JP2005177850A - Member for aluminum molten metal, and its production method - Google Patents

Member for aluminum molten metal, and its production method Download PDF

Info

Publication number
JP2005177850A
JP2005177850A JP2003425479A JP2003425479A JP2005177850A JP 2005177850 A JP2005177850 A JP 2005177850A JP 2003425479 A JP2003425479 A JP 2003425479A JP 2003425479 A JP2003425479 A JP 2003425479A JP 2005177850 A JP2005177850 A JP 2005177850A
Authority
JP
Japan
Prior art keywords
silicon nitride
molten aluminum
porous layer
sintered body
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003425479A
Other languages
Japanese (ja)
Inventor
Sukezou Tsuruzono
佐蔵 鶴薗
Takeo Fukutome
武郎 福留
Tetsuo Sata
哲郎 佐多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003425479A priority Critical patent/JP2005177850A/en
Publication of JP2005177850A publication Critical patent/JP2005177850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for aluminum molten metal which has no sticking of aluminum and is hard to be peeled, and to provide a production method for producing the member by a simple method. <P>SOLUTION: The member for aluminum molten metal is obtained by providing the surface of a substrate 1 composed of a silicon nitride sintered compact comprising a sintering auxiliary by 1 to 20 mass% and having a relative density of ≥98% with silicon nitride crystals 3 having the grain size substantially same as that of the silicon nitride sintered compact in the substrate 1, and a porous layer 5 comprising voids 4 three-dimensionally continuously formed on the grain boundaries of the silicon nitride crystals 3, and in which the silicon nitride crystals 3 are three-dimensionally connected with each other. Preferably, the thickness of the porous layer 5 is ≥10 μm, 1 to 20 mass% of at least one kind selected from the group 3a elements in the periodic table is comprised as the sintering auxiliary, and the cutting strength at the inside from room temperature to 1,200°C in the silicon nitride sintered compact is ≥500 MPa. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はアルミニウム合金等の溶融金属と接触して使用される、ヒータチューブ、ストーク、熱伝対保護管、脱ガス用ロータ、鋳型等の鋳造用冶具や、ダイカストスリーブ又はプランジャーチップ等のアルミニウム溶湯用部材及びその製造方法に関する。   The present invention is used in contact with a molten metal such as an aluminum alloy, such as a heater tube, a stalk, a thermocouple protection tube, a degassing rotor, a casting jig such as a mold, or an aluminum such as a die casting sleeve or a plunger tip. It is related with the member for molten metal, and its manufacturing method.

アルミニウムは、これまでの鋳鉄などの金属に変わり、軽量な金属として各種の分野で利用されている。例えば、自動車の軽量化が環境問題などと関連して強く要求されていおり、車体部品のアルミニウム化が進められつつある。   Aluminum is used in various fields as a lightweight metal instead of conventional metals such as cast iron. For example, there is a strong demand for reducing the weight of automobiles in relation to environmental issues, and the use of aluminum for car body parts is being promoted.

このようなアルミニウム部品は、通常アルミニウムの鋳造により製造されている。アルミニウムの溶解、鋳造において例えばアルミニウム溶湯を鋳型内に供給するためのストークやアルミニウム溶湯の温度を測定するための熱電対保護管などは、近年耐食性、耐熱衝撃性に優れた材料としてセラミック焼結体が注目され、そのなかでも窒化珪素焼結体はその高温強度や、耐熱衝撃性に優れることから溶湯部材としての利用が進められている。   Such aluminum parts are usually manufactured by casting aluminum. In the melting and casting of aluminum, for example, stalks for supplying molten aluminum into a mold and thermocouple protective tubes for measuring the temperature of molten aluminum are ceramic sintered bodies as materials having excellent corrosion resistance and thermal shock resistance in recent years. Among them, the silicon nitride sintered body is being used as a molten metal member because of its high temperature strength and thermal shock resistance.

窒化珪素焼結体においてもアルミニウム合金と反応し、治具表面にアルミ合金が付着するという問題があった。   The silicon nitride sintered body also has a problem that it reacts with the aluminum alloy and the aluminum alloy adheres to the jig surface.

この問題を解決するためにMgを含有する窒化珪素焼結体で構成されるアルミニウム溶解・鋳造用窒化珪素質部品が提案されている(たとえば特許文献1参照)。   In order to solve this problem, there has been proposed a silicon nitride-based component for melting and casting aluminum composed of a silicon nitride sintered body containing Mg (see, for example, Patent Document 1).

また、YとAlを含有し、表面のAl濃度を高くした窒化珪素焼結体が提案されている(たとえば特許文献2参照)。   Further, a silicon nitride sintered body containing Y and Al and having a high Al concentration on the surface has been proposed (see, for example, Patent Document 2).

一方、窒化珪素焼結体の表面に金属珪素粉末を塗布した後、窒素雰囲気中でエッチング処理して、前記金属珪素を窒化することにより表面に多孔質層を形成したアルミニウム溶湯用部材が提案されている(たとえば特許文献3参照)。
特開平6−322457 特開平8−73286 特開平7−10664
On the other hand, a molten aluminum member is proposed in which a metal silicon powder is applied to the surface of a silicon nitride sintered body and then etched in a nitrogen atmosphere to nitride the metal silicon to form a porous layer on the surface. (For example, refer to Patent Document 3).
JP-A-6-322457 JP-A-8-73286 JP 7-10664 A

しかしながら、特許文献1に記載のアルミニウム溶解・鋳造用窒化珪素質部品及び特許文献2に記載の窒化珪素焼結体は、アルミニウム系合金が治具表面に付着するという問題があった。   However, the silicon nitride component for melting and casting aluminum described in Patent Document 1 and the silicon nitride sintered body described in Patent Document 2 have a problem that an aluminum-based alloy adheres to the jig surface.

