JP2005177612A - Organic solvent having concentration of dissolved oxygen of specified level or lower, its manufacturing method and method of measuring dissolved oxygen - Google Patents

Organic solvent having concentration of dissolved oxygen of specified level or lower, its manufacturing method and method of measuring dissolved oxygen Download PDF

Info

Publication number
JP2005177612A
JP2005177612A JP2003422173A JP2003422173A JP2005177612A JP 2005177612 A JP2005177612 A JP 2005177612A JP 2003422173 A JP2003422173 A JP 2003422173A JP 2003422173 A JP2003422173 A JP 2003422173A JP 2005177612 A JP2005177612 A JP 2005177612A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
organic solvent
concentration
solvents
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003422173A
Other languages
Japanese (ja)
Inventor
Takeshi Kogure
健 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Original Assignee
Kanto Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc filed Critical Kanto Chemical Co Inc
Priority to JP2003422173A priority Critical patent/JP2005177612A/en
Publication of JP2005177612A publication Critical patent/JP2005177612A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unprecedented organic solvent having a concentration of dissolved oxygen of a specific level or lower, its manufacturing method and a method of measuring dissolved oxygen. <P>SOLUTION: The method is for manufacturing exclusively an organic solvent having a concentration of dissolved oxygen of a specific level or lower and contains a new method of measuring the concentration of dissolved oxygen in an organic solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、溶存酸素濃度が、一定以下の有機溶媒、その製造方法および溶存酸素測定方法に関する。   The present invention relates to an organic solvent having a dissolved oxygen concentration below a certain level, a method for producing the same, and a method for measuring dissolved oxygen.

有機金属錯体等、水分に不安定な化合物を扱う際の溶媒は十分に水分量を低下させることが求められ、‘脱水溶媒’として既に市販されているが、有機金属錯体の中には水分ばかりでなく酸素にも不安定な化合物が存在し、これらの化合物を扱う溶媒は、‘脱水溶媒’であるばかりでなく、‘脱酸素溶媒’である必要がある。   Solvents for handling moisture-unstable compounds such as organometallic complexes are required to sufficiently reduce the amount of moisture, and are already marketed as 'dehydrating solvents'. In addition, there are compounds that are unstable to oxygen, and the solvent that handles these compounds must be not only a “dehydration solvent” but also a “deoxygenation solvent”.

従来から、脱酸素溶媒を製造する方法として、一定時間溶媒にアルゴン・窒素等のガスをバブリングする方法やNa−ベンゾフェノンケチルによる蒸留、活性処理した2種のアルミナカラムを通すことで溶存する酸素が除去されることが知られている(特許文献1および非特許文献1)。また、有機溶媒中の溶存酸素の濃度の測定としては、例えば、検出器として熱伝導度検出器(TCD)、電子捕獲検出器(ECD)を用いることによってガスクロマトグラフにより測定することが可能であるが(特許文献2および非特許文献2)、その測定結果として、溶存酸素の定量限界は0.01vol%(換算して14.3mg/l)であった例の報告(非特許文献3)があるものの、一般に14mg/l以下の溶存酸素濃度を測定する方法は知られていない。
また、前記溶存酸素除去法および14mg/l以下の溶存酸素濃度を測定する方法を組み合わせた方法も知られていない。
Conventionally, as a method for producing a deoxygenated solvent, oxygen dissolved by passing through two kinds of alumina columns, such as a method of bubbling a gas such as argon and nitrogen in a solvent for a certain period of time, distillation with Na-benzophenone ketyl, and activated treatment. It is known to be removed (Patent Document 1 and Non-Patent Document 1). The concentration of dissolved oxygen in the organic solvent can be measured by a gas chromatograph by using, for example, a thermal conductivity detector (TCD) or an electron capture detector (ECD) as a detector. (Patent document 2 and non-patent document 2), as a result of the measurement, there is a report (non-patent document 3) of an example in which the quantification limit of dissolved oxygen was 0.01 vol% (converted to 14.3 mg / l). However, there is no known method for measuring the dissolved oxygen concentration of 14 mg / l or less.
There is also no known method combining the dissolved oxygen removal method and a method of measuring a dissolved oxygen concentration of 14 mg / l or less.

一方、現在市販されている有機溶媒は、溶存酸素濃度が一定のもの、または一定以下のものに規格化されたものが存在しないため、一般に、酸素に不安定な化合物や酸素による影響を避けなければならない化合物を取り扱う生産現場や研究室などにおいて、有機溶媒の使用前にその都度、上述した手段による酸素の除去作業を行っているのが現状である。   On the other hand, there are no organic solvents that are currently commercially available with a constant dissolved oxygen concentration or a standard that is less than a certain level, so it is generally necessary to avoid the effects of oxygen unstable compounds and oxygen. At present, in production sites and laboratories that handle compounds that must be handled, oxygen is removed by the above-mentioned means every time before using an organic solvent.

特願平6−25470号公報Japanese Patent Application No. 6-25470 特願平9−67466号公報Japanese Patent Application No. 9-67466 Organometallics,15.1518-1520 (1996)Organometallics, 15.1518-1520 (1996) Analytical Chemistry,52.601-602 (1980)Analytical Chemistry, 52. 601-202 (1980) Analytical Chemistry,41.2.393-395 (1969)Analytical Chemistry, 4.1.2, 393-395 (1969)

本発明の課題は、かかる現状に鑑み、予め溶存酸素が一定濃度以下に規格化された有機溶媒を、前記化合物を取り扱う生産現場や研究室に提供することにより、当該現場や研究室において、使用の都度要求される煩雑な溶存酸素の除去、さらには濃度測定工程を省略するという全く新しい発想のもと、かかる規格化された有機溶媒を安定的に供給し、もって酸素に不安定な化合物を取り扱う生産現場、研究室での作業効率を格段に向上せしめることにある。   In view of the present situation, the problem of the present invention is to provide an organic solvent whose dissolved oxygen is standardized to a certain concentration or less in advance to a production site or laboratory that handles the compound, and to be used in the site or laboratory. With the completely new concept of eliminating the complicated dissolved oxygen required every time, and omitting the concentration measurement process, this standardized organic solvent can be stably supplied, so that compounds that are unstable to oxygen can be obtained. The purpose is to dramatically improve work efficiency at the production sites and laboratories.

本発明者らは、上記課題を解決すべく鋭意検討する中で、有機溶媒における溶存酸素濃度の新規な測定方法の開発とともに、該濃度が一定以下に規格化された有機溶媒を製造し、安定的に供給できる手段を見出し、さらに、研究を進めた結果、本発明を完成するに至った。   In the course of diligent investigations to solve the above problems, the present inventors have developed a new method for measuring the dissolved oxygen concentration in an organic solvent, and manufactured an organic solvent whose concentration is standardized below a certain level. As a result of finding a means that can be supplied in an efficient manner and further researching it, the present invention has been completed.

