JP2005179465A - Composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane, its manufacturing method and fuel cell - Google Patents

Composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane, its manufacturing method and fuel cell Download PDF

Info

Publication number
JP2005179465A
JP2005179465A JP2003420731A JP2003420731A JP2005179465A JP 2005179465 A JP2005179465 A JP 2005179465A JP 2003420731 A JP2003420731 A JP 2003420731A JP 2003420731 A JP2003420731 A JP 2003420731A JP 2005179465 A JP2005179465 A JP 2005179465A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
solid polymer
composition
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003420731A
Other languages
Japanese (ja)
Inventor
Toshio Oba
敏夫 大庭
Mitsuto Takahashi
光人 高橋
Atsuo Ito
厚雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003420731A priority Critical patent/JP2005179465A/en
Publication of JP2005179465A publication Critical patent/JP2005179465A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for forming a solid polymer electrolyte membrane, which has a high proton conductivity, high proton conductivity even in the operation under a high temperature condition, excels in film formability and can give a high-quality polymer electrolyte membrane by a simple process; to provide the polymer electrolyte membrane obtained with this and its manufacturing method; and to provide a fuel cell using the polymer electrolyte membrane. <P>SOLUTION: The composition for forming the solid polymer electrolyte membrane contains a compound showed by formula (1). The polymer electrolyte membrane composed of a cured membrane of it and the manufacturing method thereof are also provided. In the formula R<SP>1</SP>and R<SP>2</SP>are each a hydrogen atom, a fluorine atom or a 1-4C lower alkyl group; R<SP>3</SP>is a hydrogen atom, a fluorine atom or a methyl group; and Z is a divalent linear, cyclic, alicyclic or bridged alicyclic organic group, whose hydrogens bonded to carbon atoms can wholly or partially be substituted by fluorine atoms. The fuel cell is provided in which the above polymer electrolyte membrane is mounted between the fuel electrode and the air electrode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プロトン伝導度が高く、高温条件下でもプロトン伝導度の低下が小さく、かつ、フィルム形成性に優れ、プロトンを伝導イオン種とするプロトン伝導性膜を与える固体高分子電解質膜形成用組成物、この組成物を硬化させた固体高分子電解質膜及びその製造方法、これを用いた固体電解質型の燃料電池に関する。   The present invention is for forming a solid polymer electrolyte membrane having a high proton conductivity, a small decrease in proton conductivity even under high temperature conditions, excellent film forming properties, and a proton conductive membrane using proton as a conductive ion species. The present invention relates to a composition, a solid polymer electrolyte membrane obtained by curing the composition, a production method thereof, and a solid electrolyte fuel cell using the same.

固体中をイオンが移動する物質は、電気化学素子に不可欠な材料として積極的に研究が行なわれており、Li+、Ag+、H+、F-などの伝導性イオン種のイオン伝導体が見出されている。中でもプロトン(H+)を伝導イオン種とするものは、燃料電池、キャパシター、エレクトロクロミック表示素子への応用が期待されている。特に、燃料電池は、環境への不可が少ないことから、将来において自動車の内燃機関に替わる技術として注目されている。 Substances in which ions move in solids have been actively studied as indispensable materials for electrochemical devices, and ionic conductors of conductive ionic species such as Li + , Ag + , H + , and F have been studied. Has been found. Among them, those using proton (H + ) as a conductive ion species are expected to be applied to fuel cells, capacitors, and electrochromic display elements. In particular, the fuel cell is attracting attention as a technology that will replace the internal combustion engine of an automobile in the future because it is less likely to be in the environment.

また、近年急速に普及した携帯電話で代表される携帯型電子機器の電源としても期待が高まっている。これらの用途で積極的に研究開発がなされている燃料電池は、室温から比較的低温と呼ばれる150℃との間で作動する固体電解質膜型であり、固体電解質膜には、デュポン社製“ナフィオン(登録商標)膜”で代表されるスルフォン化されたパーフルオロアルキルビニルエーテル膜がその高い耐酸化劣化性と高いプロトン伝導性から検討されてきた。   In addition, there is an increasing expectation as a power source for portable electronic devices typified by mobile phones that have rapidly spread in recent years. Fuel cells that have been actively researched and developed for these applications are of the solid electrolyte membrane type that operates between room temperature and 150 ° C., which is called a relatively low temperature. The solid electrolyte membrane includes “Nafion” manufactured by DuPont. A sulfonated perfluoroalkyl vinyl ether membrane represented by “(registered trademark) membrane” has been studied because of its high oxidation deterioration resistance and high proton conductivity.

