JP2005176505A - Control device for generator and starting method of induction type generator - Google Patents
Control device for generator and starting method of induction type generator Download PDFInfo
- Publication number
- JP2005176505A JP2005176505A JP2003413353A JP2003413353A JP2005176505A JP 2005176505 A JP2005176505 A JP 2005176505A JP 2003413353 A JP2003413353 A JP 2003413353A JP 2003413353 A JP2003413353 A JP 2003413353A JP 2005176505 A JP2005176505 A JP 2005176505A
- Authority
- JP
- Japan
- Prior art keywords
- power
- frequency
- generator
- magnetic field
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Motor And Converter Starters (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
本発明は、誘導型発電機の始動技術に関する。 The present invention relates to a starting technique for an induction generator.
本発明に関連した従来技術としては、例えば特開平11−41986号公報(特許文献1)に記載されたものがある。該公報には、誘導電動機を備えた複数のドライブをだ行状態から再起動する場合に、不必要な過電流やトルクの発生を防ぐ技術として、一方のドライブ中の誘導電動機につきモータ周波数を推定し、これに基づき該複数の各ドライブ中のインバータを制御して該誘導電動機のモータ磁束を立ち上がらせるとした技術が記載されている。上記モータ周波数の推定にあたっては、誘導電動機に供給される相電流を検出し、該検出結果に基づき演算した該相電流の大きさをゼロまたは最小にするインバータ周波数を該誘導電動機のモータ周波数(回転周波数)と推定する。 As a prior art related to the present invention, for example, there is one described in Japanese Patent Application Laid-Open No. 11-41986 (Patent Document 1). In this publication, when a plurality of drives equipped with induction motors are restarted from a running state, a motor frequency is estimated for the induction motor in one drive as a technique for preventing the generation of unnecessary overcurrent and torque. Based on this, a technique is described in which the inverter in each of the plurality of drives is controlled to raise the motor magnetic flux of the induction motor. In estimating the motor frequency, the phase current supplied to the induction motor is detected, and the inverter frequency that makes the magnitude of the phase current calculated based on the detection result zero or minimized is set to the motor frequency (rotation of the induction motor). Frequency).
例えば上記公報記載の従来技術は、誘導電動機の再起動を行うための技術であって、誘導型発電機を起動(始動)する技術ではない。また、該従来技術を誘導型発電機の始動に用いるとした場合において、相電流の大きさがゼロまたは最小となるインバータ周波数を求めるとき、インバータ周波数を、誘導電動機のだ行時の回転周波数よりも低い周波数値から増大させて上記相電流の大きさがゼロまたは最小となるインバータ周波数値を求めることも想定されるが、該場合には、該起動準備期間の相電流が高レベルとなってしまうおそれがある。また、本従来技術では、相電流を検出値に基づき演算するための演算手段が必要となる。
本発明の課題点は、上記従来技術の状況に鑑み、誘導型発電機の始動時の制御技術として、誘導型発電機の回転子がタービン等の外力で回転しているとき、誘導型発電機の固定子に過大な電流が流れないようにすることである。
本発明の目的は、上記課題点を解決し、誘導型発電機を安全に始動することができる制御技術の提供にある。
For example, the prior art described in the above publication is a technique for restarting an induction motor, and is not a technique for starting (starting) an induction generator. Further, in the case where the conventional technique is used for starting an induction generator, when obtaining an inverter frequency at which the magnitude of the phase current is zero or minimum, the inverter frequency is determined from the rotational frequency when the induction motor is driven. It is also possible to obtain an inverter frequency value at which the magnitude of the phase current is zero or minimum by increasing from a low frequency value. In this case, however, the phase current during the start-up preparation period is at a high level. There is a risk that. Moreover, in this prior art, the calculation means for calculating a phase current based on a detected value is needed.
In view of the state of the prior art, the problem of the present invention is that, as a control technique at the time of starting the induction generator, when the rotor of the induction generator is rotated by an external force such as a turbine, the induction generator This is to prevent excessive current from flowing through the stator.
An object of the present invention is to provide a control technique capable of solving the above-described problems and safely starting an induction generator.
上記課題点を解決するために、本発明では、誘導型発電機の始動時に、該誘導型発電機に供給する回転磁界発生用交流電力の電圧と周波数を制御し、該電圧を定常時よりも下げた状態で該周波数を減少させることにより該交流電力の電流が略最小(最小を含む)となる周波数を求め、該求めた周波数位置を起点にして発電動作を開始させる。 In order to solve the above-described problems, the present invention controls the voltage and frequency of the rotating magnetic field generating AC power supplied to the induction generator at the start of the induction generator, so that the voltage is more stable than the steady state. By reducing the frequency in the lowered state, the frequency at which the current of the AC power is substantially minimum (including the minimum) is obtained, and the power generation operation is started from the obtained frequency position.