すなわち、本発明は、溶存酸素濃度が、一定濃度以下の有機溶媒の製造方法であって、有機溶媒に不活性ガスを吹き込む、吹き込み工程、ガスクロマトグラフを用いて該有機溶媒中の溶存酸素を分離する、溶存酸素分離工程、溶存酸素分離工程により得られた有機溶媒の溶存酸素濃度を測定する、溶存酸素濃度測定工程、および該測定の結果に基づき、溶存酸素濃度を一定濃度以下に調整する、調整工程、
を含む前記方法に関する。
また、本発明は、溶存酸素濃度を、14mg/l以下に調整する、前記方法に関する。
さらに、本発明は、プレカラムを経由することなく分離カラム内において溶存酸素を分離するカラム条件に設定する、カラム条件設定工程をさらに含む、前記方法に関する。
That is, the present invention relates to a method for producing an organic solvent having a dissolved oxygen concentration of a certain concentration or less, wherein an inert gas is blown into the organic solvent, a blowing step, and the dissolved oxygen in the organic solvent is separated using a gas chromatograph. Measuring the dissolved oxygen concentration of the organic solvent obtained by the dissolved oxygen separation step, the dissolved oxygen separation step, and adjusting the dissolved oxygen concentration below a certain concentration based on the result of the measurement, and the measurement result; Adjustment process,
The method.
The present invention also relates to the above method, wherein the dissolved oxygen concentration is adjusted to 14 mg / l or less.
Furthermore, the present invention relates to the method, further comprising a column condition setting step of setting column conditions for separating dissolved oxygen in the separation column without going through a precolumn.

また、本発明は、溶存酸素濃度を、質量検出器により測定する、前記方法に関する。
さらにまた、本発明は、不活性ガスが、窒素またはアルゴンである、前記方法に関する。
また、本発明は、有機溶媒が、芳香族系溶媒、炭化水素系溶媒、エーテル系溶媒、ハロゲン化炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、ニトリル系溶媒およびアミド系溶媒からなる群から選択される1種または2種以上である、前記方法に関する。
The present invention also relates to the above method, wherein the dissolved oxygen concentration is measured by a mass detector.
Furthermore, the present invention relates to the method, wherein the inert gas is nitrogen or argon.
In the present invention, the organic solvent is an aromatic solvent, hydrocarbon solvent, ether solvent, halogenated hydrocarbon solvent, ketone solvent, ester solvent, alcohol solvent, nitrile solvent, or amide solvent. It is related with the said method which is 1 type, or 2 or more types selected from the group which consists of.

さらに、本発明は、前記方法により製造された、溶存酸素濃度が14mg/l以下である有機溶媒に関する。
また、本発明は、溶存酸素濃度が、14mg/l以下であることが明示された、有機溶媒に関する。
Furthermore, the present invention relates to an organic solvent produced by the above method and having a dissolved oxygen concentration of 14 mg / l or less.
The present invention also relates to an organic solvent in which the dissolved oxygen concentration is clearly specified to be 14 mg / l or less.

さらにまた、本発明は、ガスクロマトグラフを用いて有機溶媒中の溶存酸素が14mg/l以下の濃度を測定するための方法であって、プレカラムを経由することなく分離カラムに有機溶媒を導入する、有機溶媒導入工程、および分離カラム内において溶存酸素を分離するカラム条件に設定されたガスクロマトグラフを用いて該有機溶媒中の溶存酸素を分離する、溶存酸素分離工程、溶存酸素分離工程により得られた有機溶媒の溶存酸素濃度を、質量検出器を用いて測定する、溶存酸素濃度測定工程、を含む、前記方法に関する。   Furthermore, the present invention is a method for measuring a concentration of dissolved oxygen in an organic solvent of 14 mg / l or less using a gas chromatograph, wherein the organic solvent is introduced into the separation column without going through the precolumn. Obtained by the dissolved oxygen separation step and the dissolved oxygen separation step, wherein the dissolved oxygen in the organic solvent is separated using an organic solvent introduction step and a gas chromatograph set to column conditions for separating dissolved oxygen in the separation column. It is related with the said method including the dissolved oxygen concentration measurement process of measuring the dissolved oxygen concentration of an organic solvent using a mass detector.

本明細書中、「調整工程」とは、所望の濃度に調整することを意味し、仮に、所望の濃度に達していない場合には、これを除外するか、または所望の濃度に到達されるべく、さらに、吹き込み工程、溶存酸素分離工程および溶存酸素濃度測定工程を繰り返し、濃度調整することを意味する。
また、本明細書中、「明示された」とは、かかる有機溶媒を収容する容器などに貼り付けられたラベル、または、有機溶媒製品に添付される取扱い説明書などにより、溶存酸素が一定濃度以下であることが明示されていることを意味する。
In this specification, the “adjustment step” means adjustment to a desired concentration. If the desired concentration is not reached, this is excluded or the desired concentration is reached. Therefore, it means that the concentration is adjusted by repeating the blowing step, the dissolved oxygen separation step and the dissolved oxygen concentration measuring step.
In the present specification, “specified” means that the dissolved oxygen has a certain concentration according to a label attached to a container or the like containing such an organic solvent or an instruction manual attached to the organic solvent product. It means that it is specified that:

溶存酸素が一定濃度以下に規格化され、その旨が明示され、かつ一定の品質が保証された有機溶媒は、これまで全く存在しなかったため、生産現場や研究室での事前の溶存酸素除去工程は、必要に応じ当然行わなければならない不可欠の工程であると考えられていたところ、本発明は、そのような先入観を打ち破るものといえる。即ち、本発明により、有機溶媒の製造に係る上記の煩雑な工程を一切省略することができるとともに、溶存酸素濃度が一定以下であること、とくに14mg/l以下であることが明示された該有機溶媒は、有機合成反応などに安心して使用することができるため、これまで全く期待されたこともない予想外の作業性、安全性を生み出すものである。   There has never been an organic solvent whose dissolved oxygen has been standardized to a certain concentration or less, which has been clearly stated, and whose quality is guaranteed, so there is no prior dissolved oxygen removal process at the production site or laboratory. Is considered an indispensable process that must be performed as needed, and the present invention can be said to break such preconceptions. That is, according to the present invention, it is possible to omit the above complicated steps related to the production of the organic solvent and to clearly show that the dissolved oxygen concentration is not more than a certain value, particularly not more than 14 mg / l. Solvents can be used with confidence in organic synthesis reactions and the like, which creates unexpected workability and safety that have never been expected.