しかし、発電効率を上げるために作動温度を100℃以上に設定すると、上記ナフィオン膜では、プロトン伝導を促進させる膜中に取り込まれた水によって形成されたドメインが収縮或いは破壊されることによって、プロトン伝導度の低下を招くことが指摘されている。   However, when the operating temperature is set to 100 ° C. or higher in order to increase the power generation efficiency, in the Nafion membrane, the domain formed by the water taken into the membrane that promotes proton conduction contracts or is destroyed, It has been pointed out that this leads to a decrease in conductivity.

また、ゾル−ゲル法による燐酸を導入したアルコキシシランの加水分解物から電解質膜を得ることで、100℃以上の高い作動温度においても高いプロトン伝導性を兼ね備えた材料が、特許文献1(特開2003−217339号公報)に提案されている。   Further, a material having high proton conductivity even at a high operating temperature of 100 ° C. or higher by obtaining an electrolyte membrane from a hydrolyzate of alkoxysilane into which phosphoric acid has been introduced by a sol-gel method is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2003-260260). 2003-217339).

しかし、アルコキシシランの加水分解反応は制御が困難であり、これが過度に進行すると電解質膜としての膜硬度の上昇、膜の脆化を招くことが指摘されている。このため、薄膜を形成する場合、加水分解物の縮合反応は比較的低温で長い時間かけて行なわれており、工業生産に不適な工程を要していた。なお、加水分解及び縮合反応を伴わない系では、親水性であるリン酸を導入することは困難である。従って、膜形成工程が短く、かつ、簡便で100℃以上の高温条件での作動温度にも耐え、高いプロトン伝導性を有する電解質膜は、これまで提案されていなかった。   However, it has been pointed out that the hydrolysis reaction of alkoxysilane is difficult to control, and if this proceeds excessively, the hardness of the electrolyte membrane increases and the membrane becomes brittle. For this reason, when forming a thin film, the condensation reaction of the hydrolyzate has been carried out at a relatively low temperature for a long time, requiring a process unsuitable for industrial production. In a system that does not involve hydrolysis and condensation reactions, it is difficult to introduce phosphoric acid that is hydrophilic. Therefore, an electrolyte membrane that has a short membrane formation process, is simple, can withstand an operating temperature under a high temperature condition of 100 ° C. or higher, and has high proton conductivity has not been proposed.

特開2003−217339号公報JP 2003-217339 A

本発明は、上記事情に鑑みなされたもので、高いプロトン伝導性を有し、高温条件下での作動においても高いプロトン伝導性を有し、フィルム形成性に優れ、簡単な工程で高品質の固体高分子電解質膜を与え得る固体高分子電解質膜形成用組成物、これにより得られる固体高分子電解質膜及びその製造方法、この固体高分子電解質膜を用いた燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, has high proton conductivity, has high proton conductivity even in operation under high temperature conditions, has excellent film formability, and has high quality in a simple process. It is an object to provide a composition for forming a solid polymer electrolyte membrane capable of providing a solid polymer electrolyte membrane, a solid polymer electrolyte membrane obtained thereby, a method for producing the same, and a fuel cell using the solid polymer electrolyte membrane. To do.

本発明者らは、上記目的を達成するために鋭意検討を行った結果、下記一般式(1)で示される化合物を含有する組成物を硬化させて硬化膜を形成することにより、高いプロトン伝導性を有し、100℃以上の高温条件下での作動においてもプロトン伝導度の低下が小さく、フィルム形成性に優れた固体高分子電解質膜を簡便な工程で、かつ短時間で得ることができること、この固体高分子電解質膜を燃料極と空気極の間に設けることで、高性能の燃料電池とすることができることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention cured a composition containing a compound represented by the following general formula (1) to form a cured film, thereby achieving high proton conductivity. A solid polymer electrolyte membrane that has excellent properties and has a small decrease in proton conductivity even under operation at a high temperature of 100 ° C. or higher, and excellent film-forming properties, in a simple process and in a short time. The present inventors have found that a high-performance fuel cell can be obtained by providing the solid polymer electrolyte membrane between the fuel electrode and the air electrode, and the present invention has been made.

