction of acid anhydrides such as hexahydrophthalic anhydride and tetrahydrophthalic anhydride, phenol, cresol, xylenol, resorcinol and formaldehyde. Examples thereof include a system curing agent. In addition to these, amine-based curing agents can also be mentioned, but due to the large discoloration during curing, attention should be paid to the amount added when used. These may be used alone or in combination of a plurality of types. Although the compounding quantity of the hardening | curing agent with respect to an epoxy resin is not restrict | limited in particular, From the point of a color or a cured | curing material characteristic, the range of 0.8-2.0 is preferable by the equivalent ratio of an epoxy resin / hardening agent.

さらに熱硬化性樹脂としてエポキシ樹脂を用いる場合、硬化促進剤としては、エポキシ樹脂と硬化剤の反応を促進させる作用があるものであれば、特に制限はないが、比較的着色の少ないものが好ましい。例えばトリフェニルフォスフィン、ジフェニルフォスフィン等の有機フォスフィン系硬化促進剤、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエタノールアミン、ベンジルジメチルアミン等の3級アミン系硬化促進剤及びその有機酸塩類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・ブロマイド等の有機酸塩類、1−ベンジル−2−フェニルイミダゾール等のイミダゾール類などを挙げることができる。これらは単独で用いるようにしても、複数種を併用するようにしても、いずれでもよい。硬化促進剤の配合量は、エポキシ樹脂に対して0.01〜5質量%の範囲、特に0.05〜5質量%の範囲が好ましい。配合量が0.01質量%未満であると、エポキシ樹脂と硬化剤の反応の十分な促進効果を得ることができず、成形サイクルが長くなって生産性が悪くなる。また配合量が5質量%を超えると、光半導体封止用樹脂組成物を成形する際のゲル化時間が短くなり過ぎ、ボイドが多発し易くなると共に、キャビティへの未充填が発生し易くなり、成形性の悪化を引き起こすおそれがある。   Further, when an epoxy resin is used as the thermosetting resin, the curing accelerator is not particularly limited as long as it has an action of promoting the reaction between the epoxy resin and the curing agent, but a relatively less colored one is preferable. . For example, organic phosphine curing accelerators such as triphenylphosphine and diphenylphosphine, tertiary amine curing accelerators such as 1,8-diazabicyclo (5,4,0) undecene-7, triethanolamine and benzyldimethylamine And organic acid salts thereof, organic acid salts such as tetraphenylphosphonium / tetraphenylborate and tetraphenylphosphonium / bromide, and imidazoles such as 1-benzyl-2-phenylimidazole. These may be used alone or in combination of a plurality of types. The compounding quantity of a hardening accelerator is the range of 0.01-5 mass% with respect to an epoxy resin, Especially the range of 0.05-5 mass% is preferable. If the blending amount is less than 0.01% by mass, a sufficient acceleration effect of the reaction between the epoxy resin and the curing agent cannot be obtained, and the molding cycle becomes longer, resulting in poor productivity. On the other hand, if the blending amount exceeds 5% by mass, the gelation time for molding the resin composition for encapsulating an optical semiconductor becomes too short, voids are likely to occur frequently, and unfilling into the cavity is likely to occur. There is a risk of causing deterioration of moldability.

また上記のその他の添加剤としては、例えば変色防止剤、劣化防止剤、染料、紫外線吸収剤、シランカップリング剤、変性剤、可塑剤、光拡散剤、希釈剤等を用いることができる。   Moreover, as said other additive, a discoloration prevention agent, a deterioration prevention agent, dye, a ultraviolet absorber, a silane coupling agent, a modifier, a plasticizer, a light diffusing agent, a diluent etc. can be used, for example.

そして上記の各成分を配合して溶融混練し、冷却・固化した後に粉砕して、粉粒状の光半導体封止用樹脂組成物を得ることができるものであるが、本発明では、粒子の平均粒径が10〜800μmであり、且つ、10メッシュ篩不通過の粒子が5質量%以下であると共に100メッシュ篩通過の粒子が5質量%以下の粉粒状に形成するようにしてある。10メッシュ篩不通過の粒子や100メッシュ篩通過の粒子は少ないほど好ましいものであり、0%であることが最も好ましい。   Then, each of the above components is blended, melt-kneaded, cooled and solidified, and then pulverized to obtain a powdery optical semiconductor sealing resin composition. The particle size is 10 to 800 μm, and the particles that do not pass through the 10 mesh sieve are 5% by mass or less, and the particles that pass through the 100 mesh sieve are formed into a powder of 5% by mass or less. The smaller the particles that do not pass through the 10 mesh sieve or the particles that pass through the 100 mesh sieve, the better. The most preferred is 0%.