以下に、本発明の溶存酸素濃度が一定濃度以下の有機溶媒の製造方法について具体的に説明する。
まず、吹き込み工程としては、有機溶媒中の酸素を追い出すことができれば、特に限定されないが、典型的には、出発物質である有機溶媒に、窒素やアルゴンなどの不活性ガスを一定時間吹き込み、所望により、正確な分析値を得るために、該不活性ガスを吹き込んだ後に一定時間、好ましくは30分〜4時間静置させて、有機溶媒を安定させることにより行われる。
Below, the manufacturing method of the organic solvent whose dissolved oxygen concentration of this invention is below a fixed concentration is demonstrated concretely.
First, the blowing step is not particularly limited as long as oxygen in the organic solvent can be expelled. Typically, an inert gas such as nitrogen or argon is blown into the organic solvent that is a starting material for a desired time. In order to obtain an accurate analytical value, the organic solvent is allowed to stand for a certain period of time, preferably 30 minutes to 4 hours after blowing the inert gas, to stabilize the organic solvent.

前記吹き込み工程に用いられる不活性ガスとしては、窒素やアルゴンなどの不活性ガスが好ましいが、酸素含量1ppm以下のガスであればこの限りではない。
また、本発明で用いられる有機溶媒としては、基本的には通常の有機溶媒のいずれもその対象となるが、好ましくは、常圧(760mHg)で沸点が25〜200℃の有機合成反応に用いられる溶媒であり、例えば、トルエン、ベンゼン、キシレンおよびクロロベンゼンなどの芳香族系溶媒、テトラヒドロフラン、エチルエーテル、ジイソプロピルエーテル、エチレングリコールジエチルエーテルおよびジオキサンなどのエーテル系溶媒、塩化メチレン、クロロホルムおよび四塩化炭素などのハロゲン化炭化水素系溶媒、ペンタン、ヘキサン、ヘプタンおよびシクロヘキサンなどの炭化水素系溶媒、アセトン、N−メチル−2−ピロリジノンおよびメチルエチルケトンなどのケトン系溶媒、酢酸エチルおよび酢酸ブチルなどのエステル系溶媒、メタノール、エタノールおよびイソプロピルアルコールなどのアルコール系溶媒、アセトニトリルなどのニトリル系溶媒、ジメチルホルムアミドおよびジメチルアセトアミドなどのアミド系溶媒、ジメチルスルホキシドなどの硫黄化合物系溶媒などが挙げられる。
なお、有機溶媒として2種以上組合わせたものも本発明の目的を逸脱しない限りその対象とすることができる。例えば、ヘキサンと酢酸エチル、エチルエーテルとトルエンなどの組合せである。
The inert gas used in the blowing step is preferably an inert gas such as nitrogen or argon, but is not limited to this as long as the oxygen content is 1 ppm or less.
In addition, as the organic solvent used in the present invention, basically any ordinary organic solvent can be used, but preferably used for an organic synthesis reaction at a normal pressure (760 mHg) and a boiling point of 25 to 200 ° C. For example, aromatic solvents such as toluene, benzene, xylene and chlorobenzene, ether solvents such as tetrahydrofuran, ethyl ether, diisopropyl ether, ethylene glycol diethyl ether and dioxane, methylene chloride, chloroform and carbon tetrachloride Halogenated hydrocarbon solvents, hydrocarbon solvents such as pentane, hexane, heptane and cyclohexane, ketone solvents such as acetone, N-methyl-2-pyrrolidinone and methyl ethyl ketone, ester solvents such as ethyl acetate and butyl acetate, Examples thereof include alcohol solvents such as methanol, ethanol and isopropyl alcohol, nitrile solvents such as acetonitrile, amide solvents such as dimethylformamide and dimethylacetamide, and sulfur compound solvents such as dimethyl sulfoxide.
In addition, what combined 2 or more types as an organic solvent can also be made into the object, without deviating from the objective of this invention. For example, a combination of hexane and ethyl acetate, ethyl ether and toluene, or the like.

次に、溶存酸素分離工程としては、ガスクロマトグラフを用いて分離できれば特に限定されないが、典型的には、分離カラム中で有機溶媒と溶存酸素が分離するカラム条件で行われる。好ましくは、測定開始から終了までのカラムの温度が一定温度でない条件下で、例えば、二段階や三段階以上の多段階昇温することにより、有機溶媒中の溶存酸素を分離する手段により行われる。かかる手段を採用することにより、プレカラムを用いて予め有機溶媒を分離し、分離後、該プレカラムから有機溶媒を取り出すといった煩雑な工程を省くことができる。より具体的には、測定する有機溶媒によっても異なるが、例えば、初期温度を測定溶媒の沸点以下、好ましくは25〜50℃に設定し、その温度で0〜2min保持した後、5〜30℃/minの昇温速度で初期設定温度から+5〜40℃昇温させる。最後に、溶媒除去のために測定溶媒の沸点以上、好ましくは沸点+10〜20℃に昇温する。なお、上記温度や時間の範囲は、溶存酸素と溶媒が分離できれば種々組合わせて設定することができる。   Next, the dissolved oxygen separation step is not particularly limited as long as it can be separated using a gas chromatograph. Typically, the dissolved oxygen separation step is performed under column conditions in which an organic solvent and dissolved oxygen are separated in a separation column. Preferably, the column temperature from the start to the end of the measurement is not constant, for example, by means of separating dissolved oxygen in the organic solvent by raising the temperature in two or three or more stages. . By adopting such means, it is possible to omit a complicated process of separating an organic solvent in advance using a precolumn and taking out the organic solvent from the precolumn after the separation. More specifically, although it depends on the organic solvent to be measured, for example, the initial temperature is set below the boiling point of the measurement solvent, preferably 25 to 50 ° C., held at that temperature for 0 to 2 min, and then 5 to 30 ° C. The temperature is raised from the initial set temperature by +5 to 40 ° C. at a rate of temperature rise of / min. Finally, to remove the solvent, the temperature is raised to the boiling point of the measuring solvent or higher, preferably the boiling point +10 to 20 ° C. The temperature and time ranges can be set in various combinations as long as the dissolved oxygen and the solvent can be separated.

溶存酸素濃度測定工程としては、有機溶媒中の溶存酸素を測定することができれば、特に限定されないが、好ましくは、ガスクロマトグラフとともに検出器として質量検出器を用いて測定する。
以下に、ガスクロマトグラフとともに検出器として質量検出器を用いた場合について説明する。
The dissolved oxygen concentration measurement step is not particularly limited as long as dissolved oxygen in an organic solvent can be measured. Preferably, the dissolved oxygen concentration is measured using a mass detector as a detector together with a gas chromatograph.
Below, the case where a mass detector is used as a detector with a gas chromatograph is demonstrated.

酸素または空気を、マイクロシリンジを用いて一定量注入して検出された酸素のレスポンスを測定し、注入酸素量とレスポンスの検量線を作成する。空気を注入した場合は、注入した空気体積の1/5とし、酸素を理想気体と仮定し、酸素注入量よりモル数を算出、重量換算を行い、検量線を作成する。
次に、試料として所定の有機溶媒を同様にガスクロマトグラフに注入し、検出された酸素のレスポンスと前記検量線から有機溶媒中の酸素量を定量することができる。
A response of oxygen detected by injecting a fixed amount of oxygen or air using a microsyringe is measured, and a calibration curve of the injected oxygen amount and response is created. When air is injected, the volume of the injected air is set to 1/5, oxygen is assumed to be an ideal gas, the number of moles is calculated from the oxygen injection amount, weight conversion is performed, and a calibration curve is created.
Next, a predetermined organic solvent is similarly injected into the gas chromatograph as a sample, and the amount of oxygen in the organic solvent can be quantified from the detected oxygen response and the calibration curve.