従って、本発明は、下記の固体高分子電解質膜形成用組成物、固体高分子電解質膜及びその製造方法、燃料電池を提供する。   Therefore, the present invention provides the following composition for forming a solid polymer electrolyte membrane, a solid polymer electrolyte membrane, a method for producing the same, and a fuel cell.

(i)下記一般式(1)で示される化合物を含有してなることを特徴とする固体高分子電解質膜形成用組成物。 (I) A composition for forming a solid polymer electrolyte membrane, comprising a compound represented by the following general formula (1).

Figure 2005179465

(式中、R1,R2はそれぞれ水素原子、フッ素原子又は炭素数1〜4の低級アルキル基、R3は水素原子、フッ素原子又はメチル基であり、Zは2価の直鎖状、環式、脂環式又は有橋脂環式の有機基で、炭素原子に結合した水素原子の一部又は全てがフッ素原子で置換されていても良い。)
Figure 2005179465

(Wherein R 1 and R 2 are each a hydrogen atom, a fluorine atom or a lower alkyl group having 1 to 4 carbon atoms, R 3 is a hydrogen atom, a fluorine atom or a methyl group, Z is a divalent straight chain, (In the cyclic, alicyclic or bridged alicyclic organic group, some or all of the hydrogen atoms bonded to the carbon atom may be substituted with fluorine atoms.)

(ii)上記の固体高分子電解質膜形成用組成物を硬化させることにより得られる硬化膜からなることを特徴とする固体高分子電解質膜。
(iii) 上記の固体高分子電解質膜が燃料極と空気極の間に設けられていることを特徴とする燃料電池。
(iv) 上記一般式(1)で示される化合物を含有してなる固体高分子電解質膜形成用組成物を放射線照射又は加熱硬化により硬化させ、硬化膜を形成することを特徴とする固体高分子電解質膜の製造方法。
(Ii) A solid polymer electrolyte membrane comprising a cured film obtained by curing the composition for forming a solid polymer electrolyte membrane.
(Iii) A fuel cell, wherein the solid polymer electrolyte membrane is provided between a fuel electrode and an air electrode.
(Iv) Solid polymer electrolyte film-forming composition containing the compound represented by the general formula (1) is cured by irradiation or heat curing to form a cured film. Manufacturing method of electrolyte membrane.

本発明の固体高分子電解質膜形成用組成物は、プロトン伝導度が高く、高温条件下でもプロトン伝導度の低下が小さく、かつ、フィルム形成性に優れ、高いプロトン伝導性を有する高品質の固体高分子電解質膜を簡単な工程で短時間に与えることができるものであり、この固体高分子電解質膜を用いることで、非常に高性能の固体電解質型の燃料電池とすることができる。   The composition for forming a solid polymer electrolyte membrane of the present invention is a high-quality solid having high proton conductivity, small decrease in proton conductivity even under high temperature conditions, excellent film-forming properties, and high proton conductivity. The polymer electrolyte membrane can be applied in a short time by a simple process. By using this solid polymer electrolyte membrane, a very high performance solid electrolyte fuel cell can be obtained.

以下、本発明につき更に詳しく説明する。
本発明の固体高分子電解質膜形成用組成物は、固体高分子電解質膜を得ることができる溶液状の組成物であり、下記一般式(1)で示される化合物を含有するものである。
Hereinafter, the present invention will be described in more detail.
The composition for forming a solid polymer electrolyte membrane of the present invention is a solution-like composition from which a solid polymer electrolyte membrane can be obtained, and contains a compound represented by the following general formula (1).

Figure 2005179465
Figure 2005179465

上記式中、R1,R2はそれぞれ水素原子、フッ素原子又は炭素数1〜4の低級アルキル基であり、低級アルキル基としては、例えばメチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基が挙げられる。また、R3は水素原子、フッ素原子又はメチル基である。 In the above formula, R 1 and R 2 are each a hydrogen atom, a fluorine atom or a lower alkyl group having 1 to 4 carbon atoms. Examples of the lower alkyl group include a methyl group, an ethyl group, a propyl group, an n-butyl group, A tert-butyl group is mentioned. R 3 is a hydrogen atom, a fluorine atom or a methyl group.