光半導体封止用樹脂組成物の粉粒体の粒径をこの範囲に設定することによって、光半導体封止用樹脂組成物の粉粒体をトランスファー成形装置やあるいは予備成形体を成形する成形機に供給する際の供給安定性が高まるものであり、また成形時の溶融速度のバラツキを抑制することができるものであり、この結果、ボイドの発生や成形の際の流動ムラを大幅に低減して、光学ムラの発生を大きく低減することができるものである。   A molding machine for molding the powder of the resin composition for sealing an optical semiconductor into a transfer molding device or a preform by setting the particle size of the powder of the resin composition for sealing an optical semiconductor in this range. As a result, it is possible to increase the supply stability when supplying to the mold, and to suppress variations in the melting rate during molding. As a result, the generation of voids and the flow unevenness during molding are greatly reduced. Thus, the occurrence of optical unevenness can be greatly reduced.

すなわち、平均粒径が10μm未満の場合や、100メッシュ篩通過の粒子が5質量%を超える場合、粉粒体が凝集し易くなり、この凝集によって粉粒体の重量ばらつきが大きくなる。従って、光半導体封止用樹脂組成物の粉粒体をトランスファー成形装置に供給する供給ラインでの、重量ばらつきによって、供給が不安定になるおそれがあり、またトランスファー成形装置の金型内での光半導体封止用樹脂組成物の溶融速度が粉粒体の重量ばらつきによってばらつくおそれがあり、ボイドが発生し易くまた成形の際の流動ムラが発生し易くなる。また光半導体封止用樹脂組成物の粉粒体を後述のように予備成形して予備成形体を成形する場合には、予備成形機に供給する供給ラインでの、重量ばらつきによって、同様に供給が不安定になり、重量ばらつきの大きい予備成形体が成形されるおそれがあり、この予備成形体を用いてトランスファー成形するにあたってトランスファー成形装置への材料供給が不安定になり、同様にボイドや成形の際の流動ムラが発生し易くなる。   That is, when the average particle size is less than 10 μm, or when the particles passing through the 100 mesh sieve exceed 5% by mass, the particles easily aggregate, and this aggregation increases the weight variation of the particles. Therefore, there is a possibility that the supply may become unstable due to weight variation in the supply line for supplying the powder composition of the resin composition for encapsulating an optical semiconductor to the transfer molding apparatus, and in the mold of the transfer molding apparatus. There is a possibility that the melting rate of the resin composition for encapsulating an optical semiconductor varies depending on the weight variation of the granular material, and voids are likely to occur, and flow unevenness during molding tends to occur. In addition, when preforming a preform of a resin composition for encapsulating an optical semiconductor as described later by pre-molding it, supply it in the same way due to weight variation in the supply line that feeds the preforming machine. May cause a preform with a large weight variation to be formed, and when performing transfer molding using this preform, the material supply to the transfer molding device becomes unstable, and voids and molding are similarly formed. In this case, flow unevenness easily occurs.

一方、平均粒径が800μmを超える場合や、10メッシュ篩不通過の粒子が5質量%を超える場合、粒径の大きい粒子は流動し易く、粒径の小さい粒子は流動し難い現象によって、トランスファー成形装置や予備成形機への粉粒体の供給が不安定になるおそれがあると共に、重量ばらつきが生じるおそれがあり、上記と同様に、ボイドが発生し易くまた成形の際の流動ムラが発生し易くなる。   On the other hand, when the average particle size exceeds 800 μm, or when the particles that do not pass through the 10 mesh sieve exceed 5% by mass, particles having a large particle size are easy to flow, and particles having a small particle size are difficult to flow. There is a possibility that the supply of powder to the molding device or preforming machine may become unstable, and there may be a variation in weight. As above, voids are likely to occur, and flow unevenness during molding occurs. It becomes easy to do.

また本発明では、粒子の平均粒径が50〜250μmであり、且つ、10メッシュ篩不通過の粒子が2質量%以下であると共に200メッシュ篩通過の粒子が10質量%以下の粉粒状に、半導体封止用樹脂組成物を形成するのが、より好ましい。10メッシュ篩不通過の粒子や200メッシュ篩通過の粒子は少ないほど好ましいものであり、0%であることが最も好ましい。   In the present invention, the average particle diameter of the particles is 50 to 250 μm, and the particles that do not pass through the 10 mesh sieve are 2% by mass or less, and the particles that pass through the 200 mesh sieve are in a powder form of 10% by mass or less. It is more preferable to form a semiconductor sealing resin composition. The smaller the particles that do not pass through the 10 mesh sieve or the particles that pass through the 200 mesh sieve, the better. The most preferred is 0%.