また、特許文献3記載の表面に多孔質層を形成したアルミニウム溶湯用部材はアルミダイカスト法などのように表面に高い圧力が加わった場合、表面の多孔質層と基体の密着強度が低い為、多孔質層が剥がれやすいという問題があった。   Moreover, when a high pressure is applied to the surface of the molten aluminum member in which a porous layer is formed on the surface described in Patent Document 3 such as an aluminum die casting method, the adhesion strength between the porous layer on the surface and the substrate is low. There was a problem that the porous layer was easily peeled off.

したがって、本発明は、アルミニウムの付着がなく、剥離しにくいアルミ溶湯用部材を提供するとともに、かかる部材を簡便な方法で作製することのできる製造方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a member for molten aluminum that does not adhere to aluminum and is difficult to peel off, and to provide a manufacturing method capable of producing such a member by a simple method.

本発明のアルミニウム溶湯用部材は、焼結助剤を1〜20質量%含み、相対密度98%以上の窒化珪素焼結体からなる基体の表面に、該基体の窒化珪素焼結体の平均粒径と実質的に略同一な平均粒径を有する窒化珪素結晶と、該窒化珪素結晶の粒界に3次元的に連続して形成された空隙を含む多孔質層と、が設けられてなることを特徴とするものである。   The member for molten aluminum of the present invention comprises 1-20% by mass of a sintering aid, and the average grain size of the silicon nitride sintered body of the substrate is formed on the surface of the silicon nitride sintered body having a relative density of 98% or more. A silicon nitride crystal having an average particle diameter substantially the same as the diameter, and a porous layer including voids formed three-dimensionally continuously at the grain boundaries of the silicon nitride crystal; It is characterized by.

多孔質層の厚みが10μm以上であることが好ましい。   The thickness of the porous layer is preferably 10 μm or more.

焼結助剤として周期律表第3a族元素の少なくとも1種を1〜20質量%含むことが好ましい。   It is preferable that 1-20 mass% of at least 1 sort (s) of a periodic table group 3a element is included as a sintering auxiliary agent.

前記窒化珪素焼結体の室温から1200℃までの内部の切り出し強度が500MPa以上であることが好ましい。   The internal cutting strength of the silicon nitride sintered body from room temperature to 1200 ° C. is preferably 500 MPa or more.

かかるアルミニウム溶湯用部材の製造方法としては、焼結助剤を1〜20質量%含み、相対密度98%以上の窒化珪素焼結体の少なくとも溶融アルミニウムと直接接する表面を、腐食ガスによるエッチング処理を行ない、焼結助剤及び不純物を含む粒界相を除去し、窒化珪素結晶の粒界に3次元的に連続して形成された空隙を含む多孔質層を形成することを特徴とするものである。   As a method for producing such a member for molten aluminum, an etching treatment with a corrosive gas is performed on at least a surface of a silicon nitride sintered body containing 1 to 20% by mass of a sintering aid and having a relative density of 98% or more in direct contact with molten aluminum. And removing a grain boundary phase containing a sintering aid and impurities to form a porous layer including voids formed continuously three-dimensionally at the grain boundaries of the silicon nitride crystal. is there.

前記腐食ガスがハロゲンガス及び/又は水素であることが好ましい。   The corrosive gas is preferably a halogen gas and / or hydrogen.

前記エッチング処理を800〜1900℃の温度で行うことが好ましい。   The etching treatment is preferably performed at a temperature of 800 to 1900 ° C.

前記エッチング処理をプラズマ中で行うことが好ましい。   The etching process is preferably performed in plasma.

本発明のアルミ溶湯部材は、アルミニウム系合金の付着が窒化珪素焼結体中に含まれる焼結助剤成分とアルミニウム系合金の反応によるものであり、緻密な窒化珪素焼結体表面の焼結助剤を含む粒界相を除去することにより、空隙が粒界に3次元的に連続する多孔質層を形成し、且つ基体と多孔質層の窒化珪素結晶が略同一な平均粒径とすることができ、溶融アルミニウム系合金との反応を低減できるとの新規の知見に基づくものである。その結果、アルミニウム系合金の付着を低減でき、剥離しにくいアルミニウム溶湯部材を作製することができる。   In the molten aluminum member of the present invention, the adhesion of the aluminum-based alloy is due to the reaction between the sintering aid component contained in the silicon nitride sintered body and the aluminum-based alloy, and the surface of the dense silicon nitride sintered body is sintered. By removing the grain boundary phase containing the auxiliary agent, a porous layer in which voids are three-dimensionally continuous with the grain boundary is formed, and the silicon nitride crystals of the substrate and the porous layer have substantially the same average particle diameter. This is based on a new finding that the reaction with the molten aluminum alloy can be reduced. As a result, it is possible to reduce the adhesion of the aluminum-based alloy and to produce a molten aluminum member that is difficult to peel off.

