JP2005177226A - Method and apparatus for cleaning air using photocatalyst - Google Patents

Method and apparatus for cleaning air using photocatalyst Download PDF

Info

Publication number
JP2005177226A
JP2005177226A JP2003424185A JP2003424185A JP2005177226A JP 2005177226 A JP2005177226 A JP 2005177226A JP 2003424185 A JP2003424185 A JP 2003424185A JP 2003424185 A JP2003424185 A JP 2003424185A JP 2005177226 A JP2005177226 A JP 2005177226A
Authority
JP
Japan
Prior art keywords
passage
air
photocatalyst
light source
air cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003424185A
Other languages
Japanese (ja)
Inventor
Shigeaki Kokubo
重昭 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003424185A priority Critical patent/JP2005177226A/en
Publication of JP2005177226A publication Critical patent/JP2005177226A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To clean the air by irradiating ultraviolet light to titanium dioxide using the property of titanium dioxide to oxidize and decompose organic materials in the air or water through photocatalytic reaction. <P>SOLUTION: A catalytic surface 11 is formed on the the inner wall of a passage 2 for passing contaminated air. A plurality of materials 12, each having a shape for transmitting or reflecting diffusely light flux, such as ultraviolet light or the like, from a light source 6, are provided in the passage 2 in a direction perpendicular to the passage. In a method for cleaning air, the contaminated air is sucked or pressed into the passage by a fan 3 and contacts the catalytic surface 11. An apparatus for cleaning air comprises an intake port 4 for sucking in the contaminated air or taking in the pressurized contaminated air, the passage 2 having an outlet port 9 for discharging cleaned air, the catalytic surface 11 formed on the inner wall of the passage 2, the light source 6 that emits light flux in parallel with respect to the catalytic surface 11, the plurality of materials 12 for transmitting or reflecting diffusely the light flux, a plurality of members 13 for arranging the materials 12 perpendicular to the radiation direction of the light flux, and a reflector plate 10 provided in the passage 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二酸化チタンに光源例えば紫外線を照射すると、光触媒反応により大気中や水中の有機物を酸化分解することがあるのを利用して、空気の浄化、防汚(セルフクリーニング)、防曇(超親水性)、抗菌、殺菌、防臭等の効果を得ようとするものである。   The present invention utilizes the fact that when titanium dioxide is irradiated with a light source such as ultraviolet rays, organic substances in the air or water may be oxidatively decomposed by photocatalytic reaction, so that air purification, antifouling (self-cleaning), antifogging ( (Superhydrophilicity), antibacterial, sterilizing, deodorizing and other effects.

図12に示した構成は、従来例において、二酸化チタンを塗布又はコーテイングした面(接触面)11に太陽光を直接照射するか蛍光灯等で紫外線等を発生する光源6を直接照射する方法を示し、汚染物質を触媒面に沿って並行に移動接触させるものである。   The configuration shown in FIG. 12 is a conventional method in which a surface (contact surface) 11 coated or coated with titanium dioxide is directly irradiated with sunlight or directly with a light source 6 that generates ultraviolet rays or the like with a fluorescent lamp or the like. The contaminant is moved and contacted in parallel along the catalyst surface.

図13に示した構成は、従来例において、二酸化チタン等を塗布又はコーテイングした面(触媒面)11を内側にした円筒形の内側に蛍光灯等で紫外線等を発生する光源6を直接照射する方法で、汚染物質は触媒面11に沿って並行に移動接触させるものである。   The configuration shown in FIG. 13 directly irradiates a light source 6 that generates ultraviolet rays or the like with a fluorescent lamp or the like on the inside of a cylindrical shape having a surface (catalyst surface) 11 coated or coated with titanium dioxide or the like in the conventional example. In the method, the contaminants are moved and contacted in parallel along the catalyst surface 11.