光半導体封止用樹脂組成物の粉粒体の粒径をこの範囲に設定することによって、光半導体封止用樹脂組成物の粉粒体をトランスファー成形装置やあるいは予備成形体を成形する成形機に供給する際の供給安定性が高まるものであり、また成形時の溶融速度のバラツキを抑制することができるものであり、この結果、ボイドの発生や成形の際の流動ムラを大幅に低減して、光学ムラの発生を大きく低減することができるものである。   A molding machine for molding the powder of the resin composition for sealing an optical semiconductor into a transfer molding device or a preform by setting the particle size of the powder of the resin composition for sealing an optical semiconductor in this range. As a result, it is possible to increase the supply stability when supplying to the mold, and to suppress variations in the melting rate during molding. As a result, the generation of voids and the flow unevenness during molding are greatly reduced. Thus, the occurrence of optical unevenness can be greatly reduced.

すなわち、平均粒径が50μm未満の場合や、200メッシュ篩通過の粒子が10質量%を超える場合、粉粒体が凝集し易くなり、この凝集によって粉粒体の重量ばらつきが大きくなる。従って、光半導体封止用樹脂組成物の粉粒体をトランスファー成形装置に供給する供給ラインでの、重量ばらつきによって、供給が不安定になるおそれがあり、またトランスファー成形装置の金型内での光半導体封止用樹脂組成物の溶融速度が粉粒体の重量ばらつきによってばらつくおそれがあり、ボイドが発生し易くまた成形の際の流動ムラが発生し易くなる。また光半導体封止用樹脂組成物の粉粒体を後述のように予備成形して予備成形体を成形する場合には、予備成形機に供給する供給ラインでの、重量ばらつきによって、同様に供給が不安定になり、重量ばらつきの大きい予備成形体が成形されるおそれがあり、この予備成形体を用いてトランスファー成形するにあたってトランスファー成形装置への材料供給が不安定になり、同様にボイドや成形の際の流動ムラが発生し易くなる。   That is, when the average particle size is less than 50 μm, or when the particles passing through the 200 mesh sieve exceeds 10% by mass, the powder particles are likely to aggregate, and this aggregation increases the weight variation of the powder particles. Therefore, there is a possibility that the supply may become unstable due to weight variation in the supply line for supplying the powder composition of the resin composition for encapsulating an optical semiconductor to the transfer molding apparatus, and in the mold of the transfer molding apparatus. There is a possibility that the melting rate of the resin composition for encapsulating an optical semiconductor varies depending on the weight variation of the granular material, and voids are likely to occur, and flow unevenness during molding tends to occur. In addition, when preforming a preform of a resin composition for encapsulating an optical semiconductor as described later by pre-molding it, supply it in the same way due to weight variation in the supply line that feeds the preforming machine. May cause a preform with a large weight variation to be formed, and when performing transfer molding using this preform, the material supply to the transfer molding device becomes unstable, and voids and molding are similarly formed. In this case, flow unevenness easily occurs.

一方、平均粒径が250μmを超える場合や、10メッシュ篩不通過の粒子が2質量%を超える場合、粒径の大きい粒子は流動し易く、粒径の小さい粒子は流動し難い現象によって、トランスファー成形装置や予備成形機への粉粒体の供給が不安定になるおそれがあると共に、重量ばらつきが生じるおそれがあり、上記と同様に、ボイドが発生し易くまた成形の際の流動ムラが発生し易くなる。   On the other hand, when the average particle size exceeds 250 μm, or when the particles that do not pass through the 10 mesh sieve exceed 2% by mass, particles having a large particle size are easy to flow and particles having a small particle size are difficult to flow. There is a possibility that the supply of powder to the molding device or preforming machine may become unstable, and there may be a variation in weight. As above, voids are likely to occur, and flow unevenness during molding occurs. It becomes easy to do.