また、表層の多孔質層の厚みが10μm以上である場合、充分にアルミ系合金との反応を抑制できる。   Moreover, when the thickness of the porous layer of a surface layer is 10 micrometers or more, reaction with an aluminum type alloy can fully be suppressed.

さらに、焼結助剤として周期律表第3a族元素の少なくとも1種を1〜20質量%含むことにより、焼結性が促進され、緻密な窒化珪素焼結体基体を容易に得ることが出きる。   Furthermore, by containing 1 to 20% by mass of at least one group 3a element in the periodic table as a sintering aid, sinterability is promoted, and a dense silicon nitride sintered body substrate can be easily obtained. Yes.

また、内部の切り出し強度が室温から1200℃まで500MPa以上であるため、耐熱衝撃性、高温での使用が可能となる。   In addition, since the internal cutting strength is 500 MPa or more from room temperature to 1200 ° C., the thermal shock resistance and use at high temperature are possible.

本発明のアルミニウム溶湯用部材の製造方法は、焼結助剤を含む緻密な窒化珪素焼結体表面を、エッチング処理を行って焼結助剤及び不純物を含む粒界相を除去し、窒化珪素結晶と空隙とがそれぞれ3次元的に連続してなる多孔質層を形成するため、アルミニウム系合金の付着がなく、剥離しにくいアルミニウム溶湯部材を作製することができる。   The method for producing a member for molten aluminum according to the present invention includes etching a surface of a dense silicon nitride sintered body containing a sintering aid to remove the grain boundary phase containing the sintering aid and impurities, and silicon nitride. Since a porous layer in which crystals and voids are three-dimensionally continuous is formed, it is possible to produce a molten aluminum member that does not adhere to an aluminum alloy and is difficult to peel off.

ハロゲンガス及び/又は水素を含むガス雰囲気で、800〜1900℃での加熱エッチング処理によって、複雑形状にも対応でき、量産にも適している。   A gas atmosphere containing a halogen gas and / or hydrogen can cope with a complicated shape by a heat etching process at 800 to 1900 ° C. and is suitable for mass production.

前記腐食ガスがハロゲンガス及び/又は水素である場合、窒化珪素結晶の粒界に存在する酸化物層を効率良く除去することができる。   When the corrosive gas is a halogen gas and / or hydrogen, the oxide layer present at the grain boundary of the silicon nitride crystal can be efficiently removed.

前記エッチング処理を800〜1900℃の温度で行う場合、より効率的な粒界相除去を行うことができる。   When the etching process is performed at a temperature of 800 to 1900 ° C., more efficient grain boundary phase removal can be performed.

前記エッチング処理をプラズマ中で行う場合、より低温で、より安全に効率的に粒界相を除去することができる。   When the etching process is performed in plasma, the grain boundary phase can be safely and efficiently removed at a lower temperature.

本発明を、図を用いて説明する。図1は、本発明のアルミ溶湯用部材の表面近傍の組織を示す概略断面図である。   The present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing a structure in the vicinity of the surface of a member for molten aluminum according to the present invention.

図1によれば、本発明のアルミ溶湯用部材は、基体1と、基体1の表面に設けられた多孔質層5と、によって構成される。   According to FIG. 1, the member for molten aluminum of the present invention is constituted by a base 1 and a porous layer 5 provided on the surface of the base 1.

基体1は、焼結助剤を1〜20質量%の割合で含み、相対密度が98%以上の窒化珪素焼結体であることが、耐熱衝撃性及び強度の点から、重要である。特に、基体1の窒化珪素焼結体の強度は、アルミダイキャスト等の高い応力が発生する用途に用いられる場合、信頼性を確保するために、少なくとも室温から1200℃における内部の切り出し強度が500MPa以上であることが望ましい。   It is important from the viewpoint of thermal shock resistance and strength that the substrate 1 is a silicon nitride sintered body containing a sintering aid in a proportion of 1 to 20% by mass and having a relative density of 98% or more. In particular, the strength of the silicon nitride sintered body of the substrate 1 has an internal cut-out strength of 500 MPa at least from room temperature to 1200 ° C. in order to ensure reliability when used in applications where high stress is generated such as aluminum die casting. The above is desirable.

焼結助剤としては、公知の成分を用いることができる。例えば、Y、Er、Yb、Luなどの周規律表第3a族元素の酸化物や、Al、Mgなどの酸化物を用いることができるが、焼結性の促進の点から第3a族元素の酸化物が優れている。これらの焼結助剤成分を酸化物換算の合量が窒化珪素に対して1〜20質量%の割合となるように配合すれば良い。   Known components can be used as the sintering aid. For example, an oxide of a group 3a element such as Y, Er, Yb, or Lu, or an oxide such as Al or Mg can be used. From the viewpoint of promoting sinterability, the group 3a element can be used. The oxide is excellent. What is necessary is just to mix | blend these sintering adjuvant components so that the total amount of oxide conversion may become a ratio of 1-20 mass% with respect to silicon nitride.