Zは2価の直鎖状、環式、脂環式又は有橋脂環式の好ましくは炭素数1〜18の有機基であり、炭素原子に結合した水素原子の一部又は全てがフッ素原子で置換されていても良い。この場合、2価の直鎖状の有機基としては、炭素数1〜6のアルキレン基が挙げられ、例えばメチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。
2価の環式置換基としては、フェニレン基、トリレン基等、脂環式置換基としては、シクロヘキシレン基等、有橋脂環式置換基としては、アダマンタン−ジイル基、ノルボルネン−ジイル基等を挙げることができ、置換基Zをこのような有橋脂環式置換基とすると、電解質膜の硬度をより改善することができる。
Z is a divalent linear, cyclic, alicyclic or bridged alicyclic, preferably an organic group having 1 to 18 carbon atoms, and some or all of the hydrogen atoms bonded to the carbon atom are fluorine atoms. It may be replaced with. In this case, examples of the divalent linear organic group include an alkylene group having 1 to 6 carbon atoms, such as a methylene group, an ethylene group, a propylene group, and a butylene group.
Examples of the divalent cyclic substituent include a phenylene group and a tolylene group. Examples of the alicyclic substituent include a cyclohexylene group. Examples of the bridged alicyclic substituent include an adamantane-diyl group and a norbornene-diyl group. When the substituent Z is such a bridged alicyclic substituent, the hardness of the electrolyte membrane can be further improved.

置換基Zとしては、上記直鎖状、環式、脂環式又は有橋脂環式の有機基の炭素原子に結合した水素原子の一部又は全部がフッ素原子で置換されていてもよい   As the substituent Z, a part or all of the hydrogen atoms bonded to the carbon atoms of the linear, cyclic, alicyclic or bridged alicyclic organic group may be substituted with fluorine atoms.

本発明において、より好ましい上記式(1)の化合物としては、R1,R2が水素原子、R3がメチル基で、Zがアルキレン基で構成されるメタクリロキシアルキルフォスフェート、R1,R2,Zが上記と同様で、R3が水素原子であるアクリロキシアルキルフォスフェートが挙げられる。また、上記置換基Zの炭素原子に結合した水素原子の一部又は全部をフッ素原子で置換した化合物も、耐酸化劣化性を改善させ得ることから、本発明においてより好ましい化合物である。 In the present invention, more preferred compounds of the formula (1), R 1, R 2 is a hydrogen atom, R 3 is a methyl group, Z is composed of an alkylene group methacryloxy alkyl phosphate, R 1, R 2 and Z are the same as described above, and acryloxyalkyl phosphates in which R 3 is a hydrogen atom are exemplified. A compound in which a part or all of the hydrogen atoms bonded to the carbon atom of the substituent Z is substituted with a fluorine atom is also a more preferable compound in the present invention because it can improve oxidation resistance.

なお、本発明組成物においては、上記式(1)の化合物に、グリシジルメタクリレート、N−メチロールアクリルアミド、ポリテトラメチレングリコール(PTMG)−ウレタンアクリレートなどの(メタ)アクリル酸の誘導体を添加して、(メタ)アクリレートとの共重合物としてもよい。   In the composition of the present invention, a derivative of (meth) acrylic acid such as glycidyl methacrylate, N-methylol acrylamide, polytetramethylene glycol (PTMG) -urethane acrylate is added to the compound of the above formula (1), It is good also as a copolymer with (meth) acrylate.

本発明の電解質膜形成用組成物は、上記式(1)の化合物を主成分とするもので、その含有量は、組成物全体の10〜100%(質量%、以下同様)、特に50〜100%であることが好ましい。含有量が少なすぎると、満足な配合効果が得られず、本発明の目的を達成できない場合がある。   The composition for forming an electrolyte membrane of the present invention is mainly composed of the compound of the above formula (1), and the content thereof is 10 to 100% (mass%, the same applies hereinafter), particularly 50 to 50% of the entire composition. 100% is preferred. If the content is too small, a satisfactory blending effect cannot be obtained, and the object of the present invention may not be achieved.

本発明の組成物には、上記必須成分以外に、粘度調整のためにプロピレングリコールモノメチルエーテルアセテート、エチルラクテートなどの溶剤を加えても良い。なお、溶剤の含有量は、組成物全体の1〜50%程度が好適である。   In addition to the above essential components, a solvent such as propylene glycol monomethyl ether acetate or ethyl lactate may be added to the composition of the present invention to adjust the viscosity. In addition, about 1 to 50% of the whole composition is suitable for content of a solvent.