また、光半導体封止用樹脂組成物の粉粒体は、粒子の最大粒径が2000μm以下であることが望ましい。粒子の最大粒径が2000μmを超える場合には、上記と同様に、光半導体封止用樹脂組成物の粉粒体をトランスファー成形装置やあるいは予備成形体の成形機に供給する際の供給が不安定になると共に、成形時の溶融速度のバラツキが大きくなり、ボイドが発生し易くまた成形の際の流動ムラが発生し易くなる。従って、ボイドの発生や成形の際の流動ムラを大幅に低減して、光学ムラの発生を低減するには、粒子の最大粒径が2000μm以下であることが望ましいのである。粒子の最小粒径については特に制限されるものではないが、粒子の最小粒径は0.01μm以上であることが好ましい。   Moreover, as for the granular material of the resin composition for optical semiconductor sealing, it is desirable that the largest particle diameter of a particle | grain is 2000 micrometers or less. When the maximum particle size of the particles exceeds 2000 μm, as in the case described above, supply when supplying the powder composition of the resin composition for optical semiconductor encapsulation to a transfer molding apparatus or a molding machine for a preform is not possible. In addition to being stable, the variation in the melting rate at the time of molding becomes large, voids are likely to occur, and flow unevenness at the time of molding is likely to occur. Therefore, in order to greatly reduce the occurrence of voids and flow unevenness during molding and to reduce the occurrence of optical unevenness, it is desirable that the maximum particle diameter of the particles be 2000 μm or less. The minimum particle diameter of the particles is not particularly limited, but the minimum particle diameter is preferably 0.01 μm or more.

本発明に係る光半導体封止用樹脂組成物は、粉粒状のままトランスファー成形装置のトランスファー金型に供給してトランスファー成形に供することができるが、粉粒状の光半導体封止用樹脂組成物を加圧成形して予備成形体を作製し、この予備成形体をトランスファー金型でトランスファー成形するようにしてもよい。予備成形体は、タブレット成形機などの予備成形機を用いて光半導体封止用樹脂組成物の粉粒体を予備成形して作製するようにしてもよく、あるいはトランスファー成形装置のトランスファー金型内でまず光半導体封止用樹脂組成物の粉粒体を予備成形して予備成形体を作製した後、引き続いて予備成形体をトランスファー成形するようにしてもよい。   The resin composition for encapsulating an optical semiconductor according to the present invention can be supplied to a transfer mold of a transfer molding apparatus in the form of powder and used for transfer molding. A preform may be produced by pressure molding, and the preform may be transfer molded with a transfer mold. The preform may be prepared by pre-molding the powder composition of the resin composition for optical semiconductor sealing using a preforming machine such as a tablet molding machine, or in the transfer mold of the transfer molding apparatus. First, a preformed body may be prepared by preforming a granular material of the resin composition for optical semiconductor encapsulation, and then the preformed body may be transfer molded.

ここで、上記の予備成形体は、タブレット状あるいはスティック状に形成されるものである。尚、本発明において「タブレット状」とは、直径が5〜90mm、高さが60mm以下の円柱形状のものを意味する。また「スティック状」とは、縦2〜15mm×横2〜15mm×高さ300mm以下の直方体形状のものを意味する。   Here, the preform is formed in a tablet shape or a stick shape. In the present invention, the “tablet” means a cylindrical shape having a diameter of 5 to 90 mm and a height of 60 mm or less. The “stick shape” means a rectangular parallelepiped shape having a length of 2 to 15 mm, a width of 2 to 15 mm, and a height of 300 mm or less.

また、粉粒状の光半導体封止用樹脂組成物を加圧成形して予備成形体を作製するにあたって、圧縮率が90〜98%になるように予備成形体を成形するのが好ましい。ここで圧縮率は、予備成形体の内部に空隙を含む見掛け比重(D)と、予備成形体の内部の空隙が零と仮定したときの真比重(D:つまり光半導体封止用樹脂組成物の粒子の比重)との比率(=D/D×100)である。予備成形体の圧縮率が90%未満であると、予備成形体内に含まれる空隙が多く、予備成形体の強度が不足し、予備成形体を搬送する際の欠けによる重量不足が発生し易く、また空隙内の空気によって、成形時にボイドが発生し易くなる。予備成形体の圧縮率は高い程、ボイド発生の低減のうえで好ましいが、圧縮率が98%を超えても、もはやボイド発生低減の効果は飽和に達しており、しかも圧縮率が98%を超えるように安定して予備成形体を成形するには、過大な設備とエネルギーが必要になるので、圧縮率は98%以下で十分である。 Moreover, when producing a preform by pressure-molding the powdery resin composition for encapsulating an optical semiconductor, it is preferable to mold the preform so that the compression ratio is 90 to 98%. Here, the compression ratio is the apparent specific gravity (D 1 ) including voids inside the preform, and the true specific gravity (D 2 : that is, an optical semiconductor sealing resin when the voids inside the preform are assumed to be zero. (Specific gravity of particles of the composition) (= D 1 / D 2 × 100). If the compression ratio of the preform is less than 90%, there are many voids contained in the preform, the strength of the preform is insufficient, and a lack of weight is likely to occur due to chipping when the preform is conveyed, In addition, voids are easily generated during molding by the air in the gap. The higher the compression ratio of the preform, the better for reducing the void generation. However, even if the compression ratio exceeds 98%, the effect of reducing the void generation has already reached saturation, and the compression ratio is 98%. Excessive equipment and energy are required to stably mold the preform so that the compression ratio exceeds 98%, and a compression rate of 98% or less is sufficient.