焼結助剤の含有量が1質量%未満では充分な強度が得られず、また、20質量%を超えると粒界の絶対量が大きくなるため、多孔質層5による空隙量が増大し、耐衝撃性や表面強度が低下する。そのため、充分な強度を有し、且つ多孔質層5の剥離及び欠損をより改善するため、特に2〜15質量%、更には3〜10質量%であることが望ましい。   If the content of the sintering aid is less than 1% by mass, sufficient strength cannot be obtained, and if it exceeds 20% by mass, the absolute amount of the grain boundary increases, so the amount of voids due to the porous layer 5 increases. Impact resistance and surface strength are reduced. Therefore, in order to have sufficient strength and to further improve the peeling and deficiency of the porous layer 5, the content is particularly preferably 2 to 15% by mass, and more preferably 3 to 10% by mass.

多孔質層5の窒化珪素結晶3の平均粒径は、基体1を構成する窒化珪素焼結体の窒化珪素結晶の平均粒径と略同一であることが重要である。基体1と多孔質層5との窒化珪素結晶の平均粒径を略同一にすることにより、剥離しにくい構造となり、また、強度の極端な低下も招かない。なお、本発明における上記略同一とは、多孔質層5の窒化珪素結晶3の平均粒径Aが、基体1の窒化珪素結晶の平均粒径Aに対して0.95A≦A≦1.05A関係式を満たす程度の値を意味する。 It is important that the average particle diameter of the silicon nitride crystal 3 of the porous layer 5 is substantially the same as the average particle diameter of the silicon nitride crystal of the silicon nitride sintered body constituting the substrate 1. By making the average particle diameters of the silicon nitride crystals of the substrate 1 and the porous layer 5 substantially the same, the structure is difficult to peel off, and the strength is not drastically reduced. Note that the above-mentioned substantially the same in the present invention, the average particle diameter A L of the silicon nitride crystal 3 of the porous layer 5, 0.95A S ≦ A L with respect to the average particle diameter A S of the silicon nitride crystal substrate 1 ≦ 1.05A A value that satisfies the S relational expression.

また、多孔質層5は、窒化珪素結晶3と、それを3次元的に取り巻く空隙4とからなることが、アルミニウム系合金との反応性を低下せしめ、表面への付着を低減するために重要である。このような構造は、多孔質層5は、アルミニウム溶湯に直接接する基体表面2から特定の深さにわたり、窒化珪素質結晶3の粒界に存在する焼結助剤や不純物を含む粒界相を除去し、空隙を3次元的に形成することによって作製することができる。   The porous layer 5 is composed of the silicon nitride crystal 3 and the void 4 surrounding it three-dimensionally, in order to reduce the reactivity with the aluminum-based alloy and to reduce the adhesion to the surface. It is. In such a structure, the porous layer 5 has a grain boundary phase containing a sintering aid and impurities existing at the grain boundaries of the silicon nitride crystal 3 over a specific depth from the substrate surface 2 in direct contact with the molten aluminum. It can be produced by removing and forming the voids three-dimensionally.

このように、内部に高強度、高耐衝撃性の焼結体があり、その焼結体と一体的に焼結してなる窒化珪素結晶が3次元的に結合してなり、その窒化珪素結晶の粒界を3次元的に取り巻いている構造を採用しているため、焼結助剤のない表面2はアルミニウム合金と反応し難く、従ってアルミニウム溶湯との付着が少なく、且つ空隙が多くても窒化珪素結晶が基体1から連続して、しかも3次元的に焼結して一体化しているため、基体1から多孔質層5が剥離しにくく、信頼性の高いアルミ溶湯用部材を実現できる。   Thus, there is a sintered body with high strength and high impact resistance inside, and a silicon nitride crystal that is sintered integrally with the sintered body is three-dimensionally bonded, and the silicon nitride crystal The surface 2 without the sintering aid does not easily react with the aluminum alloy, and therefore, the adhesion with the molten aluminum is small and there are many voids. Since the silicon nitride crystal is integrated continuously by three-dimensionally sintering from the substrate 1, the porous layer 5 is difficult to peel off from the substrate 1, and a highly reliable member for molten aluminum can be realized.

本発明における「3次元的に連続する」との意味は、研磨面等の平面上ではかならずしも連続ではないものの、3次元における連続性を有し、空間的に連結していることを意味している。即ち、窒化珪素結晶の粒界に形成された空隙は全て連結しており、粒界相が全く又はほとんどない状態になっている。また、窒化珪素結晶は、各結晶の少なくとも一部が隣接する他の結晶と部分的に焼結して一体化され、部分的に連結した状態が連なって3次元的に一体化している状態にある。   The meaning of “three-dimensionally continuous” in the present invention means three-dimensional continuity and spatial connection, though not necessarily continuous on a flat surface such as a polished surface. Yes. That is, all the voids formed at the grain boundaries of the silicon nitride crystal are connected, and there is no or almost no grain boundary phase. In addition, the silicon nitride crystal is integrated in a state in which at least a part of each crystal is partially sintered and integrated with another adjacent crystal, and the partially connected state is connected in a three-dimensional manner. is there.