本発明によれば、誘導型発電機における安全な始動が可能となる。 According to the present invention, the induction generator can be safely started.
以下、本発明を実施するための最良の形態につき、図面を用いて説明する。
図1〜図4は、本発明の実施形態の説明図である。図1は、本発明の実施形態としての発電機用制御装置の構成図、図2は、図1の発電機用制御装置と誘導型発電機との間で授受される電流の特性例図、図3は、図1の発電機用制御装置の動作説明図、図4は、図1の発電機用制御装置と誘導型発電機との間で授受される電流の、図2と異なる条件下での特性例図である。
The best mode for carrying out the present invention will be described below with reference to the drawings.
1-4 is explanatory drawing of embodiment of this invention. 1 is a configuration diagram of a generator control device as an embodiment of the present invention, FIG. 2 is a characteristic example diagram of current exchanged between the generator control device of FIG. 1 and an induction generator, FIG. 3 is a diagram for explaining the operation of the generator control device of FIG. 1, and FIG. 4 is a diagram showing currents transferred between the generator control device of FIG. 1 and the induction generator under conditions different from those in FIG. FIG.
図1において、100は、誘導型発電機を制御するための発電機用制御装置、101は制御用コンピュータ、102は制御部、103は誘導型発電機、104は、発電のために誘導型発電機103の回転子(誘導型回転子)を回転駆動する水車用タービン、105は交流電源系、106は、発電機用制御装置100と誘導型発電機103との間で授受される電流を検出する電流検出手段としての電流検出部、121は、誘導型発電機103の固定子コイル(図示なし)に回転磁界発生用交流電力を供給するとともに、該誘導型発電機103の回転子(図示なし)の回転により該固定子コイルに発生した交流電力を直流電力に変換して出力する第1のインバータ、122は、直流電力を平滑化する平滑化手段としての平滑用コンデンサ、123は、平滑化された直流電力を交流電力に変換し回生電力として交流電源系105側に出力する第2のインバータである。発電機用制御装置100は、誘導型発電機を励磁して発電させ回生電力を得る。制御用コンピュータ101は、制御部102を制御する。誘導型発電機103の始動時には、該制御用コンピュータ101は制御部102内の第1のインバータ121を制御し、該第1のインバータ121から該誘導型発電機の固定子コイルに供給される回転磁界発生用交流電力の周波数値及び電圧値を制御する。該周波数値及び電圧値は、該制御用コンピュータ101により設定される。
In FIG. 1, 100 is a generator control device for controlling an induction generator, 101 is a control computer, 102 is a control unit, 103 is an induction generator, and 104 is an induction generator for power generation. Turbine turbine for rotating the rotor of the machine 103 (induction type rotor), 105 an AC power supply system, and 106 a current exchanged between the
上記構成において、誘導型発電機103の始動時には、該誘導型発電機103の回転子が水車用タービン104によって回転駆動されている状態で、制御用コンピュータ101が、第1のインバータ121を制御しその回転磁界発生用交流電力の周波数値及び電圧値を制御する。すなわち、該電圧値を定常時よりも下げた状態で該周波数値を次第に減少させ、上記回転磁界発生用交流電力の電流を含む上記第1のインバータ121と上記誘導型発電機103との間の通電電流が略最小(最小を含む)となる周波数位置を求める。この時、制御用コンピュータ101は、上記定常時よりも下げた電圧値と上記次第に減少させる周波数値との比を略一定に保つようにしてもよいし、または、上記定常時よりも下げた電圧値を、周波数値の変化によらずに一定に保つようにしてもよい。制御用コンピュータ101は、制御部102に対し、上記通電電流が略最小となる周波数位置を起点として発電動作を開始させる。すなわち、制御用コンピュータ101は、第1のインバータ121を制御し、該第1のインバータ121から出力される回転磁界発生用交流電力の周波数値はさらに下げ、電圧値は定常時の値に上げて、誘導型発電機103からの交流発電電力を受電させる。
In the above configuration, when the
上記誘導型発電機103の始動後は、該誘導型発電機103からの交流発電電力は、第1のインバータ121で直流電力に変換された後、平滑用コンデンサ122で平滑化され、第2のインバータ123で交流電力に変換されて回生電力として交流電源系105側に供給される。
After starting the
図2は、上記図1の発電機用制御装置100と誘導型発電機103との間で授受される電流の特性例図である。本特性は、電圧と周波数との比を略一定に保つ場合である。本図2以下、説明中で用いる図1の構成要素には該図1の場合と同じ符号を用いるとする。
FIG. 2 is a characteristic example diagram of current exchanged between the