図14は従来例において、両面に二酸化チタン等を塗布又はコーテイングした素材(触媒面)11を複数配置して、その中間に蛍光灯等で紫外線等を発生する光源6を設置し、両面に直接照射する方法である。、
特開2002−253662
FIG. 14 shows a conventional example in which a plurality of materials (catalyst surfaces) 11 coated or coated with titanium dioxide or the like are arranged on both sides, and a light source 6 for generating ultraviolet rays or the like is installed in the middle, directly on both sides. Irradiation method. ,
JP 2002-253664 A

二酸化チタンを塗布又はコーテイングした材料(触媒材)は高価であり、太陽光を利用する場合は別として、夜間及び太陽光の当たらない場所で、触媒材に光触媒反応に必要な波長の紫外線を照射しようとすれば、紫外線を発生する光源が多数必要になる。当然価格も高価になり、これらの材料を使用して製作する製品は高価なものになってしまう。また光源のためのスペースがより広く必要になり、光源のための電力も大量に必要になる。したがって触媒である二酸化チタンに少数の光源と少量の電力で効率的に紫外線を照射する構造が必要になる。   Titanium dioxide-coated or coated material (catalyst material) is expensive. Except when using sunlight, the catalyst material is irradiated with ultraviolet rays of the wavelength necessary for the photocatalytic reaction at night and in places not exposed to sunlight. If it is going to do, many light sources which generate | occur | produce an ultraviolet-ray will be needed. Naturally, the price is also expensive, and the products manufactured using these materials become expensive. Also, a wider space for the light source is required, and a large amount of power for the light source is also required. Therefore, a structure that efficiently irradiates ultraviolet rays with a small number of light sources and a small amount of power is required for titanium dioxide as a catalyst.

紫外線を発生する光源は高価なため、使用個数を少なくし光源からの紫外線を内部機構により並行光にしてより遠距離まで透過させ、なおかつ屈折反射させて触媒面に効率的に紫外線を照射する構造を考えようとするものである。   Light sources that generate ultraviolet rays are expensive, so the number used is reduced, the ultraviolet rays from the light sources are converted into parallel light by an internal mechanism, transmitted to a longer distance, and refracted and reflected to efficiently irradiate the catalyst surface with ultraviolet rays Is to think about.

この発明によれば、比較的高価な紫外線を発生する光源の使用個数を少なくし、また光源からの紫外線を並行光にして、より遠距離まで透過させ、しかも紫外線光軸を屈曲反射させて効率的に触媒面に紫外線を照射させることを可能とするものである。。   According to the present invention, the number of light sources that generate relatively expensive ultraviolet rays is reduced, the ultraviolet rays from the light sources are converted into parallel light, transmitted to a longer distance, and the ultraviolet optical axis is bent and reflected to improve efficiency. In particular, the catalyst surface can be irradiated with ultraviolet rays. .

図1において、本体1の通路2にファン3により取入口4から吸入された汚染空気の汚染物質はプレフィルター5によって空気中に浮遊する比較的大きなゴミが集塵され、紫外線を発生する光源6により照射されその構成を後述する光触媒フィルター7で有害ガス、細菌が分離され、活性炭フィルター8で消臭脱臭されファン3により排出排出口9から排出される。この際、光触媒フィルター7の後位に配設された反射板10によって後述する光源6からの光束が反射される。なお活性炭フィルター8をプレフィルター5と光源6の中間に設置する場合もありうる。   In FIG. 1, the pollutant of polluted air sucked from the intake port 4 by the fan 3 into the passage 2 of the main body 1 collects relatively large dust floating in the air by the prefilter 5 and generates a light source 6 that generates ultraviolet rays. The harmful gas and bacteria are separated by the photocatalytic filter 7 whose structure will be described later, deodorized and deodorized by the activated carbon filter 8, and discharged from the discharge outlet 9 by the fan 3. At this time, the light beam from the light source 6 described later is reflected by the reflecting plate 10 disposed behind the photocatalytic filter 7. In some cases, the activated carbon filter 8 may be installed between the pre-filter 5 and the light source 6.