多孔質層5の厚みは、10μm以上、特に20μm、更には30μm以上、より好適には50μm以上であることが好ましい。窒化珪素は、それ自体共有結合を有する化学的に安定な化合物からなるために耐食性に優れるが、粒界に焼結助剤や不純物があるとアルミニウム系合金と反応しやすいため、アルミニウム系合金が表面に付着するが、多孔質層の厚みを10μm以上とすることで、アルミニウム系合金は粘性が比較的高いため、溶湯が空隙3を介して基体1まで、達することが少なくなり、アルミニウム系合金の付着をより確実に低減することができる。   The thickness of the porous layer 5 is preferably 10 μm or more, particularly 20 μm, further 30 μm or more, and more preferably 50 μm or more. Silicon nitride itself is made of a chemically stable compound having a covalent bond, so it has excellent corrosion resistance. However, if there is a sintering aid or impurity at the grain boundary, it easily reacts with the aluminum alloy. Although it adheres to the surface, since the viscosity of the aluminum-based alloy is relatively high by setting the thickness of the porous layer to 10 μm or more, the molten metal is less likely to reach the substrate 1 through the voids 3. Can be more reliably reduced.

多孔質層5の厚みの上限は特に制限されないが、例えば200μmであっても作用効果に変化はない。アルミニウム溶湯用部材の強度を極端に低下させないため、1mm、特に700μm、更には500μm、より好適には300μmが望ましい。   Although the upper limit of the thickness of the porous layer 5 is not particularly limited, for example, even if it is 200 μm, the effect is not changed. In order not to extremely reduce the strength of the molten aluminum member, 1 mm, particularly 700 μm, further 500 μm, and more preferably 300 μm is desirable.

このようなアルミニウム溶湯用部材は、部材表面がアルミニウム系合金と反応しにくいため、アルミニウム溶湯との接触してもアルミニウム又はその合金の付着が極めて少なく、耐食性、耐熱性にすぐれたアルミ溶湯用部材として用いることができる。   Such a member for molten aluminum is less likely to react with the aluminum-based alloy, so that the adhesion of aluminum or its alloy is extremely small even when in contact with the molten aluminum, and the member for molten aluminum is excellent in corrosion resistance and heat resistance. Can be used as

次に、本発明のアルミニウム溶湯用部材の製造方法について説明する。   Next, the manufacturing method of the member for molten aluminum of this invention is demonstrated.

基体となる窒化珪素焼結体は、周知の方法で作製することができる。具体的には、窒化珪素粉末に、Y、Er、Yb、Luなどの周規律表第3a族元素酸化物や、Al、MgO、AlN、SiOなどの焼結助剤を合量で1〜20質量%、特に2〜15質量%、更には3〜10質量%の割合で添加したものを所望の成形手段、例えば、冷間静水圧プレス、鋳込み成形、押し出し成形等により任意の形状に成形後、焼成する。 The silicon nitride sintered body serving as the substrate can be produced by a known method. Specifically, the silicon nitride powder is made of a Group 3a element oxide of a peripheral discipline such as Y 2 O 3 , Er 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , Al 2 O 3 , MgO, AlN. , SiO 2 and other sintering aids added in a total amount of 1 to 20% by mass, particularly 2 to 15% by mass, and further 3 to 10% by mass, in a desired molding means such as cold static After forming into an arbitrary shape by hydraulic press, cast molding, extrusion molding, etc., firing is performed.

焼成は、窒素含有雰囲気長で1500〜1950℃の温度で0.5〜10時間程度焼成して相対密度98%以上、特に98.5%以上、更には99%以上の焼結体を得る。焼成方法としては、常圧焼成、窒素ガス加圧焼成、熱間静水圧焼成が挙げられ、場合によってはこれらを組み合わせて作製することができる。   Firing is performed at a temperature of 1500 to 1950 ° C. for about 0.5 to 10 hours with a nitrogen-containing atmosphere length to obtain a sintered body having a relative density of 98% or more, particularly 98.5% or more, and further 99% or more. Examples of the firing method include normal pressure firing, nitrogen gas pressure firing, and hot isostatic firing, and in some cases, these can be combined.

次に、上記のように得られた窒化珪素焼結体をエッチング処理し、粒界相を除去することが重要である。エッチング処理は、腐食ガス中での加熱エッチング処理及び腐食ガスプラズマ中でのプラズマエッチング処理の2種類を採用することができる。腐食ガスには、ハロゲンガス及び/又は水素を用いることができる。   Next, it is important to etch the silicon nitride sintered body obtained as described above to remove the grain boundary phase. Two types of etching processes can be employed: a heat etching process in a corrosive gas and a plasma etching process in a corrosive gas plasma. Halogen gas and / or hydrogen can be used as the corrosive gas.

特に、加熱エッチング処理では水素が、プラズマエッチング処理では、ハロゲンガスが好適である。ハロゲンガスは腐食性が高く、エッチング炉を痛めやすいので、装置が大掛かりになりやすいため、プラズマエッチング処理に適している。ハロゲンガスは、塩素ガス、フッ素ガス、臭素ガス及びヨウ素ガスの少なくとも1種を採用でき、コスト及び粒界相除去効率を考慮すると塩素ガスが好ましい。   In particular, hydrogen is preferable for the heat etching process, and halogen gas is preferable for the plasma etching process. Since halogen gas is highly corrosive and easily damages the etching furnace, the apparatus is likely to become large and suitable for plasma etching. As the halogen gas, at least one of chlorine gas, fluorine gas, bromine gas and iodine gas can be adopted, and chlorine gas is preferable in consideration of cost and grain boundary phase removal efficiency.