更に、上記組成物は、フッ素系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤といった各種界面活性剤を含有していても良い。その配合量は、組成物全体の0.1〜5%の範囲とすることが望ましい。   Furthermore, the composition may contain various surfactants such as a fluorine-based surfactant, an anionic surfactant, a cationic surfactant, and a nonionic surfactant. The blending amount is desirably in the range of 0.1 to 5% of the entire composition.

本発明の固体高分子電解質膜形成用組成物は、放射線の照射、加熱硬化などにより硬化させて、硬化膜を形成でき、この硬化膜は固体高分子電解質膜として有効に利用することができる。   The composition for forming a solid polymer electrolyte membrane of the present invention can be cured by irradiation with radiation, heat curing or the like to form a cured film, and this cured film can be effectively used as a solid polymer electrolyte membrane.

この場合、硬化膜(固体高分子電解質膜)は、通常の方法を採用して得ることができ、例えば本発明組成物をドクターブレード法、カレンダーロール法などによりポリエチレン製等のベースフィルム上に塗布後、放射線を照射することにより、又は加熱硬化により硬化した後、ベースフィルム上から当該塗布膜を剥離することにより得ることができる。また、カーボン製等の電極板上に固体電解質膜形成用組成物を薄く塗布した後、放射線照射又は加熱硬化により硬化させることで、電極板上に直接、固体高分子電解質膜を形成することも選択できる。なお、膜厚は、5〜200μm、特に10〜50μmが好適である。   In this case, the cured film (solid polymer electrolyte membrane) can be obtained by adopting an ordinary method. For example, the composition of the present invention is applied on a base film made of polyethylene or the like by a doctor blade method, a calender roll method or the like. Thereafter, it can be obtained by irradiating with radiation or by curing by heat curing, and then peeling the coating film from the base film. Alternatively, a solid polymer electrolyte membrane may be formed directly on the electrode plate by thinly applying the composition for forming a solid electrolyte membrane on an electrode plate made of carbon or the like and then curing it by irradiation or heat curing. You can choose. The film thickness is preferably 5 to 200 μm, particularly 10 to 50 μm.

放射線による固体高分子電解質膜形成用組成物の硬化においては、放射線として電子線、ガンマー線、紫外線等が好ましく使用できるが、特に、装置が簡便である紫外線、電子線を用いた硬化処理が好適である。   In the curing of the polymer electrolyte membrane forming composition by radiation, electron beams, gamma rays, ultraviolet rays and the like can be preferably used as the radiation, but a curing treatment using ultraviolet rays and electron beams is particularly suitable because the apparatus is simple. It is.

電子線の加速電圧は、50〜1,000kV、特に100〜300kVが好ましい。放射線の吸収線量は、1kGy以上、特に5〜100kGy、とりわけ10〜30kGyとすることが好ましく、1kGy未満では満足に硬化しない場合があり、100kGyを越えると組成物が脆くなる場合がある。   The acceleration voltage of the electron beam is preferably 50 to 1,000 kV, particularly preferably 100 to 300 kV. The absorbed dose of radiation is preferably 1 kGy or more, particularly 5 to 100 kGy, and particularly preferably 10 to 30 kGy. If it is less than 1 kGy, it may not be cured satisfactorily, and if it exceeds 100 kGy, the composition may become brittle.

更に、放射線の照射は、ヘリウム、窒素、アルゴンガスなどの不活性ガス雰囲気中で行うのが好ましく、該ガス中の酸素濃度は100ppm以下、より好ましくは50ppm以下が好ましいが、必ずしも酸素不在下で行う必要はない。放射線を照射する温度は、室温(20〜40℃)付近乃至それ以下でよい。   Further, the irradiation with radiation is preferably performed in an inert gas atmosphere such as helium, nitrogen, and argon gas, and the oxygen concentration in the gas is preferably 100 ppm or less, more preferably 50 ppm or less, but it is not necessarily in the absence of oxygen. There is no need to do it. The temperature at which the radiation is applied may be around room temperature (20 to 40 ° C.) or lower.

加熱による固体高分子電解質膜形成用組成物の硬化は、固体高分子電解質膜形成用組成物に、過酸化ベンゾイル等の有機過酸化物、アゾイソブチロニトリルなどのラジカル重合触媒を触媒量添加して、加熱硬化させることができる。なお、前記触媒の添加量は、0.1〜10%が好ましい。   Curing of the polymer electrolyte membrane forming composition by heating adds a catalytic amount of a radical polymerization catalyst such as an organic peroxide such as benzoyl peroxide or azoisobutyronitrile to the polymer electrolyte membrane forming composition. Then, it can be cured by heating. The added amount of the catalyst is preferably 0.1 to 10%.