そして、上記のようにして得られる、光半導体封止用樹脂組成物の粉粒体、あるいは光半導体封止用予備成形体を用い、LED、フォトトランジスター、フォトダイオード、CCD、CMOS、EPROMなどの光半導体素子をトランスファー成形装置で封止成形することによって、透明な封止成形品で光半導体素子を被覆した光半導体装置を製造することができるものである。   Then, using the powder of the resin composition for sealing an optical semiconductor or the preform for sealing an optical semiconductor obtained as described above, an LED, a phototransistor, a photodiode, a CCD, a CMOS, an EPROM, etc. By sealing and molding the optical semiconductor element with a transfer molding device, an optical semiconductor device in which the optical semiconductor element is covered with a transparent sealing molded product can be manufactured.

次に、本発明を実施例によって具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

(実施例1〜10及び比較例1〜3)
表1の配合量でエポキシ樹脂、硬化剤、硬化促進剤、酸化防止剤、添加剤を配合し、これをミキサーでドライブレンドした後、二軸型混練機を用いて120℃の条件で溶融混練し、連続的に押し出した。
(Examples 1-10 and Comparative Examples 1-3)
An epoxy resin, a curing agent, a curing accelerator, an antioxidant, and an additive are blended in the blending amounts shown in Table 1, and this is dry blended with a mixer, and then melt kneaded at 120 ° C. using a biaxial kneader And extruded continuously.

Figure 2005179582
Figure 2005179582

そしてこの溶融混練物を室温で冷却して固化させた後、粉砕機で粉砕し、さらに表2のように粒度調整することによって、実施例1〜10及び比較例1〜3の光半導体封止用樹脂組成物の粉粒体を得た。尚、粒度分布の測定は、HORIBA製レーザー回折式粒度分布計を用い、溶媒にイオン交換水を使用して湿式法で行なった。そして実施例4〜10及び比較例2〜3については、光半導体封止用樹脂組成物の粉粒体を10MPaの圧力で加圧成形して予備成形し、直径13mm×高さ15mmのタブレット状、あるいは5mm×8mm×50mmのステッィク状の予備成形体を作製した。   And after cooling this melt-kneaded material at room temperature and solidifying, it grind | pulverizes with a grinder, and also adjusts a particle size like Table 2, By carrying out the optical semiconductor sealing of Examples 1-10 and Comparative Examples 1-3 A granular material of the resin composition was obtained. The particle size distribution was measured by a wet method using a HORIBA laser diffraction particle size distribution meter and ion-exchanged water as a solvent. And about Examples 4-10 and Comparative Examples 2-3, the granular material of the resin composition for optical semiconductor sealing is pressure-molded by the pressure of 10 Mpa, it pre-molds, and it is a tablet shape of diameter 13mm x height 15mm. Alternatively, a stick-shaped preform having a size of 5 mm × 8 mm × 50 mm was produced.

上記の実施例1〜3及び比較例1の光半導体封止用樹脂組成物の粉粒体、実施例4〜10及び比較例2〜3の光半導体封止用予備成形体を用い、トランスファー成形して、直径50mmφ×厚み3mmのテストピースを成形した。成形条件は、金型温度150℃、キュア時間150秒に設定し、150℃で2時間ポストキュアした。   Transfer molding using the powders of the resin composition for sealing an optical semiconductor of Examples 1 to 3 and Comparative Example 1, and the preforms for sealing an optical semiconductor of Examples 4 to 10 and Comparative Examples 2 to 3 Then, a test piece having a diameter of 50 mmφ × thickness of 3 mm was formed. Molding conditions were set at a mold temperature of 150 ° C. and a curing time of 150 seconds, and post-cured at 150 ° C. for 2 hours.