加熱エッチング処理の場合、少なくとも上記腐食ガスを含むガス雰囲気中で800〜1900℃の温度範囲でエッチング処理を行う。このエッチング処理によって、焼結体の表面における粒界相成分を除去することにより、多孔質層からなるアルミ系合金と反応性の低い表面層を形成することができる。   In the case of the heat etching process, the etching process is performed in a temperature range of 800 to 1900 ° C. in a gas atmosphere containing at least the above corrosive gas. By removing the grain boundary phase component on the surface of the sintered body by this etching treatment, a surface layer having low reactivity with the aluminum-based alloy composed of the porous layer can be formed.

このエッチング処理時の温度が800℃を下回る場合、粒界相除去速度が小さいため、例えば30時間以上エッチング処理を継続しても5μm以上の厚みの多孔質層を得られないことがあり、量産に適しない。短時間で処理を完了させるため、特に900℃以上、更には1000℃以上、より好適には1100℃以上の温度が望ましい。しかし、1900℃を超える温度では、窒化珪素自体の分解が盛んに生じ、表面の大きな浸食がおこるため、大気圧では1900℃以下に設定する。なお、1気圧を超える高圧中でエッチング処理を行う場合は、エッチング処理温度の上限が引上げられるのは言うまでもない。   When the temperature during this etching process is less than 800 ° C., the removal rate of the grain boundary phase is small. For example, even if the etching process is continued for 30 hours or more, a porous layer having a thickness of 5 μm or more may not be obtained. Not suitable for. In order to complete the treatment in a short time, a temperature of 900 ° C. or higher, further 1000 ° C. or higher, more preferably 1100 ° C. or higher is desirable. However, at temperatures exceeding 1900 ° C., silicon nitride itself is actively decomposed and large surface erosion occurs. Therefore, the pressure is set to 1900 ° C. or lower at atmospheric pressure. Needless to say, when the etching process is performed at a high pressure exceeding 1 atm, the upper limit of the etching process temperature is raised.

さらに、基体1の曲げ強度の低下を抑えるためには、1600℃以下の温度でエッチング処理をすることが望ましい。また、エッチング処理時間については、充分に除去するため、いずれの温度条件においても、10分以上のエッチング処理を行うことが望ましい。   Furthermore, in order to suppress a decrease in the bending strength of the substrate 1, it is desirable to perform an etching process at a temperature of 1600 ° C. or lower. In addition, with respect to the etching process time, it is desirable to perform the etching process for 10 minutes or more in any temperature condition in order to sufficiently remove.

プラズマエッチング処理の場合、上記腐食ガスを放電させてプラズマ状態とし、このプラズマに接触するように窒化珪素焼結体を配置する。この処理においては、特に昇温する必要はないが、プラズマによる温度ばらつきを抑制するためには、加熱により50℃以上の一定温度に設定するのが好ましい。プラズマエッチング処理は低温で行えるため、安全性の点で好ましい。   In the case of the plasma etching process, the corrosive gas is discharged into a plasma state, and the silicon nitride sintered body is disposed so as to be in contact with the plasma. In this treatment, it is not particularly necessary to raise the temperature, but in order to suppress temperature variation due to plasma, it is preferable to set the temperature to a constant temperature of 50 ° C. or higher by heating. Since the plasma etching process can be performed at a low temperature, it is preferable in terms of safety.

このようなエッチング処理方法によれば、複雑な部材や大型の部材に対しても容易に適用でき、効率よくアルミニウム系合金と反応性の低い表面をもつアルミニウム溶湯用部材を製造することができる。   According to such an etching method, it is possible to easily apply even to a complicated member or a large member, and it is possible to efficiently manufacture a member for molten aluminum having a surface having low reactivity with an aluminum-based alloy.

なお、本発明で使用する接触角について説明する。図2に示したように、部材101の上に溶湯102をのせた場合、両者の濡れ性が良いと図2(a)になり、部材101と溶湯102との界面での接線103と部材101表面の為す角θが接触角となる。一方、濡れ性が悪い場合には図2(b)に示すように、部材112上にのせた溶湯112が立体的になり、接触角θは大きくなる。   The contact angle used in the present invention will be described. As shown in FIG. 2, when the molten metal 102 is placed on the member 101, if the wettability of the two is good, FIG. 2A is obtained, and the tangent line 103 and the member 101 at the interface between the member 101 and the molten metal 102 are obtained. The angle θ formed by the surface is the contact angle. On the other hand, when the wettability is poor, as shown in FIG. 2B, the molten metal 112 placed on the member 112 becomes three-dimensional and the contact angle θ increases.

まず、原料粉末を準備する。即ち、窒化珪素粉末(平均粒径0.6μm、酸素含有量0.7質量%α化率92%)にY粉末、AL粉末をそれぞれ表1の組成となるように添加し、ボールミルにて十分に混合した後に、スプレードライヤーで乾燥造粒して顆粒を製作し、該顆粒を金型に充填して100MPaの圧力で金型プレス成形することにより成形体を作製した。 First, raw material powder is prepared. That is, Y 2 O 3 powder and AL 2 O 3 powder were added to silicon nitride powder (average particle size 0.6 μm, oxygen content 0.7 mass%, α conversion rate 92%) so as to have the composition shown in Table 1, respectively. Then, after sufficiently mixing with a ball mill, the granules were dried and granulated with a spray dryer to produce granules, and the granules were filled in a mold and molded by press molding at a pressure of 100 MPa to produce a compact.