前記ファン3は吸引作用による場合を示したが、実用上圧入により構成することも可能である。また、紫外線を照射する光源6としては、蛍光灯、ブラックライト、光化学ランプ、冷陰極蛍光ランプなどによって構成されるものとする。   Although the fan 3 has been described as having a suction action, it can also be configured by press-fitting in practice. Further, the light source 6 for irradiating ultraviolet rays is assumed to be constituted by a fluorescent lamp, a black light, a photochemical lamp, a cold cathode fluorescent lamp, or the like.

図2において、ファン3により吸入される汚染空気の汚染物質はプレフィルター5で空気中に浮遊する比較的大きなゴミが集塵され、紫外線が発生する光源6によって照射される2層に配設された光触媒フィルター7で有害ガス、細菌が分解され、活性炭フィルター8で消臭脱臭されファン3により排出される。活性炭フィルター8をプレフィルター5と光触媒フィルター7の中間に設置する場合もありうる。   In FIG. 2, the pollutant of polluted air sucked by the fan 3 is arranged in two layers irradiated by the light source 6 that generates relatively large dust floating in the air by the prefilter 5 and generates ultraviolet rays. The harmful gas and bacteria are decomposed by the photocatalytic filter 7, deodorized and deodorized by the activated carbon filter 8, and discharged by the fan 3. In some cases, the activated carbon filter 8 may be installed between the pre-filter 5 and the photocatalytic filter 7.

図3は光触媒フィルター7の基本構造であって、パンチングしたアルミニュウム板からなる本体1の内側壁に、例えば二酸化チタンを塗布又はコーテイングした触媒面11が内側になるように配置する。このように二酸化チタンを塗布又はコーテイングすると二酸化チタンの防汚(セルフクリーニング)効果を期待しうるものであるが、場合によってはこのような二酸化チタンの塗布又はコーテイングをしないコとも考慮される。通路2内には光源6からの光束の通過を許容する隙間を形成する部材13を配設し、アルミニュウムなどの触媒によって酸化分解されない材料からなるこれら部材13によって挟み込まれるように、これら部材13に対して交叉する方向に光源6からの光束を透過、乱反射する形状の多数の素材12を設置する。   FIG. 3 shows the basic structure of the photocatalytic filter 7, which is arranged on the inner wall of the main body 1 made of a punched aluminum plate so that, for example, a catalyst surface 11 coated or coated with titanium dioxide is on the inner side. When titanium dioxide is applied or coated in this way, the antifouling (self-cleaning) effect of titanium dioxide can be expected, but in some cases, it is also considered that the titanium dioxide is not applied or coated. A member 13 that forms a gap allowing passage of the light beam from the light source 6 is disposed in the passage 2, and the member 13 is sandwiched by these members 13 made of a material that is not oxidatively decomposed by a catalyst such as aluminum. On the other hand, a large number of materials 12 having a shape that transmits and diffusely reflects the light beam from the light source 6 in the crossing direction.

これら素材12は,ガラス、アクリル樹脂、ABS、塩化ビニールのような透過反射材で断面形状が多面体からなり、前記触媒面11に対し並行な位置に紫外線を発生させた光源6から照射される紫外線の一部14は透過、乱反射する素材12の垂直面15を透過して末端部16に到達する。紫外線の一部14の到達した紫外線の末端部16は反射板17により反射され、再度触媒材の中間を透過する。紫外線の一部14を透過、反射された紫外線18は、透過、乱反射する形状の素材12の内部19によって屈折され、触媒面11を照射すると共に触媒面11により反射され、これが繰り返し行なわれる。   These materials 12 are transparent reflection materials such as glass, acrylic resin, ABS, and vinyl chloride. The cross-sectional shape is a polyhedron, and ultraviolet rays emitted from a light source 6 that generates ultraviolet rays at a position parallel to the catalyst surface 11. Part 14 of the light passes through the vertical surface 15 of the material 12 that is transmitted and diffusely reflected, and reaches the end portion 16. The terminal portion 16 of the ultraviolet rays reached by the portion 14 of the ultraviolet rays is reflected by the reflecting plate 17 and again passes through the middle of the catalyst material. The ultraviolet ray 18 transmitted and reflected through a part 14 of the ultraviolet ray is refracted by the inside 19 of the material 12 that is transmitted and diffusely reflected, irradiates the catalyst surface 11 and is reflected by the catalyst surface 11, and this is repeated.