さらに詳しくは、前記溶存酸素分離工程において、注入口にマイクロシリンジで注入された試料は、注入口の温度により気化し、キャリヤーガスによって分離カラムへと導入される。分離カラムに導入された試料は、分離カラムの昇温条件およびカラムの固定相により溶存酸素と有機溶媒に分離されて検出器に到達する。そして、検出器から電気的な信号が送られ、モニター上にクロマトグラムとして表示されるものである。   More specifically, in the dissolved oxygen separation step, the sample injected into the injection port with the microsyringe is vaporized according to the temperature of the injection port and introduced into the separation column by the carrier gas. The sample introduced into the separation column is separated into dissolved oxygen and an organic solvent by the temperature rising condition of the separation column and the stationary phase of the column, and reaches the detector. An electrical signal is sent from the detector and displayed as a chromatogram on the monitor.

ここで、試料の注入方法は、手動でも自動でも、スプリット法でもスプリットレス法でも行うことができ、注入量はスプリット比によっても制御可能である。検量線作成ではスプリット法の適用が効果的である。好ましいスプリット比は、試料や装置によって異なるものであるが、検量線作成時などのガス分析には1〜419が好ましく、溶媒中の溶存酸素分析では、1〜21が好ましい。   Here, the sample injection method can be performed manually, automatically, by the split method or by the splitless method, and the injection amount can be controlled by the split ratio. The split method is effective in creating a calibration curve. The preferred split ratio varies depending on the sample and the apparatus, but is preferably 1 to 419 for gas analysis when preparing a calibration curve, etc., and 1 to 21 is preferred for dissolved oxygen analysis in a solvent.

検量線は測定日ごとに毎回作成することが望ましく、測定対象濃度範囲を含む代表的な酸素または空気量を3〜5点選択する。検量線は、相関係数0.99以上の良好な回帰直線が得られ、検出限界は、SN比(シグナル/ノイズ比)が2〜3となる注入量とする。空気飽和溶媒あるいは酸素飽和溶媒と脱酸素溶媒とを一定量混合した溶媒のガスクロマトグラフ−質量検出器(GC−MS)測定により、さらに正確な検量線を作成することができる。   It is desirable to create a calibration curve every measurement day, and 3 to 5 representative oxygen or air amounts including the measurement target concentration range are selected. The calibration curve is such that a good regression line with a correlation coefficient of 0.99 or more is obtained, and the detection limit is the injection amount at which the SN ratio (signal / noise ratio) is 2-3. A more accurate calibration curve can be created by gas chromatograph-mass detector (GC-MS) measurement of a solvent in which a certain amount of air saturated solvent or oxygen saturated solvent and deoxygenated solvent is mixed.

「溶存酸素濃度測定工程」で用いられる検出器としては、前記溶存酸素分離工程におけるガスクロマトグラフの分離カラムにて有機溶媒と酸素が分離するため、用いられる検出器は質量検出器(MSD)、電子捕獲検出器(ECD)、熱伝導度検出器(TCD)など特に限定されないが、有機溶媒中に複数成分のガスが存在する場合や微量の酸素を測定する場合には、MSを使用することが感度の面および試料量の面からも好ましい。
また、検出器にMSを使用する場合には、有機溶媒中に酸素以外のガスが存在しても、トータルイオン量から酸素の分子イオン32を抽出して酸素のレスポンスを求めることが可能となる。
さらに、イオントラップ型の質量検出器よりも、四重極型質量検出器の方が好適である。
As the detector used in the “dissolved oxygen concentration measurement step”, the organic solvent and oxygen are separated in the separation column of the gas chromatograph in the dissolved oxygen separation step. Therefore, the detector used is a mass detector (MSD), an electron The capture detector (ECD), thermal conductivity detector (TCD), etc. are not particularly limited. However, when a multi-component gas is present in an organic solvent or when a small amount of oxygen is measured, MS may be used. It is also preferable from the viewpoint of sensitivity and the amount of sample.
In addition, when MS is used for the detector, even if a gas other than oxygen is present in the organic solvent, it is possible to extract the oxygen molecular ion 32 + from the total ion amount and obtain the oxygen response. Become.
Furthermore, a quadrupole mass detector is more suitable than an ion trap type mass detector.

本発明による酸素の検出限界は、用いる検出器によって異なるが、例えば、本発明者らが用いたガスクロマトグラフ−質量検出器(GC−MS)を用いる場合、検出限界は1.7mg/lである。ここで、検出限界は次のように求められる。
スプリット比419で空気を測定すると、酸素0.14ngが検出される。その際のレスポンスのSN比は3であり、酸素量の検出限界となる。
一方、スプリット比11で有機溶媒を1μL注入した時に前記酸素のレスポンスと同程度のレスポンスが得られる場合、有機溶媒1μL中の酸素量は1.7ngとなり、検出限界は1.7mg/Lと算出される。したがって、有機溶媒1μLをスプリット比11で測定し、酸素が検出されれば、有機溶媒中の酸素濃度を正確に規定することができる。
The detection limit of oxygen according to the present invention varies depending on the detector used. For example, when the gas chromatograph-mass detector (GC-MS) used by the present inventors is used, the detection limit is 1.7 mg / l. . Here, the detection limit is obtained as follows.
When air is measured at a split ratio 419, 0.14 ng of oxygen is detected. The SN ratio of the response at that time is 3, which is the detection limit of the oxygen amount.
On the other hand, when 1 μL of an organic solvent is injected at a split ratio of 11, a response similar to that of the oxygen can be obtained, the oxygen amount in 1 μL of the organic solvent is 1.7 ng, and the detection limit is calculated as 1.7 mg / L. Is done. Therefore, if 1 μL of organic solvent is measured at a split ratio of 11 and oxygen is detected, the oxygen concentration in the organic solvent can be accurately defined.

最後に、調整工程として、溶存酸素濃度が、所望の溶存酸素濃度、例えば、14mg/lを基準とした場合に、該濃度の測定の結果、14mg/lに達していなければ、これを除外するか、または所望の濃度に到達されるべく、さらに、吹き込み工程、溶存酸素分離工程および溶存酸素濃度測定工程を繰り返すなどして、有機溶媒中の溶存酸素濃度を調整する。   Finally, as an adjustment step, when the dissolved oxygen concentration is based on a desired dissolved oxygen concentration, for example, 14 mg / l, if the concentration does not reach 14 mg / l, this is excluded. Alternatively, in order to reach the desired concentration, the dissolved oxygen concentration in the organic solvent is adjusted by repeating the blowing step, the dissolved oxygen separation step, and the dissolved oxygen concentration measuring step.