この場合、加熱源としては、特に制限はないが、赤外線ランプが好ましく、加熱硬化条件は、50〜200℃で10〜180秒とすることができる。   In this case, although there is no restriction | limiting in particular as a heat source, an infrared lamp is preferable and heat-hardening conditions can be 10 to 180 second at 50-200 degreeC.

本発明の燃料電池は、燃料極と空気極の間に上記固体高分子電解質膜が設けられているもので、固体電解質型の燃料電池として利用できる。なお、燃料極、空気極の構成、材質、燃料電池の構成は公知のものとすることができるが、燃料としては、メタノールと水との混合溶液、酸化剤としては空気がより望ましい形態である。   The fuel cell of the present invention is provided with the solid polymer electrolyte membrane between a fuel electrode and an air electrode, and can be used as a solid electrolyte fuel cell. The configuration and material of the fuel electrode and the air electrode and the configuration of the fuel cell can be known ones, but the fuel is a mixed solution of methanol and water, and the oxidant is preferably air. .

固体電解質型燃料電池は、固体電解質を隔膜とし、この固体電解質膜の両面には、触媒金属を含む触媒層、電気伝導性の電極層が積層又は配置され、固体電解質膜の一方の面には燃料となる液体或いは気体が供給される流路を備え、他方の面には酸化剤となる液体或いは気体が供給されるものである。   In a solid oxide fuel cell, a solid electrolyte is used as a diaphragm, and a catalyst layer containing a catalytic metal and an electrically conductive electrode layer are laminated or disposed on both sides of the solid electrolyte membrane, and one surface of the solid electrolyte membrane is provided. A flow path through which liquid or gas serving as fuel is supplied is provided, and liquid or gas serving as an oxidant is supplied to the other surface.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to the following Example.

[実施例1]
日本化薬社製メタアクリロキシエチルフォスフェート(分子量196)をアプリケーターに取り、ガラス板上で塗布膜厚50μmの膜を形成した。この試料に加速電圧100kV、電流2.5mAの条件下で30kGyの電子線を酸素濃度30ppm以下の環境下で照射することで、硬化膜を得た。この膜を純水に24時間浸漬後、インピーダンス ゲイン フェイズ アナライザー 1260(Schulumberger Technologies社製)により、4探針法により電解質膜のプロトン伝導度を測定した。得られたプロトン伝導度は7.7×10-3S/cmであった。
[Example 1]
Methacryloxyethyl phosphate (molecular weight 196) manufactured by Nippon Kayaku Co., Ltd. was taken in an applicator, and a film with a coating thickness of 50 μm was formed on a glass plate. This sample was irradiated with an electron beam of 30 kGy under the conditions of an acceleration voltage of 100 kV and a current of 2.5 mA in an environment with an oxygen concentration of 30 ppm or less to obtain a cured film. After immersing this membrane in pure water for 24 hours, the proton conductivity of the electrolyte membrane was measured by a four-probe method using an impedance gain phase analyzer 1260 (manufactured by Schulberger Technologies). The proton conductivity obtained was 7.7 × 10 −3 S / cm.

イオン交換容量の測定は、常法に従い滴定により行なった。得られた電解質膜を、水酸化ナトリウム 5×10-4モル濃度の溶液に浸漬させ、50℃で6時間の処理後、残存する水酸化ナトリウム量を塩酸による中和滴定で求めた。イオン交換容量は、消費された水酸化ナトリウム量として算出された。得られたイオン交換容量は4.25meq/gであった。 The ion exchange capacity was measured by titration according to a conventional method. The obtained electrolyte membrane was immersed in a 5 × 10 −4 molar sodium hydroxide solution, treated for 6 hours at 50 ° C., and the amount of residual sodium hydroxide was determined by neutralization titration with hydrochloric acid. The ion exchange capacity was calculated as the amount of sodium hydroxide consumed. The obtained ion exchange capacity was 4.25 meq / g.