また光源6から照射される紫外線の一部20は透過、乱反射する形状の素材12の外側斜面21によって乱反射され、触媒面11を照射するともに触媒面11により反射される。以上のように紫外線光軸を反射、屈折させることにより紫外線は効率よく触媒面11を照射することになる。   Further, a part 20 of the ultraviolet rays irradiated from the light source 6 is diffusely reflected by the outer inclined surface 21 of the material 12 having a shape to transmit and diffusely reflect, and irradiates the catalyst surface 11 and is reflected by the catalyst surface 11. As described above, by reflecting and refracting the ultraviolet optical axis, the ultraviolet rays efficiently irradiate the catalyst surface 11.

図4は図3の俯瞰透視図であり、図5は図3の構造の光触媒フィルター7を複数個積層して光触媒層22とするものであって、複数個で構成される図4の光触媒層22に対して紫外線を発生する光源6の配置方法は、以下、図6から図11まで共通である。   4 is an overhead perspective view of FIG. 3, and FIG. 5 is a photocatalyst layer 22 in which a plurality of photocatalyst filters 7 having the structure of FIG. 3 are laminated to form a photocatalyst layer of FIG. The arrangement method of the light source 6 that generates ultraviolet rays with respect to 22 is common to FIGS.

図6とこの図6の俯瞰透視図である図7において、光触媒層22の外側に紫外線を発生する光源6を配置し、凹面の反射鏡23を光源6の外側に設置し、反対側に反射板17を設置することによって光源6から照射される紫外線を透過、乱反射する形状の素材12の作用によって紫外線の光束を反射、屈折させることにより紫外線は効率よく触媒面11を照射する。   In FIG. 6 and FIG. 7, which is a perspective view of FIG. 6, the light source 6 that generates ultraviolet rays is arranged outside the photocatalyst layer 22, and the concave reflecting mirror 23 is installed outside the light source 6 and reflected on the opposite side. By installing the plate 17, the ultraviolet ray efficiently irradiates the catalyst surface 11 by reflecting and refracting the ultraviolet light flux by the action of the material 12 that transmits and diffusely reflects the ultraviolet ray emitted from the light source 6.

図8とこの図8の俯瞰透視図である図9において、光触媒層22の両側に紫外線を発生する光源6を配置し、凹面の反射鏡23を光源6の両外側に設置することによって、光源6から照射される紫外線を透過、乱反射する形状の素材12の作用によって紫外線の光束を反射、屈折させることにより紫外線は効率よく触媒面11を照射する。   In FIG. 8 and FIG. 9, which is a perspective view of FIG. 8, a light source 6 that generates ultraviolet rays is arranged on both sides of the photocatalyst layer 22, and concave reflectors 23 are installed on both outer sides of the light source 6. The ultraviolet rays efficiently irradiate the catalyst surface 11 by reflecting and refracting the luminous flux of the ultraviolet rays by the action of the material 12 that transmits and diffusely reflects the ultraviolet rays irradiated from 6.

図10とこの図10の俯瞰透視図である図11において、光触媒層22を両側に配置し中心部に紫外線を発生する光源6を配置して、光触媒層22の両外側に反射板17を設置することによって、光源6から照射される紫外線を透過、乱反射する形状の素材12の作用によって紫外線光軸を反射、屈折させることにより紫外線は効率よく触媒面11に照射する。   In FIG. 10 and FIG. 11, which is a perspective view of FIG. 10, a photocatalyst layer 22 is arranged on both sides, a light source 6 that generates ultraviolet rays is arranged in the center, and reflectors 17 are installed on both outer sides of the photocatalyst layer 22 Thus, the catalyst surface 11 is efficiently irradiated by reflecting and refracting the ultraviolet optical axis by the action of the material 12 having a shape that transmits and diffusely reflects the ultraviolet light emitted from the light source 6.