本発明の有機溶媒は、有機合成用に用いることを一つの目的としていることから、さらに水分を含まないものが好適に用いられる。具体的な含水量としては、0〜50mg/lが好適に用いられ、より安心して有機合成反応等を行うためにはさらに0〜10mg/lのものが好適に用いられる。   Since the organic solvent of the present invention is intended for use in organic synthesis, one that does not contain moisture is preferably used. As a specific water content, 0 to 50 mg / l is preferably used, and in order to perform an organic synthesis reaction or the like with more peace of mind, a further 0 to 10 mg / l is preferably used.

また、本発明の有機溶媒は、該溶媒に不溶性であるガラス製、金属製容器に収容することができ、さらに、所望により、該容器に貼り付けられたラベルまたはかかる有機溶媒を有する製品に添付される取扱い説明書などを用いて、一定の溶存酸素濃度、例えば、該濃度が14mg/l以下であることが保証された有機溶媒であることを明示することができる。   In addition, the organic solvent of the present invention can be stored in a glass or metal container that is insoluble in the solvent, and, if desired, attached to a label affixed to the container or a product having such an organic solvent. It is possible to clearly indicate that the organic solvent is a certain dissolved oxygen concentration, for example, the concentration is guaranteed to be 14 mg / l or less, using the instruction manual and the like.

以下に実施例を示し、本発明をさらに詳細に説明する。なお、実施例は本発明の一例であり、実施例により本発明は限定されない。   The following examples illustrate the present invention in more detail. In addition, an Example is an example of this invention and this invention is not limited by an Example.

〔実施例1〕窒素バブリングトルエンの溶存酸素測定
マイクロシリンジを用いて、空気0.2μLを、スプリット比を21、42、63、84、105、210、314、419と変えて注入し、図1に示す検量線を得た。主な測定条件を以下に示した。
[Example 1] Measurement of dissolved oxygen in nitrogen bubbling toluene
Using a microsyringe, 0.2 μL of air was injected while changing the split ratio to 21, 42, 63, 84, 105, 210, 314, 419, and the calibration curve shown in FIG. 1 was obtained. The main measurement conditions are shown below.

GC部 GC-17A(島津製作所)
カラム Rtx-1 30m I.D 0.25μm(リステック社)
気化室初期温度:150℃
OCI/PTVファン温度:50℃
カラム入口圧:30kPa
カラム流量:0.8mL/min
線速度:31.5cm/min
全流量:10mL/min
カラム温度:検量線 40℃→60℃
トルエン測定 40℃→60℃→130℃
MS部 GCMS-QP5050A(島津製作所)
検出器ゲイン 1.10kV
インターフェース温度:250℃
GC section GC-17A (Shimadzu Corporation)
Column Rtx-1 30m ID 0.25μm (Listtech)
Initial temperature of vaporization chamber: 150 ° C
OCI / PTV fan temperature: 50 ℃
Column inlet pressure: 30kPa
Column flow rate: 0.8mL / min
Linear velocity: 31.5cm / min
Total flow rate: 10mL / min
Column temperature: Calibration curve 40 ℃ → 60 ℃
Toluene measurement 40 ℃ → 60 ℃ → 130 ℃
MS Department GCMS-QP5050A (Shimadzu Corporation)
Detector gain 1.10kV
Interface temperature: 250 ℃

スプリット比を419としたときのノイズ−レスポンス比(SN比)は3となり、検出限界は0.14ngであった。次に、25℃でトルエンに窒素ガスを30分間吹き込み、その後2時間静置して試料液を調製した。試料液1μLをスプリット比を11に設定して、上記条件でGC−MSを測定したところ、酸素イオンは検出されず、窒素バブリングトルエン中の溶存酸素は検出限界以下(1.7mg/L以下)であった。   When the split ratio was 419, the noise-response ratio (SN ratio) was 3, and the detection limit was 0.14 ng. Next, nitrogen gas was blown into toluene at 25 ° C. for 30 minutes, and then allowed to stand for 2 hours to prepare a sample solution. When 1 μL of the sample solution was set to a split ratio of 11 and GC-MS was measured under the above conditions, oxygen ions were not detected, and dissolved oxygen in nitrogen bubbling toluene was below the detection limit (1.7 mg / L or less). Met.

〔実施例2〕空気飽和トルエンの溶存酸素濃度測定
スプリット比を11、マイクロシリンジを用いて空気0.2μL、0.4μL、0.6μLを注入して検量線を作成(図2)した以外は実施例1と同様の測定条件で測定を行った。
25℃でトルエンにエアーポンプで空気を30分間吹き込み、その後2時間静置して空気飽和トルエンを調製した。上記の条件で空気飽和トルエン1μLを、スプリット比を11に設定して、酸素量を5回測定した。検量線より酸素濃度を算出したところ、平均値72mg/L、RSD 0.8%であった。
[Example 2] The dissolved oxygen concentration measurement split ratio of air-saturated toluene was 11, except that a calibration curve was created by injecting 0.2 μL, 0.4 μL, and 0.6 μL of air using a microsyringe (FIG. 2). Measurement was performed under the same measurement conditions as in Example 1.
Air was blown into toluene at 25 ° C. with an air pump for 30 minutes, and then allowed to stand for 2 hours to prepare air-saturated toluene. Under the above conditions, 1 μL of air-saturated toluene was set, the split ratio was set to 11, and the amount of oxygen was measured five times. When the oxygen concentration was calculated from the calibration curve, the average value was 72 mg / L and RSD was 0.8%.

〔実施例3〕窒素バブリングテトラヒドロフラン(THF)の溶存酸素測定
25℃でTHFに窒素ガスを30分間吹き込み、その後2時間静置して試料液を調製した。試料液1μLを、スプリット比を11に設定して、THF測定時、気化室温度100℃、カラム温度40℃→60℃→100℃以外は実施例1と同様の条件でGC−MSを測定したところ、酸素イオンは検出されず、窒素バブリングTHF中の溶存酸素は検出限界以下であった。
[Example 3] Measurement of dissolved oxygen in nitrogen bubbling tetrahydrofuran (THF) Nitrogen gas was blown into THF at 25 ° C for 30 minutes and then allowed to stand for 2 hours to prepare a sample solution. GC-MS was measured under the same conditions as in Example 1 except that 1 μL of the sample solution was set to a split ratio of 11 and the THF measurement was performed except for a vaporization chamber temperature of 100 ° C. and a column temperature of 40 ° C. → 60 ° C. → 100 ° C. However, oxygen ions were not detected, and dissolved oxygen in nitrogen bubbling THF was below the detection limit.