このように作製したテストピースの成形品について、外観を目視で観察して光学ムラ、流動ムラがあるか否かを評価し、また光透過率を測定した。この外観の目視観察は、2本の平行な直管型蛍光ランプを点灯し、テストピースをこの蛍光ランプと2mの距離で平行に配置して固定し、テストピースから0.3m離れた位置から、テストピースを透してランプを目視することによって行ない、2本の蛍光ランプが平行に目視できるかどうかを判定した。テストピースの成形品に成形時の流動ムラや光学ムラがあると、テストピースを透した蛍光ランプの写り込みに歪みや揺らぎが生じ、蛍光ランプが平行に見えなくなるので、蛍光ランプが平行に見える場合を「○」、歪みや揺らぎがあって平行に見えない場合を「×」と評価した。また光透過率は、島津製作所製の積分球付き分光光度計を使用し、250〜1100nmの波長の光について測定した。そして光透過率が90%以上を「◎」、75%以上90%未満を「○」、50%以上75%未満を「△」、50%未満を「×」と評価した。   With respect to the molded article of the test piece thus produced, the appearance was visually observed to evaluate whether there was optical unevenness or flow unevenness, and the light transmittance was measured. The visual observation of this appearance is that two parallel straight tube fluorescent lamps are turned on, the test piece is placed in parallel with this fluorescent lamp at a distance of 2 m and fixed, and the position is 0.3 m away from the test piece. This was done by visually observing the lamp through the test piece to determine whether the two fluorescent lamps could be viewed in parallel. If the molded part of the test piece has flow irregularities or optical irregularities during molding, the fluorescent lamp reflected through the test piece will be distorted and fluctuated, and the fluorescent lamp will not look parallel, so the fluorescent lamp will appear parallel. The case was evaluated as “◯”, and the case where there was distortion or fluctuation and it did not look parallel was evaluated as “×”. The light transmittance was measured for light having a wavelength of 250 to 1100 nm using a spectrophotometer with an integrating sphere manufactured by Shimadzu Corporation. The light transmittance of 90% or more was evaluated as “◎”, 75% or more and less than 90% as “◯”, 50% or more and less than 75% as “Δ”, and less than 50% as “X”.

また、上記と同じ成形条件でトランスファー成形して封止成形を行なうことによって、光ピックアップ用の受光パッケージ(4mm×5mm×厚み1.8mm)として光半導体装置を20個作製した。この受光パッケージについて、受光面(鏡面部分)のエリアをCCDマイクロスコープで拡大表示し、直径5μm以上のボイドの個数をカウントすることによって、ボイド発生の状態を試験した。ボイドの個数は受光パッケージ20個に発生する合計数としてカウントし、ボイドの発生ゼロを「◎」、ボイドの発生1個を「○」、ボイドの発生2〜5個を「△」、ボイドの発生6個以上を「×」と評価した。   Also, 20 optical semiconductor devices were manufactured as a light receiving package (4 mm × 5 mm × 1.8 mm thick) for optical pickup by performing transfer molding under the same molding conditions as above and sealing molding. With respect to this light receiving package, the area of the light receiving surface (mirror surface portion) was enlarged and displayed with a CCD microscope, and the number of voids having a diameter of 5 μm or more was counted to test the state of void generation. The number of voids is counted as the total number of occurrences in 20 light receiving packages. Zero generation of voids is “◎”, 1 occurrence of voids is “◯”, 2-5 occurrences of voids are “△”, Six or more occurrences were evaluated as “x”.

また上記と同様に光ピックアップ用の受光パッケージ(4mm×5mm×厚み1.8mm)として光半導体装置を20個作製し、この受光パッケージについて、耐温度サイクル性を試験した。すなわち、受光パッケージを−40℃に30分間さらした後、常温に5分間さらし、さらに100℃に30分間さらすのを1サイクルとするヒートサイクル試験機に、1000サイクル投入し、そしてヒートサイクル試験機から取り出した受光パッケージについて、電気的な接続不良率を測定した。20個の受光パッケージのうち、接続不良なしを「○」、接続不良2個以下を「△」、接続不良3個以上を「×」と評価した。   Similarly to the above, 20 optical semiconductor devices were produced as a light receiving package (4 mm × 5 mm × thickness 1.8 mm) for an optical pickup, and the temperature resistance of the light receiving package was tested. That is, the light receiving package is exposed to −40 ° C. for 30 minutes, then exposed to room temperature for 5 minutes, and further exposed to 100 ° C. for 30 minutes. The electrical connection failure rate was measured for the light receiving package taken out from the above. Out of the 20 light receiving packages, no connection failure was evaluated as “◯”, 2 or less connection failures were evaluated as “Δ”, and 3 or more connection failures were evaluated as “X”.