[比較例1]
テトラメトキシシラン13mLと蒸留水9mLとエタノール5mLと0.1mol/Lの塩酸水溶液7mLとをビーカー中で混合し、テトラメトキシシランの加水分解反応を室温にて1時間進行させた後、この混合溶液にテトラメトキシリン酸を2.0mL加え、更に1時間攪拌した。その後、更にホルムアミドを10mL加え、1時間攪拌した後、ビーカー内の部分重縮合物をポリ容器に入れた。そのまま、3週間の間室温で静置させ、重縮合反応を進行させた。ポリ容器内の重縮合物を取り出し、乾燥させた後、マッフル炉を用いて、600℃で2時間焼結を行ない、ゾル−ゲル法による電解質材料を得た。このガラスのイオン伝導度は2×10-3S/cmであった。イオン交換容量は1meq/gであった。
[Comparative Example 1]
13 mL of tetramethoxysilane, 9 mL of distilled water, 5 mL of ethanol, and 7 mL of 0.1 mol / L hydrochloric acid aqueous solution were mixed in a beaker, and the hydrolysis reaction of tetramethoxysilane was allowed to proceed at room temperature for 1 hour, and then this mixed solution The tetramethoxyphosphoric acid 2.0mL was added to, and it stirred for further 1 hour. Thereafter, 10 mL of formamide was further added and stirred for 1 hour, and then the partial polycondensate in the beaker was placed in a plastic container. The polycondensation reaction was allowed to proceed at room temperature for 3 weeks. The polycondensate in the plastic container was taken out and dried, and then sintered at 600 ° C. for 2 hours using a muffle furnace to obtain an electrolyte material by a sol-gel method. The ionic conductivity of this glass was 2 × 10 −3 S / cm. The ion exchange capacity was 1 meq / g.

上記結果より、本発明によれば、式(1)で示される化合物を用いることで、イオン伝導性に優れ、ゾル−ゲル法等による加水分解反応を要せずに、電解質膜の硬化処理が簡便な固体高分子電解質膜形成用組成物を提供できることが確認できた。
From the above results, according to the present invention, by using the compound represented by the formula (1), the ionic conductivity is excellent, and the electrolyte membrane can be cured without requiring a hydrolysis reaction by a sol-gel method or the like. It was confirmed that a simple composition for forming a solid polymer electrolyte membrane can be provided.

Claims (6)

下記一般式(1)で示される化合物を含有してなることを特徴とする固体高分子電解質膜形成用組成物。
Figure 2005179465

(式中、R1,R2はそれぞれ水素原子、フッ素原子又は炭素数1〜4の低級アルキル基、R3は水素原子、フッ素原子又はメチル基であり、Zは2価の直鎖状、環式、脂環式又は有橋脂環式の有機基で、炭素原子に結合した水素原子の一部又は全てがフッ素原子で置換されていても良い。)
A composition for forming a solid polymer electrolyte membrane, comprising a compound represented by the following general formula (1).
Figure 2005179465

(Wherein R 1 and R 2 are each a hydrogen atom, a fluorine atom or a lower alkyl group having 1 to 4 carbon atoms, R 3 is a hydrogen atom, a fluorine atom or a methyl group, Z is a divalent straight chain, (In the cyclic, alicyclic or bridged alicyclic organic group, some or all of the hydrogen atoms bonded to the carbon atom may be substituted with fluorine atoms.)
請求項1記載の固体高分子電解質膜形成用組成物を硬化させることにより得られる硬化膜からなることを特徴とする固体高分子電解質膜。   A solid polymer electrolyte membrane comprising a cured film obtained by curing the composition for forming a solid polymer electrolyte membrane according to claim 1. 放射線の照射により硬化させてなる請求項2記載の固体高分子電解質膜。   The solid polymer electrolyte membrane according to claim 2, which is cured by irradiation with radiation. 加熱硬化により硬化させてなる請求項2記載の固体高分子電解質膜。   The solid polymer electrolyte membrane according to claim 2, which is cured by heat curing. 請求項2、3又は4記載の固体高分子電解質膜が、燃料極と空気極の間に設けられていることを特徴とする燃料電池。   5. A fuel cell, wherein the solid polymer electrolyte membrane according to claim 2, 3 or 4 is provided between a fuel electrode and an air electrode. 下記一般式(1)で示される化合物を含有してなる固体高分子電解質膜形成用組成物を放射線照射又は加熱硬化により硬化させ、硬化膜を形成することを特徴とする固体高分子電解質膜の製造方法。
Figure 2005179465