〔実施例4〕空気飽和テトラヒドロフラン(THF)の溶存酸素濃度測定
マイクロシリンジを用いて空気0.2μL、0.4μL、0.6μLを注入して、スプリット比を11とし、実施例3と同様の条件で測定し、検量線を得た(図3)。
25℃でTHFにエアーポンプで空気を30分間吹き込み、その後2時間静置して空気飽和THFを調製した。上記の条件で空気飽和THF1μLを、スプリット比を11に設定して、酸素量を5回測定した。検量線より酸素濃度を算出したところ、平均値63mg/L、RSD 3.4%であった。
[Example 4] Measurement of dissolved oxygen concentration in air-saturated tetrahydrofuran (THF) Using a microsyringe, 0.2 μL, 0.4 μL, and 0.6 μL of air were injected, and the split ratio was set to 11. A measurement curve was obtained under the conditions (FIG. 3).
Air was blown into THF at 25 ° C. with an air pump for 30 minutes, and then allowed to stand for 2 hours to prepare air-saturated THF. Under the above conditions, 1 μL of air-saturated THF was set, the split ratio was set to 11, and the amount of oxygen was measured five times. When the oxygen concentration was calculated from the calibration curve, the average value was 63 mg / L and RSD was 3.4%.

〔実施例5〕窒素バブリングエチルエーテルの溶存酸素測定
25℃でエチルエーテルに窒素ガスを30分間吹き込み、その後2時間静置して試料液を調製した。試料液1μLを、スプリット比を11に設定して、エチルエーテル測定時、気化室温度50℃、カラム温度40℃→50℃→80℃以外は実施例1と同様の条件でGC−MSを測定したところ、酸素イオンは検出されず、窒素バブリングエチルエーテル中の溶存酸素は検出限界以下であった。
[Example 5] Measurement of dissolved oxygen in nitrogen bubbling ethyl ether At 25 ° C, nitrogen gas was blown into ethyl ether for 30 minutes, and then allowed to stand for 2 hours to prepare a sample solution. GC-MS was measured under the same conditions as in Example 1 except that 1 μL of the sample solution was set at a split ratio of 11 and the ethyl ether measurement was performed except for a vaporization chamber temperature of 50 ° C. and a column temperature of 40 ° C. → 50 ° C. → 80 ° C. As a result, oxygen ions were not detected, and dissolved oxygen in nitrogen bubbling ethyl ether was below the detection limit.

〔実施例6〕空気飽和エチルエーテルの溶存酸素濃度測定
マイクロシリンジを用いて、スプリット比を11とし、空気0.2μL、0.4μL、0.6μLを注入して図4に示す検量線を得た。なお、測定条件は実施例5と同様に実施した。
25℃でエチルエーテルにエアーポンプで空気を30分間吹き込み、その後2時間静置して空気飽和エチルエーテルを調製した。上記の条件で空気飽和エチルエーテル1μLを、スプリット比を11に設定して、酸素量を5回測定した。検量線より酸素濃度を算出したところ、平均値50mg/L、RSD 6.6%であった。
[Example 6] Measurement of dissolved oxygen concentration of air-saturated ethyl ether Using a microsyringe, the split ratio was set to 11, and 0.2 μL, 0.4 μL, and 0.6 μL of air were injected to obtain a calibration curve shown in FIG. It was. The measurement conditions were the same as in Example 5.
Air was blown into ethyl ether at 25 ° C. with an air pump for 30 minutes, and then allowed to stand for 2 hours to prepare air-saturated ethyl ether. Under the above conditions, 1 μL of air saturated ethyl ether was set, the split ratio was set to 11, and the amount of oxygen was measured five times. When the oxygen concentration was calculated from the calibration curve, the average value was 50 mg / L and RSD was 6.6%.

〔実施例7〕窒素バブリング塩化メチレンの溶存酸素測定
25℃で塩化メチレンに窒素ガスを30分間吹き込み、その後2時間静置して試料液を調製した。試料液1μLを、スプリット比を11に設定して、実施例5と同様の条件でGC−MSを測定したところ、酸素イオンは検出されず、窒素バブリング塩化メチレン中の溶存酸素は検出限界以下であった。
[Example 7] Measurement of dissolved oxygen in nitrogen bubbling methylene chloride At 25 ° C, nitrogen gas was blown into methylene chloride for 30 minutes and then allowed to stand for 2 hours to prepare a sample solution. When GC-MS was measured under the same conditions as in Example 5 with 1 μL of the sample solution set to a split ratio of 11, no oxygen ions were detected, and dissolved oxygen in nitrogen bubbling methylene chloride was below the detection limit. there were.

〔実施例8〕空気飽和塩化メチレンの溶存酸素濃度測定
マイクロシリンジを用いて、スプリット比を11とし、空気0.2μL、0.4μL、0.6μLを注入して図5に示す検量線を得た。なお、測定条件は実施例5と同様とした。
25℃で塩化メチレンにエアーポンプで空気を30分間吹き込み、その後2時間静置して空気飽和塩化メチレンを調製した。上記の条件で空気飽和塩化メチレン1μLを、スプリット比を11に設定して、酸素量を5回測定した。検量線より酸素濃度を算出したところ、平均値31mg/L、RSD 2.5%であった。
[Example 8] Measurement of dissolved oxygen concentration in air-saturated methylene chloride Using a microsyringe, the split ratio was set to 11, and 0.2 μL, 0.4 μL, and 0.6 μL of air were injected to obtain a calibration curve shown in FIG. It was. The measurement conditions were the same as in Example 5.
Air was blown into methylene chloride at 25 ° C. with an air pump for 30 minutes, and then allowed to stand for 2 hours to prepare air-saturated methylene chloride. Under the above conditions, 1 μL of air-saturated methylene chloride was set, the split ratio was set to 11, and the amount of oxygen was measured five times. When the oxygen concentration was calculated from the calibration curve, the average value was 31 mg / L and the RSD was 2.5%.

〔実施例9〕トルエンの溶存酸素濃度測定
マイクロシリンジを用いて、空気0.2μLを、スプリット比を21、42、84、126と変えて注入して図6に示す検量線を得た。なお、トルエン測定条件は実施例2と同様とした。
25℃でトルエンにエアーポンプで空気を30分間吹き込み、空気飽和トルエンを調製した。また、25℃でトルエンに窒素ガスを30分間吹き込み、窒素飽和トルエンを調製し、窒素飽和トルエン443gに空気飽和トルエン44gを空気に触れないよう混合し、試料液とした。試料液1μLを、スプリット比を11に設定して酸素量を3回測定し、検量線より酸素濃度を算出したところ、平均値は5mg/Lであった。
[Example 9] Measurement of dissolved oxygen concentration of toluene Using a microsyringe, 0.2 μL of air was injected while changing the split ratio to 21, 42, 84, 126, and the calibration curve shown in FIG. 6 was obtained. The toluene measurement conditions were the same as in Example 2.
Air was blown into toluene with an air pump at 25 ° C. for 30 minutes to prepare air-saturated toluene. Nitrogen gas was blown into toluene at 25 ° C. for 30 minutes to prepare nitrogen-saturated toluene, and 443 g of nitrogen-saturated toluene was mixed with 44 g of air-saturated toluene so as not to come into contact with air to prepare a sample solution. When 1 μL of the sample solution was set to a split ratio of 11, the amount of oxygen was measured three times, and the oxygen concentration was calculated from the calibration curve. The average value was 5 mg / L.