上述の構成において、防汚(セルフクリーニング)のためには、光源6、素材12、部材13の表面にも二酸化チタンの塗布又はコーテイングを形成することが望ましい。   In the above-described configuration, it is desirable to form a titanium dioxide coating or coating on the surfaces of the light source 6, the material 12, and the member 13 for antifouling (self-cleaning).

この発明の基本的な形態を示す構成図である。It is a block diagram which shows the basic form of this invention. この発明の他の基本的な形態の構成図である。It is a block diagram of the other basic form of this invention. 光触媒フィルターの基本構造を示す図である。It is a figure which shows the basic structure of a photocatalyst filter. 図3の俯瞰透視図である。FIG. 4 is a perspective view of FIG. 光触媒フィルターを複数個積層して光触媒層とした図である。It is the figure which laminated | stacked several photocatalyst filters and made it a photocatalyst layer. 光触媒層の外側に紫外線を発生する光源を配置し、凹面の反射鏡を光源の外側に反射板を設置した図である。It is the figure which has arrange | positioned the light source which generate | occur | produces an ultraviolet-ray on the outer side of a photocatalyst layer, and installed the reflecting plate in the outer side of the concave reflective mirror. 図6の俯瞰透視図である。FIG. 7 is a perspective view of FIG. 光触媒層の両側に紫外線を発生する光源を配置し、凹面の反射鏡を光源の両外側に設置した図である。It is the figure which has arrange | positioned the light source which generate | occur | produces an ultraviolet-ray in the both sides of a photocatalyst layer, and installed the concave reflective mirror in the both outer sides of the light source. 図8の俯瞰透視図である。FIG. 9 is an overhead perspective view of FIG. 光触媒層を両側に配置し中心部に紫外線を発生する光源を配置し、光触媒層の両外側に反射板を設置した図である。It is the figure which has arrange | positioned the light source which generate | occur | produces an ultraviolet-ray in the center part, has arrange | positioned the photocatalyst layer on both sides, and installed the reflecting plate in the both outer sides of the photocatalyst layer. 図10の俯瞰透視図である。FIG. 11 is an overhead perspective view of FIG. 従来例において、二酸化チタンを塗布又はコーテイング面(触媒面)に太陽光等を直接照射する状況を示す図である。In a prior art example, it is a figure which shows the condition which directly irradiates sunlight etc. to the coating or coating surface (catalyst surface) of titanium dioxide. 従来例において、二酸化チタンを塗布又はコーテイング面(触媒面)を内側にした円筒形の内側に紫外線を発生させる光源を直接照射する方法を示す図である。In a prior art example, it is a figure which shows the method of irradiating directly the light source which generate | occur | produces an ultraviolet-ray inside the cylindrical shape which apply | coated or coated the coating surface (catalyst surface) inside. 従来例において、両面に二酸化チタン等を塗布又はコーテイングした素材(触媒面)を複数配置して、その中間に蛍光灯等で紫外線を発生する方法を示す」図である。In the conventional example, a method is shown in which a plurality of materials (catalyst surfaces) coated or coated with titanium dioxide or the like are disposed on both surfaces, and ultraviolet rays are generated by a fluorescent lamp or the like between them.