(式中、R1,R2はそれぞれ水素原子、フッ素原子又は炭素数1〜4の低級アルキル基、R3は水素原子、フッ素原子又はメチル基であり、Zは2価の直鎖状、環式、脂環式又は有橋脂環式の有機基で、炭素原子に結合した水素原子の一部又は全てがフッ素原子で置換されていても良い。)
A solid polymer electrolyte membrane comprising a compound represented by the following general formula (1) for curing a solid polymer electrolyte membrane-forming composition by irradiation or heat curing to form a cured membrane. Production method.
Figure 2005179465

(Wherein R 1 and R 2 are each a hydrogen atom, a fluorine atom or a lower alkyl group having 1 to 4 carbon atoms, R 3 is a hydrogen atom, a fluorine atom or a methyl group, Z is a divalent straight chain, (In the cyclic, alicyclic or bridged alicyclic organic group, part or all of the hydrogen atoms bonded to the carbon atom may be substituted with fluorine atoms.)
JP2003420731A 2003-12-18 2003-12-18 Composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane, its manufacturing method and fuel cell Pending JP2005179465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420731A JP2005179465A (en) 2003-12-18 2003-12-18 Composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane, its manufacturing method and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420731A JP2005179465A (en) 2003-12-18 2003-12-18 Composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane, its manufacturing method and fuel cell

Publications (1)

Publication Number Publication Date
JP2005179465A true JP2005179465A (en) 2005-07-07

Family

ID=34782175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420731A Pending JP2005179465A (en) 2003-12-18 2003-12-18 Composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane, its manufacturing method and fuel cell

Country Status (1)

Country Link
JP (1) JP2005179465A (en)

Similar Documents

Publication Publication Date Title
JP4430618B2 (en) Proton conductive membrane, method for producing the same, and fuel cell using the same
JP3875256B2 (en) Proton conductive membrane, method for producing the same, and fuel cell using the same
JP4847577B2 (en) Membrane-electrode bonding agent, proton conductive membrane with bonding layer, membrane-electrode assembly, polymer electrolyte fuel cell, and method for producing membrane-electrode assembly
CN1786047A (en) Polymer electrolyte and fuel cell employing the same
JP2006054176A (en) Electrode for polymer electrolyte fuel cell, manufacturing method of electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
Das et al. Crosslinked poly (vinyl alcohol) membrane as separator for domestic wastewater fed dual chambered microbial fuel cells
CN101039991A (en) Proton-conducting material, solid polymer electrolyte membrane, and fuel cell
JP4107116B2 (en) Proton conducting material, proton conducting material membrane, and fuel cell
JP2009181788A (en) Manufacturing method of electrolyte membrane, electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP4874387B2 (en) Proton conductive membrane, membrane-electrode assembly, and polymer electrolyte fuel cell
JP4394906B2 (en) FUEL CELL ELECTRODE, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
CN111100328A (en) Modified inorganic nano particle, polymer mixed slurry, composite membrane and preparation method
JP2004186120A (en) Solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell
JPH08180891A (en) Thin film electrolyte for ordinary temperature type fuel cell and ordinary temperature type fuel cell
JP2005179465A (en) Composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane, its manufacturing method and fuel cell
WO2004097850A1 (en) Proton-conductive film, process for producing the same, and fuel cell empolying the proton-conductive film
CN114824268A (en) Hydrophobic protective layer on surface of negative electrode of metal-air battery and preparation method and application thereof
JP2009099564A (en) Proton conductive material, membrane-electrode binder, proton conductive film, proton conductive film with bond layer, membrane-electrode assembly, and polymer electrolyte fuel cell
CN101983450B (en) Electrode for fuel cell, method for manufacturing the electrode, and fuel cell using the electrode
JP4643132B2 (en) Proton conductive membrane, method for producing the same, and fuel cell using the same
KR101019581B1 (en) Polymer electrolyte composite membrane crosslinked by water soluble monomers for polymer electrolyte fuel cells and preparation method thereof
JP5162903B2 (en) Anion exchange type electrolyte composition, solid electrolyte membrane and fuel cell
Sezgin et al. An investigation of proton conductivity of vinyltriazole-grafted PVDF proton exchange membranes prepared via photoinduced grafting
JP2004152593A (en) Manufacturing method of membrane for solid polymer fuel cell and electrode junction
US20100239944A1 (en) Solid polymer electrolyte membrane, method for production of solid polymer electrolyte membrane, and fuel cell