〔実施例10〕テトラヒドロフラン(THF)の溶存酸素濃度測定
マイクロシリンジを用いて、空気0.2μLを、スプリット比を21、42、84、126と変えて注入して図7に示す検量線を得た。なお、THF測定条件は実施例3と同様とした。
25℃でTHFにエアーポンプで空気を30分間吹き込み、空気飽和THFを調製した。また、25℃でTHFに窒素ガスを30分間吹き込み窒素飽和THFを調製し、窒素飽和THF447gに空気飽和THF50gを空気に触れないよう混合し、試料液とした。試料液1μLを、スプリット比を11に設定して、酸素量を3回測定し、検量線より酸素濃度を算出したところ、平均値4mg/Lであった。
[Example 10] Measurement of dissolved oxygen concentration of tetrahydrofuran (THF) Using a microsyringe, 0.2 μL of air was injected while changing the split ratio to 21, 42, 84, 126 to obtain a calibration curve shown in FIG. It was. The THF measurement conditions were the same as in Example 3.
Air was blown into THF at 25 ° C. for 30 minutes with an air pump to prepare air-saturated THF. Moreover, nitrogen gas was blown into THF at 25 ° C. for 30 minutes to prepare nitrogen-saturated THF, and 447 g of nitrogen-saturated THF was mixed with 50 g of air-saturated THF so as not to come into contact with air to prepare a sample solution. When 1 μL of the sample solution was set to a split ratio of 11, the amount of oxygen was measured three times, and the oxygen concentration was calculated from the calibration curve. The average value was 4 mg / L.

〔実施例11〕エチルエーテルの溶存酸素濃度測定
マイクロシリンジを用いて、空気0.2μLを、スプリット比を42、84、126、168と変えて注入して図8に示す検量線を得た。なお、エチルエーテル測定条件は実施例5と同様とした。
25℃でエチルエーテルにエアーポンプで空気を30分間吹き込み、空気飽和エチルエーテルを調製した。また、25℃でエチルエーテルに窒素ガスを30分間吹き込み、窒素飽和エチルエーテルを調製し、窒素飽和エチルエーテル340gに空気飽和エチルエーテル55gを空気に触れないよう混合し、試料液とした。試料液1μLを、スプリット比を11に設定して、酸素量を3回測定し、検量線より酸素濃度を算出したところ、平均値4mg/Lであった。
[Example 11] Measurement of dissolved oxygen concentration of ethyl ether Using a microsyringe, 0.2 μL of air was injected while changing the split ratio to 42, 84, 126, and 168 to obtain a calibration curve shown in FIG. The ethyl ether measurement conditions were the same as in Example 5.
Air was blown into ethyl ether at 25 ° C. for 30 minutes with an air pump to prepare air-saturated ethyl ether. Further, nitrogen gas was blown into ethyl ether at 25 ° C. for 30 minutes to prepare nitrogen-saturated ethyl ether, and 340 g of nitrogen-saturated ethyl ether was mixed with 55 g of air-saturated ethyl ether so as not to come into contact with air to prepare a sample solution. When 1 μL of the sample solution was set to a split ratio of 11, the amount of oxygen was measured three times, and the oxygen concentration was calculated from the calibration curve. The average value was 4 mg / L.

本発明は、酸素に敏感な有機化合物を取り扱う現場および各種研究機関ならびに脱酸素溶媒を提供する分野で広く利用される。   INDUSTRIAL APPLICABILITY The present invention is widely used in the field of handling organic compounds sensitive to oxygen, various research institutions, and the field of providing a deoxygenated solvent.

窒素バブリングトルエンの溶存酸素を測定する場合における酸素の検量線を示す。The analytical curve of oxygen in the case of measuring the dissolved oxygen of nitrogen bubbling toluene is shown. 空気飽和トルエンの溶存酸素を測定する場合における酸素の検量線を示す。The analytical curve of oxygen in the case of measuring the dissolved oxygen of air saturated toluene is shown. 空気飽和THFの溶存酸素を測定する場合における酸素の検量線を示す。The calibration curve of oxygen in the case of measuring dissolved oxygen in air-saturated THF is shown. 空気飽和エチルエーテルの溶存酸素を測定する場合における酸素の検量線を示す。The calibration curve of oxygen in the case of measuring the dissolved oxygen of air saturated ethyl ether is shown. 空気飽和塩化メチレンの溶存酸素を測定する場合における酸素の検量線を示す。The oxygen calibration curve in the case of measuring dissolved oxygen in air-saturated methylene chloride is shown. トルエンの溶存酸素を測定する場合における酸素の検量線を示す。The calibration curve of oxygen in the case of measuring the dissolved oxygen of toluene is shown. THFの溶存酸素を測定する場合における酸素の検量線を示す。The calibration curve of oxygen in the case of measuring dissolved oxygen in THF is shown. エチルエーテルの溶存酸素を測定する場合における酸素の検量線を示す。The calibration curve of oxygen in the case of measuring the dissolved oxygen of ethyl ether is shown.

Claims (9)