得られた成形体を炭化珪素質のこう鉢に入れて、カーボンヒータを用い、常圧窒素雰囲気中にて1750℃の温度まで昇温し、この温度にて5時間保持した後さらに1900℃まで昇温して5時間保持した。その後炉冷し、窒化珪素焼結体を製作した。   The obtained molded body was put in a silicon carbide mortar, heated using a carbon heater to a temperature of 1750 ° C. in a normal pressure nitrogen atmosphere, held at this temperature for 5 hours, and further up to 1900 ° C. The temperature was raised and held for 5 hours. Thereafter, the furnace was cooled to produce a silicon nitride sintered body.

得られた窒化珪素焼結体をエッチング処理した。エッチング処理は、過熱エッチング処理(表中Tと表示)とプラズマエッチング処理(表中Pと表示)を行った。エッチング条件を表1に示した。なお、プラズマエッチングはRIE(リアクティブ・イオン・エッチング)装置を用いて行った。   The obtained silicon nitride sintered body was etched. As the etching process, an overheating etching process (shown as T in the table) and a plasma etching process (shown as P in the table) were performed. The etching conditions are shown in Table 1. The plasma etching was performed using a RIE (reactive ion etching) apparatus.

次いで、上記窒化珪素焼結体を20mm角5tの形状に加工して試験片を作製した。多孔質層の厚みは、試験片を切断し、走査型電子顕微鏡(SEM)により測定した。   Next, the silicon nitride sintered body was processed into a 20 mm square 5 t shape to prepare a test piece. The thickness of the porous layer was measured with a scanning electron microscope (SEM) after cutting the test piece.

その後、上記の窒化珪素焼結体を試料として用い、アルミニウム系合金との反応テストを行った。反応テストは、エッチング処理を行った窒化珪素焼結体の表面にアルミニウム系合金を置き、1000℃、27kPa減圧下で10時間保持した後、冷却後の試料の形状から接触角を測定して行った。さらに試験後の試料を切断し、界面の反応層厚みを走査型電子顕微鏡(SEM)により測定し、反応層として表1に示した。   Thereafter, the above silicon nitride sintered body was used as a sample, and a reaction test with an aluminum alloy was performed. The reaction test was performed by placing an aluminum alloy on the surface of the etched silicon nitride sintered body, holding it at 1000 ° C. under a reduced pressure of 27 kPa for 10 hours, and then measuring the contact angle from the shape of the sample after cooling. It was. Further, the sample after the test was cut, and the thickness of the reaction layer at the interface was measured with a scanning electron microscope (SEM). The reaction layer is shown in Table 1.

基体の切り出し強度は、基体から、3×4×40の寸法に加工後、室温及び1200℃の高温にて強度を測定した。強度の測定は、JIS R 1601およびJIS R 1604に基づいて行った。

Figure 2005177850
The cutting strength of the substrate was measured at room temperature and at a high temperature of 1200 ° C. after processing from the substrate to a size of 3 × 4 × 40. The intensity was measured based on JIS R 1601 and JIS R 1604.
Figure 2005177850

本発明の試料No.1〜20は、接触角が100°以上、反応層の厚みが3μm以下であった。特に、900℃以上の加熱エッチング処理及びプラズマエッチング処理を行った試料No.1〜8及び10〜20は、接触角が130°以上、反応層の厚みが1μm未満であった。   Sample No. of the present invention. Nos. 1 to 20 had a contact angle of 100 ° or more and a reaction layer thickness of 3 μm or less. In particular, sample No. 1 subjected to a heat etching process and a plasma etching process at 900 ° C. or higher. As for 1-8 and 10-20, the contact angle was 130 degrees or more and the thickness of the reaction layer was less than 1 micrometer.

一方、エッチング処理を行っていない本発明の範囲外の試料No.21〜25は接触角が90°以下、反応層の厚みが5μm以上と厚かった。   On the other hand, a sample No. outside the scope of the present invention that was not etched. Nos. 21 to 25 had a contact angle of 90 ° or less and a reaction layer thickness of 5 μm or more.

本発明のアルミ溶湯用部材の表面近傍の組織を示す概略断面図である。It is a schematic sectional drawing which shows the structure | tissue near the surface of the member for molten aluminum of this invention. 接触角を説明するためのもので、(a)は濡れ性が良い場合の説明図、(b)は濡れ性が悪い場合の説明図である。It is for demonstrating a contact angle, (a) is explanatory drawing in case wettability is good, (b) is explanatory drawing in case wettability is bad.