さらに、上記と同様に光ピックアップ用の受光パッケージ(4mm×5mm×厚み1.8mm)として光半導体装置を20個作製し、この受光パッケージについて、耐リフロー性を試験した。すなわち、受光パッケージを125℃で16時間乾燥した後、ドライボックスに入れて室温にまで冷却し、次に前処理として30℃、70%RHの恒温恒湿機に168時間入れて吸湿処理した後、245℃ピークのIRリフロー炉に受光パッケージを投入した。そしてこの受光パッケージについて、電気的な接続不良率を測定した。20個の受光パッケージのうち、接続不良なしを「○」、接続不良2個以下を「△」、接続不良3個以上を「×」と評価した。   Further, 20 optical semiconductor devices were produced as a light receiving package (4 mm × 5 mm × thickness 1.8 mm) for an optical pickup in the same manner as described above, and the reflow resistance of this light receiving package was tested. That is, after the light receiving package is dried at 125 ° C. for 16 hours, it is put in a dry box and cooled to room temperature, and then is pre-treated in a constant temperature and humidity chamber of 30 ° C. and 70% RH for 168 hours. The light receiving package was put into an IR reflow furnace with a peak at 245 ° C. And about this light reception package, the electrical connection failure rate was measured. Out of the 20 light receiving packages, no connection failure was evaluated as “◯”, 2 or less connection failures were evaluated as “Δ”, and 3 or more connection failures were evaluated as “X”.

Figure 2005179582
Figure 2005179582

表2にみられるように、各実施例のものは、光ムラ・流動ムラが少なく、またボイドの発生が少なく、光透過性に優れていることが確認される。さらに各実施例ものは、耐温度サイクル性や、耐リフロー性にも優れるものであった。   As can be seen from Table 2, it is confirmed that each of the examples has little light unevenness and flow unevenness, little generation of voids, and excellent light transmittance. Further, each example was excellent in temperature cycle resistance and reflow resistance.

Claims (6)

粒子の平均粒径が10〜800μmであり、且つ、10メッシュ篩不通過の粒子が5質量%以下であると共に100メッシュ篩通過の粒子が5質量%以下の粉粒状に形成されたものであることを特徴とする光半導体封止用樹脂組成物。   The average particle size of the particles is 10 to 800 μm, the particles that do not pass through the 10 mesh sieve are 5% by mass or less, and the particles that pass through the 100 mesh sieve are formed into a powder of 5% by mass or less. A resin composition for sealing an optical semiconductor. 粒子の平均粒径が50〜250μmであり、且つ、10メッシュ篩不通過の粒子が2質量%以下であると共に200メッシュ篩通過の粒子が10質量%以下の粉粒状に形成されたものであることを特徴とする光半導体封止用樹脂組成物。   The average particle size of the particles is 50 to 250 μm, the particles that do not pass through the 10 mesh sieve are 2 mass% or less, and the particles that pass through the 200 mesh sieve are formed into a powder of 10 mass% or less. A resin composition for sealing an optical semiconductor. 粒子の最大粒径が2000μm以下であることを特徴とする請求項1又は2に記載の光半導体封止用樹脂組成物。   The resin composition for optical semiconductor encapsulation according to claim 1, wherein the maximum particle size of the particles is 2000 μm or less. 請求項1乃至3のいずれかに記載の光半導体封止用樹脂組成物の粉粒体を加圧成形して、タブレット状あるいはスティック状に形成されたものであることを特徴とする光半導体封止用予備成形体。   4. An optical semiconductor encapsulating material, wherein the optical semiconductor encapsulating resin composition is formed into a tablet shape or a stick shape by pressure molding the powder of the resin composition for encapsulating an optical semiconductor according to any one of claims 1 to 3. Pre-formed body for fastening. 圧縮率(見掛け比重と空隙を零にしたときの真比重との比率)が90〜98%になるよう加圧成形されたことを特徴とする請求項4に記載の光半導体封止用予備成形体。   5. The preform for optical semiconductor encapsulation according to claim 4, wherein the compression ratio (the ratio between the apparent specific gravity and the true specific gravity when the void is zero) is 90 to 98%. body. 請求項1乃至3のいずれかに記載の光半導体封止用樹脂組成物と、請求項4又は5に記載の光半導体封止用予備成形体のいずれかを用いて、トランスファー成形装置で光半導体素子を封止成形して得られたものであることを特徴とする光半導体装置。   An optical semiconductor in a transfer molding apparatus using the optical semiconductor sealing resin composition according to any one of claims 1 to 3 and any one of the preforms for optical semiconductor sealing according to claim 4 or 5. An optical semiconductor device obtained by sealing and molding an element.
JP2003425043A 2003-12-22 2003-12-22 Resin composition for optical semiconductor encapsulation, preform for optical semiconductor encapsulation and optical semiconductor device Pending JP2005179582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425043A JP2005179582A (en) 2003-12-22 2003-12-22 Resin composition for optical semiconductor encapsulation, preform for optical semiconductor encapsulation and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425043A JP2005179582A (en) 2003-12-22 2003-12-22 Resin composition for optical semiconductor encapsulation, preform for optical semiconductor encapsulation and optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2005179582A true JP2005179582A (en) 2005-07-07