符号の説明Explanation of symbols

1 本体
2 通路
3 ファン
4 取入口
5 プレフィルター
6 光源
7 光触媒フィルター
8 活性炭フィルター
9 排出口
10 反射板
11 触媒面
12 素材(多面体、多角形)
13 部材
14 紫外線の一部
15 垂直面
16 末端部
17 反射板
18 紫外線
19 内部(素材12の)
20 紫外線の一部
21 外側斜面
22 光触媒層
23 反射鏡(凹面の)
DESCRIPTION OF SYMBOLS 1 Main body 2 Passage 3 Fan 4 Intake 5 Pre filter 6 Light source 7 Photocatalytic filter 8 Activated carbon filter 9 Outlet 10 Reflector 11 Catalytic surface 12 Material (polyhedron, polygon)
13 member 14 part of ultraviolet ray 15 vertical surface 16 end part 17 reflector 18 ultraviolet ray 19 inside (of material 12)
20 Part of UV light 21 Outer slope 22 Photocatalyst layer 23 Reflector (concave)

Claims (9)

汚染空気の通路の内側壁に触媒面を形成すると共に、前記通路に関して交叉する方向に紫外線などの光源の光束を透過、乱反射させる形状の素材を多数設けて前記汚染された空気が前記ファンによって吸入又は圧入され前記触媒面に接触させるようにした、光触媒による空気清浄方法。   A catalyst surface is formed on the inner wall of the polluted air passage, and a large number of materials that transmit and diffusely reflect the luminous flux of the light source such as ultraviolet rays are provided in the direction intersecting the passage, and the contaminated air is sucked by the fan. Alternatively, a method of cleaning air with a photocatalyst that is press-fitted and brought into contact with the catalyst surface. 請求項1に記載の方法を複数段階に構成してなる、光触媒による空気清浄方法。   2. An air cleaning method using a photocatalyst comprising the method according to claim 1 in a plurality of stages. 汚染空気を吸引又は圧入される取入口と、浄化された空気の排出口を備える通路と、この通路の内部側壁面に形成した触媒面と、光束をこの触媒面に対して並行な方向に照射する光源と、前記光束を透過、乱反射させる形状の多数の素材と、これら素材を前記光束の照射方向に対して交叉させる方向に配置した部材と、前記通路内に形成される反射板とを備えてなる、光触媒による空気清浄装置。   An intake port through which contaminated air is sucked or injected, a passage having a purified air discharge port, a catalyst surface formed on the inner side wall surface of the passage, and a light beam is irradiated in a direction parallel to the catalyst surface. A light source, a large number of materials that transmit and diffusely reflect the light beam, a member that is arranged in a direction that crosses the material with respect to the irradiation direction of the light beam, and a reflector that is formed in the passage. An air cleaning device using a photocatalyst. 請求項3における触媒面が、特に二酸化チタンの塗布又はコーテイングによって形成されるようにした、光触媒による空気清浄装置。   4. An air cleaning device using a photocatalyst, wherein the catalyst surface according to claim 3 is formed by coating or coating of titanium dioxide in particular. 請求項3における紫外線などの光源が、蛍光灯、ブラックライト、光化学ランプ。冷陰極蛍光ランプによって構成される、光触媒による空気清浄装置。   The light source such as ultraviolet rays according to claim 3 is a fluorescent lamp, a black light, or a photochemical lamp. A photocatalytic air cleaning device composed of a cold cathode fluorescent lamp. 請求項3における素材が、ガラス、アクリル樹脂、ABS、塩化ビニールのような透過反射材で断面形状が多面体、多角形からなる、光触媒による空気清浄装置。   4. An air cleaning device using a photocatalyst, wherein the material in claim 3 is a transflective material such as glass, acrylic resin, ABS, or vinyl chloride, and the cross-sectional shape is a polyhedron or a polygon. 請求項3又は請求項6における素材に対し、交叉する方向でかつ光束に並行な方向に上下面に沿って配置し光束の通過を許容する隙間を形成する部材を有する、光触媒による空気清浄装置。   7. An air cleaning device using a photocatalyst, comprising a member that is disposed along the upper and lower surfaces in a crossing direction and in a direction parallel to the light beam with respect to the material according to claim 3 or 6, and that forms a gap that allows passage of the light beam. 請求項7に記載の部材が、触媒によって酸化分解されないアルミニウムからなる、光触媒による空気清浄装置。   8. A photocatalytic air cleaning apparatus, wherein the member according to claim 7 is made of aluminum that is not oxidatively decomposed by a catalyst. 請求項3に記載の空気清浄装置を複数段階に一体的に構成してなる、光触媒による空気清浄装置。   4. An air cleaning device using a photocatalyst, wherein the air cleaning device according to claim 3 is integrally formed in a plurality of stages.
JP2003424185A 2003-12-22 2003-12-22 Method and apparatus for cleaning air using photocatalyst Pending JP2005177226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424185A JP2005177226A (en) 2003-12-22 2003-12-22 Method and apparatus for cleaning air using photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424185A JP2005177226A (en) 2003-12-22 2003-12-22 Method and apparatus for cleaning air using photocatalyst