符号の説明Explanation of symbols

1・・・基体
2・・・基体表面
3・・・窒化珪素質結晶
4・・・空隙
5・・・多孔質層
DESCRIPTION OF SYMBOLS 1 ... Base | substrate 2 ... Base | substrate surface 3 ... Silicon nitride-type crystal 4 ... Void 5 ... Porous layer

Claims (8)

焼結助剤を1〜20質量%含み、相対密度98%以上の窒化珪素焼結体からなる基体の表面に、該基体の窒化珪素焼結体の平均粒径と実質的に略同一な平均粒径を有する窒化珪素結晶と、該窒化珪素結晶の粒界に3次元的に連続して形成された空隙を含む多孔質層と、が設けられてなることを特徴とするアルミニウム溶湯用部材。 An average substantially the same as the average particle size of the silicon nitride sintered body of the substrate on the surface of the substrate made of the silicon nitride sintered body containing 1 to 20% by mass of a sintering aid and having a relative density of 98% or more. A member for molten aluminum, comprising: a silicon nitride crystal having a particle size; and a porous layer including voids formed continuously three-dimensionally at grain boundaries of the silicon nitride crystal. 前記多孔質層の厚みが10μm以上であることを特徴とするアルミニウム溶湯用部材。 A member for molten aluminum, wherein the porous layer has a thickness of 10 μm or more. 焼結助剤として周期律表第3a族元素の少なくとも1種を1〜20質量%含むことを特徴とする請求項1記載のアルミ溶湯用部材。 The member for molten aluminum according to claim 1, comprising 1 to 20% by mass of at least one element of Group 3a elements of the periodic table as a sintering aid. 前記窒化珪素焼結体の室温から1200℃までの内部の切り出し強度が500MPa以上であることを特徴とする請求項1又は請求項2記載のアルミニウム溶湯用部材。 The member for molten aluminum according to claim 1 or 2, wherein an internal cutting strength of the silicon nitride sintered body from room temperature to 1200 ° C is 500 MPa or more. 焼結助剤を1〜20質量%含み、相対密度98%以上の窒化珪素焼結体の少なくとも溶融アルミニウムと直接接する表面を、腐食ガスによるエッチング処理を行ない、焼結助剤及び不純物を含む粒界相を除去し、窒化珪素結晶の粒界に3次元的に連続して形成された空隙を含む多孔質層を形成することを特徴とするアルミニウム溶湯用部材の製造方法。 Particles containing 1 to 20% by mass of a sintering aid and etching contact with a corrosive gas on at least the surface of a silicon nitride sintered body having a relative density of 98% or more that is in direct contact with molten aluminum and containing a sintering aid and impurities. A method for producing a member for molten aluminum, comprising removing a boundary phase and forming a porous layer including voids formed continuously three-dimensionally at grain boundaries of a silicon nitride crystal. 前記腐食ガスがハロゲンガス及び/又は水素であることを特徴とする請求項5記載のアルミニウム溶湯用部材の製造方法。 6. The method for producing a molten aluminum member according to claim 5, wherein the corrosive gas is a halogen gas and / or hydrogen. 前記エッチング処理を800〜1900℃の温度で行うことを特徴とする請求項5又は6記載のアルミニウム溶湯用部材の製造方法。 The method for producing a molten aluminum member according to claim 5 or 6, wherein the etching treatment is performed at a temperature of 800 to 1900 ° C. 前記エッチング処理をプラズマ中で行うことを特徴とする請求項5又は6記載のアルミニウム溶湯用部材の製造方法。

The method for producing a member for molten aluminum according to claim 5 or 6, wherein the etching treatment is performed in plasma.

JP2003425479A 2003-12-22 2003-12-22 Member for aluminum molten metal, and its production method Pending JP2005177850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425479A JP2005177850A (en) 2003-12-22 2003-12-22 Member for aluminum molten metal, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425479A JP2005177850A (en) 2003-12-22 2003-12-22 Member for aluminum molten metal, and its production method

Publications (1)

Publication Number Publication Date
JP2005177850A true JP2005177850A (en) 2005-07-07

Family

ID=34785354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425479A Pending JP2005177850A (en) 2003-12-22 2003-12-22 Member for aluminum molten metal, and its production method

Country Status (1)

Country Link
JP (1) JP2005177850A (en)

Similar Documents

Publication Publication Date Title
JP3604888B2 (en) Jointed body of aluminum nitride-based ceramics substrate, method of manufacturing jointed body of aluminum nitride-based ceramics base, and bonding agent
JP3316167B2 (en) Method for producing bonded body of aluminum nitride base material and bonding aid used therein
KR20020024534A (en) Silicon nitride powder, sintered silicon nitride, sintered silicon nitride substrate, and circuit board and thermoelectric element module comprising such sintered silicon nitride substrate
JP2009173502A (en) POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
JP4146333B2 (en) Tungsten-copper alloy having uniform structure and method for producing the same
JP2004043241A (en) High purity silicon carbide sintered compact and its forming method
JP2004345952A (en) Bonding agent for base material of aluminum nitride-based ceramic
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
WO2004026790A1 (en) Aluminum nitride sintered compact
JP2005177850A (en) Member for aluminum molten metal, and its production method
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP2009107864A (en) Parts for manufacturing semiconductor
JP4077427B2 (en) Bonded body of aluminum nitride ceramic base material and manufacturing method thereof
JP4190257B2 (en) Silicon nitride tool
JP5648178B2 (en) Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body
JP5130599B2 (en) Method for producing hexagonal boron nitride sintered body and hexagonal boron nitride sintered body
JP2005131656A (en) Member for molten aluminum
KR20030041096A (en) Sintered silicon nitride and silicon nitride tool
JP4142556B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof
JP2005132656A (en) Aluminium molten metal member
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
JP2007246325A (en) Ceramic joined body
CN118808542A (en) Nonferrous metal release agent based on silicon oxynitride ceramic coating and preparation method thereof
JP2002356374A (en) Free cutting ceramic and its manufacturing