溶存酸素濃度が、一定濃度以下の有機溶媒の製造方法であって、
有機溶媒に不活性ガスを吹き込む、吹き込み工程、
ガスクロマトグラフを用いて該有機溶媒中の溶存酸素を分離する、溶存酸素分離工程、
溶存酸素分離工程により得られた有機溶媒中の溶存酸素の濃度を測定する、溶存酸素濃度測定工程、および
該測定の結果に基づき、溶存酸素濃度を一定濃度以下に調整する、調整工程、
を含む前記方法。
A method for producing an organic solvent having a dissolved oxygen concentration of a certain concentration or less,
Blowing an inert gas into an organic solvent, blowing process,
A dissolved oxygen separation step of separating dissolved oxygen in the organic solvent using a gas chromatograph,
Measuring the concentration of dissolved oxygen in the organic solvent obtained by the dissolved oxygen separation step, and adjusting the dissolved oxygen concentration below a certain concentration based on the result of the measurement,
Including said method.
溶存酸素濃度を、14mg/l以下に調整する、請求項1に記載の方法。   The method according to claim 1, wherein the dissolved oxygen concentration is adjusted to 14 mg / l or less. プレカラムを経由することなく分離カラム内において溶存酸素を分離するカラム条件に設定する、カラム条件設定工程をさらに含む、請求項1または2に記載の方法。   The method according to claim 1, further comprising a column condition setting step of setting column conditions for separating dissolved oxygen in the separation column without going through the precolumn. 溶存酸素濃度を、質量検出器により測定する、請求項1〜3のいずれかに記載の方法。   The method according to claim 1, wherein the dissolved oxygen concentration is measured by a mass detector. 不活性ガスが、窒素またはアルゴンである、請求項1〜4のいずれかに記載の方法。   The method in any one of Claims 1-4 whose inert gas is nitrogen or argon. 有機溶媒が、芳香族系溶媒、炭化水素系溶媒、エーテル系溶媒、ハロゲン化炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、ニトリル系溶媒およびアミド系溶媒からなる群から選択される1種または2種以上である、請求項1〜5のいずれかに記載の方法。   The organic solvent is selected from the group consisting of aromatic solvents, hydrocarbon solvents, ether solvents, halogenated hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, nitrile solvents and amide solvents. The method in any one of Claims 1-5 which is 1 type (s) or 2 or more types. 請求項2に記載の方法により製造された、溶存酸素濃度が14mg/l以下である、有機溶媒。   An organic solvent produced by the method according to claim 2 and having a dissolved oxygen concentration of 14 mg / l or less. 溶存酸素濃度が、14mg/l以下であることが明示された、有機溶媒。   An organic solvent whose dissolved oxygen concentration is specified to be 14 mg / l or less. ガスクロマトグラフを用いて有機溶媒中の溶存酸素が14mg/l以下の濃度を測定するための方法であって、
プレカラムを経由することなく分離カラムに有機溶媒を導入する、有機溶媒導入工程、
分離カラム内において溶存酸素を分離するカラム条件に設定されたガスクロマトグラフを用いて該有機溶媒中の溶存酸素を分離する、溶存酸素分離工程、および
溶存酸素分離工程により得られた有機溶媒中の溶存酸素の濃度を、質量検出器を用いて測定する、溶存酸素濃度測定工程、
を含む、前記方法。
A method for measuring a concentration of dissolved oxygen in an organic solvent of 14 mg / l or less using a gas chromatograph,
Introducing an organic solvent into the separation column without going through a pre-column, an organic solvent introduction step,
The dissolved oxygen in the organic solvent is separated using a gas chromatograph set to the column conditions for separating dissolved oxygen in the separation column, and the dissolved in the organic solvent obtained by the dissolved oxygen separating step A dissolved oxygen concentration measurement step for measuring the oxygen concentration using a mass detector;
Said method.
JP2003422173A 2003-12-19 2003-12-19 Organic solvent having concentration of dissolved oxygen of specified level or lower, its manufacturing method and method of measuring dissolved oxygen Pending JP2005177612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422173A JP2005177612A (en) 2003-12-19 2003-12-19 Organic solvent having concentration of dissolved oxygen of specified level or lower, its manufacturing method and method of measuring dissolved oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422173A JP2005177612A (en) 2003-12-19 2003-12-19 Organic solvent having concentration of dissolved oxygen of specified level or lower, its manufacturing method and method of measuring dissolved oxygen

Publications (1)

Publication Number Publication Date
JP2005177612A true JP2005177612A (en) 2005-07-07

Family

ID=34783129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422173A Pending JP2005177612A (en) 2003-12-19 2003-12-19 Organic solvent having concentration of dissolved oxygen of specified level or lower, its manufacturing method and method of measuring dissolved oxygen

Country Status (1)

Country Link
JP (1) JP2005177612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740113A (en) * 2022-04-12 2022-07-12 四川汇宇制药股份有限公司 Method for separating and detecting residual solvent and/or related substances in polyacrylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740113A (en) * 2022-04-12 2022-07-12 四川汇宇制药股份有限公司 Method for separating and detecting residual solvent and/or related substances in polyacrylic acid
CN114740113B (en) * 2022-04-12 2023-10-20 四川汇宇制药股份有限公司 Separation and detection method for residual solvent and/or related substances in polyacrylic acid

Similar Documents

Publication Publication Date Title
Surratt et al. Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene
Chong et al. Inductively coupled plasma-mass spectrometry for elemental analysis and isotope ratio determinations in individual organic compounds separated by gas chromatography
Zhang et al. Organosulfates as tracers for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere
Zhao et al. Iodometry-assisted liquid chromatography electrospray ionization mass spectrometry for analysis of organic peroxides: An application to atmospheric secondary organic aerosol
Márquez-Sillero et al. Direct determination of 2, 4, 6-tricholoroanisole in wines by single-drop ionic liquid microextraction coupled with multicapillary column separation and ion mobility spectrometry detection
Soleimani et al. Selective determination of mandelic acid in urine using molecularly imprinted polymer in microextraction by packed sorbent
Liu et al. Preparation and application of the sol–gel-derived acrylate/silicone co-polymer coatings for headspace solid-phase microextraction of 2-chloroethyl ethyl sulfide in soil
JP2011154035A (en) Analysis method for hydrofluoroalkane
WO2009081822A1 (en) Method for analysis of low-molecular-weight organic compound having 20 or less carbon atoms in water- and oil-repellent composition
CN103969368B (en) A kind of method of ethyl acetate and seven kinds of residual monomers in Rapid Simultaneous Determination tackifier
WO2004013612A2 (en) Ionic liquids as solvents in headspace gas chromatography
Vandergrift et al. Condensed phase membrane introduction mass spectrometry with in situ liquid reagent chemical ionization in a liquid electron ionization source (CP-MIMS-LEI/CI)
Lei et al. Initial pH governs secondary organic aerosol phase state and morphology after uptake of isoprene epoxydiols (IEPOX)
Bräkling et al. Parallel Operation of Electron Ionization and Chemical Ionization for GC–MS Using a Single TOF Mass Analyzer
Zeng et al. Study of the structures of photodegradation impurities and pathways of photodegradation of cilnidipine by liquid chromatography/Q‐Orbitrap mass spectrometry
Pillai et al. Headspace in-drop derivatization of carbonyl compounds for their analysis by high-performance liquid chromatography-diode array detection
Hellén et al. Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols
Pizzarello et al. Chiral molecules in space and their possible passage to planetary bodies recorded by meteorites
He et al. An improved ionic liquid-based headspace single-drop microextraction–liquid chromatography method for the analysis of camphor and trans-anethole in compound liquorice tablets
JP2005177612A (en) Organic solvent having concentration of dissolved oxygen of specified level or lower, its manufacturing method and method of measuring dissolved oxygen
Hulshoff et al. Determination of valproic acid (DI-N-propyl acetic acid) in plasma by gas-liquid chromatography with pre-column butylation
Kasai et al. Separation of stereoisomers of several furan derivatives by capillary gas chromatography–mass spectrometry, supercritical fluid chromatography, and liquid chromatography using chiral stationary phases
Kamuf et al. Stereodynamics of small 1, 2‐dialkyldiaziridines
Olson et al. Determination of halogenated compounds with supercritical fluid chromatography–microwave-induced plasma mass spectrometry
Chen et al. Multi-capillary column high-pressure photoionization time-of-flight mass spectrometry and its application for online rapid analysis of flavor compounds