Family

ID=34785043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425043A Pending JP2005179582A (en) 2003-12-22 2003-12-22 Resin composition for optical semiconductor encapsulation, preform for optical semiconductor encapsulation and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2005179582A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303367A (en) * 2007-06-11 2008-12-18 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device using the same
WO2012039437A1 (en) * 2010-09-22 2012-03-29 ダイセル・エボニック株式会社 Powdered sealant and sealing method
WO2013118864A1 (en) * 2012-02-09 2013-08-15 ダイセル・エボニック株式会社 Powdered sealing agent, and sealing method
JP2013163754A (en) * 2012-02-10 2013-08-22 Daicel-Evonik Ltd Powdery sealing agent and sealing method
JP2013163709A (en) * 2012-02-09 2013-08-22 Daicel-Evonik Ltd Powdered sealing agent and sealing method
JP2013544032A (en) * 2010-11-23 2013-12-09 エルジー・ハウシス・リミテッド Sheet for sealing material of solar cell and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303367A (en) * 2007-06-11 2008-12-18 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device using the same
WO2012039437A1 (en) * 2010-09-22 2012-03-29 ダイセル・エボニック株式会社 Powdered sealant and sealing method
JP2012067176A (en) * 2010-09-22 2012-04-05 Daicel-Evonik Ltd Powdery sealant and method for sealing
CN103221455A (en) * 2010-09-22 2013-07-24 大赛路·赢创有限公司 Powdered sealant and sealing method
JP2013544032A (en) * 2010-11-23 2013-12-09 エルジー・ハウシス・リミテッド Sheet for sealing material of solar cell and manufacturing method thereof
WO2013118864A1 (en) * 2012-02-09 2013-08-15 ダイセル・エボニック株式会社 Powdered sealing agent, and sealing method
JP2013163709A (en) * 2012-02-09 2013-08-22 Daicel-Evonik Ltd Powdered sealing agent and sealing method
CN104136539A (en) * 2012-02-09 2014-11-05 大赛路·赢创有限公司 Powdered sealing agent, and sealing method
JP2013163754A (en) * 2012-02-10 2013-08-22 Daicel-Evonik Ltd Powdery sealing agent and sealing method

Similar Documents

Publication Publication Date Title
US7307286B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JP6832193B2 (en) Resin composition and resin-sealed semiconductor device
JP2020125399A (en) Semiconductor sealing resin composition and semiconductor device
EP2147942B1 (en) Epoxy resin composition for optical semiconductor device encapsulation, cured body thereof, and optical semiconductor device using the epoxy resin composition
JP2019176023A (en) Semiconductor-sealing resin composition and semiconductor device
JP2005179582A (en) Resin composition for optical semiconductor encapsulation, preform for optical semiconductor encapsulation and optical semiconductor device
JP2008106180A (en) Resin composition for encapsulating optical semiconductor and optical semiconductor device
JP5242530B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device
JP2003003043A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2014118461A (en) Resin composition for granular semiconductor sealing and semiconductor device
JP2002080698A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2017190425A (en) Granular resin composition for semiconductor sealing and semiconductor device
JP2015227390A (en) Resin composition for encapsulating optical semiconductor and optical semiconductor device
JP7002866B2 (en) Resin composition for encapsulating powdered and granular semiconductors and semiconductor devices
JP3897282B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
TW201705399A (en) Method for producing epoxy resin granule for sealing semiconductor, epoxy resin granule for sealing semiconductor, method for producing semiconductor apparatus, and semiconductor apparatus can accomplish excellent productivity and excellent reliability
KR101758448B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JP2020139070A (en) Sealing resin composition and method for producing the same, and semiconductor device
JP2011037996A (en) Transparent resin composition and method for producing the same, and optical semiconductor device
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JP6276365B2 (en) Method for evaluating meltability of resin composition for encapsulating powdery semiconductor and method for producing resin-encapsulated semiconductor device
JP2005272543A (en) Epoxy resin composition for encapsulating optical semiconductor and optical semiconductor device
JP2008024789A (en) Epoxy resin composition for sealing optical semiconductor and method for producing the same
WO2023176820A1 (en) Resin composition for optical-semiconductor encapsulation, shaped resin object for optical-semiconductor encapsulation, optical-semiconductor encapsulation material, and optical semiconductor device
JP6132308B2 (en) Method for producing resin composition for optical semiconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522