Publications (1)

Publication Number Publication Date
JP2005177226A true JP2005177226A (en) 2005-07-07

Family

ID=34784453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424185A Pending JP2005177226A (en) 2003-12-22 2003-12-22 Method and apparatus for cleaning air using photocatalyst

Country Status (1)

Country Link
JP (1) JP2005177226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109844411A (en) * 2016-10-19 2019-06-04 三星电子株式会社 Photocatalytic filter and air-conditioning including the photocatalytic filter
US10722605B2 (en) 2016-10-19 2020-07-28 Samsung Electronics Co., Ltd. Photocatalyst filter and air conditioner including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109844411A (en) * 2016-10-19 2019-06-04 三星电子株式会社 Photocatalytic filter and air-conditioning including the photocatalytic filter
EP3488155A4 (en) * 2016-10-19 2019-12-11 Samsung Electronics Co., Ltd. Photocatalyst filter and air conditioner including the same
US10722605B2 (en) 2016-10-19 2020-07-28 Samsung Electronics Co., Ltd. Photocatalyst filter and air conditioner including the same
US11701446B2 (en) 2016-10-19 2023-07-18 Samsung Electronics Co., Ltd. Photocatalyst filter and air conditioner including the same

Similar Documents

Publication Publication Date Title
US7988923B2 (en) Device, system and method for an advanced oxidation process using photohydroionization
US20040175288A1 (en) Effluent purification using UV devices and methods
US10391194B2 (en) Active photocatalytic oxidation
CN109589441B (en) Apparatus, system, and method for advanced oxidation process using photohydrogen ionization
US20110142725A1 (en) Air purification apparatus and method of forming the same
JP2015062640A (en) Photocatalyst filter unit and air cleaner having the same
KR20220058023A (en) A Photocatalytic Filter Having Light Scatterer
JP2005343427A (en) In-vehicle air cleaning device
WO2022074944A1 (en) Ultraviolet light irradiation device, use method for ultraviolet light irradiation device, and irradiation method of ultraviolet light
US20050063881A1 (en) Air purifier including a photocatalyst
JP2006312152A (en) Small high efficient photocatalyst unit
JP2005253799A (en) Fluid purification device
JP2020192009A (en) Fluid treatment apparatus
KR20010090648A (en) Air cleaning unit using photocatalyst and air cleaning system having the same
KR102317344B1 (en) Air sterilization module and air purifier using it
JP2005177226A (en) Method and apparatus for cleaning air using photocatalyst
JP2005178644A (en) Air cleaning device of car mounted type
JP2005199874A (en) On-vehicle type air cleaning device
JP3749721B2 (en) Air purification device
JP2005198846A (en) Air cleaning method and apparatus using photocatalyst
EP3291844B1 (en) Active photocatalytic oxidation
US8440144B2 (en) Metallic photocatalytic oxidation reflector coated with titanium dioxide
JP2005261832A (en) Method and apparatus for cleaning air with photocatalyst
JP2006007806A (en) Air cleaner for automobile
JP2007069101A (en) Fluid cleaning device