図2において、Aは、誘導型発電機103の固定子コイルに供給する回転磁界発生用交流電力の電圧値V1と周波数値fとの比が一定(一定値c1)の場合すなわちV1/f=c1の場合の電流特性、Bは、回転磁界発生用交流電力の電圧値V2(<V1)と周波数値fとの比が一定(一定値c2(<c1))の場合すなわちV2/f=c2の場合の電流特性、(イ)は、誘導型発電機103が発電機として動作する領域(以下、発電機動作領域という)、(ロ)は、同誘導型発電機103が電動機として動作する領域(以下、電動機動作領域という)、f0は、誘導型発電機103の回転子の回転周波数である。該誘導型発電機103の始動時、第1のインバータ121から該誘導型発電機103に供給される回転磁界発生用交流電力の周波数fを、上記電動機動作領域(ロ)において、予め設定してある周波数(以下、設定周波数という)fmaxから上記電流特性Bに従って次第に下げる。該回転磁界発生用交流電力の周波数値を次第に下げるとき電流検出部106で電流値を検出し、該電流値が略最小となる周波数(以下、電流最小周波数という)を求める。以降、発電機動作領域の動作に移行し、発電機動作を開始する。該電流最小周波数が、誘導型発電機103の回転子が水車用タービン104で回転駆動される回転周波数f0である。
In FIG. 2, A is a case where the ratio between the voltage value V 1 of the rotating magnetic field generating AC power supplied to the stator coil of the
図3は、図1の発電機用制御装置100の始動時の動作説明図である。
図3において、
(1)制御用コンピュータ101の指示により始動準備動作を開始する(ステップS301)。このとき、誘導型発電機103の回転子は水車用タービン104による外力で回転駆動されているものとする。
(2)制御用コンピュータ101は、第1のインバータ121から誘導型発電機103に供給する回転磁界発生用交流電力の周波数fを、電動機動作領域において設定周波数fmaxに設定する(ステップS302)。該設定周波数fmaxは予めメモリ等に記憶したものを読み出してもよい。
(3)制御用コンピュータ101は、第1のインバータ121を制御し、誘導型発電機103に供給する回転磁界発生用交流電力の電圧Vを、定常時よりも下げた値であってかつ周波数fとの比が一定となるV2とする(ステップS303)。
(4)上記周波数fを減少させながら、図2の電流特性BすなわちV2/f=c2(一定)に従って、電圧V2を誘導型発電機103の固定子コイルに印加する(ステップS304)。
(5)回転磁界発生用交流電力の電流iの絶対値を電流検出部106で検出する(ステップS305)。
(6)制御用コンピュータ101は、上記検出した電流iの絶対値を、検出動作の中で前回検出した電流の絶対値と比較し、今回の検出電流の絶対値が前回の検出電流の絶対値に対し増加しているか否かを判別する(ステップS306)。
(7)上記判別の結果、上記今回の検出電流iの絶対値が、前回の検出電流の絶対値に対し増加している場合は、既に周波数fが、誘導型発電機103の回転子の回転周波数f0すなわち電流最小周波数を超えて減少しているとして、制御用コンピュータ101は、その時の周波数fに超過減少周波数分△fを加算して電流最小周波数を求める(ステップS308)。
(8)上記求めた電流最小周波数において、制御用コンピュータ101は、第1のインバータ121を制御し、誘導型発電機103に供給する回転磁界発生用交流電力の電圧Vを上げる(ステップS309)。
(9)誘導型発電機103の始動準備を終了する(ステップS310)。以降、上記求めた電流最小周波数を起点に発電機動作領域での発電機動作を開始する。
(10)上記ステップS306における判別の結果、検出電流iの絶対値が前回の検出電流の絶対値に対し増加していない場合は、回転磁界発生用交流電力の電流は減少途上にあり、周波数fはまだ電流最小周波数(誘導型発電機103の回転子の回転周波数f0)に達していないとして、制御用コンピュータ101は、第1のインバータ121を制御し、回転磁界発生用交流電力の周波数fをさらに△fだけ減少させ、上記ステップS303の動作に戻る(ステップS307)。
FIG. 3 is an explanatory diagram of the operation at the start of the
In FIG.
(1) Start preparation operation is started by an instruction from the control computer 101 (step S301). At this time, it is assumed that the rotor of the
(2) The
(3) The
(4) While decreasing the frequency f, the voltage V 2 is applied to the stator coil of the
(5) The
(6) The
(7) As a result of the determination, if the absolute value of the current detected current i has increased with respect to the absolute value of the previous detected current, the frequency f has already reached the rotation of the rotor of the
(8) At the obtained current minimum frequency, the
(9) The preparation for starting the
(10) If the absolute value of the detected current i has not increased with respect to the absolute value of the previous detected current as a result of the determination in step S306, the current of the rotating magnetic field generating AC power is decreasing and the frequency f Has not yet reached the minimum current frequency (rotation frequency f 0 of the rotor of the induction generator 103), the
上記本発明の実施形態によれば、誘導型発電機103の始動時に、固定子コイルに供給される回転磁界発生用交流電力の電圧を下げ、かつその周波数fを該誘導型発電機103の回転子の回転周波数f0よりも高い周波数から徐々に減少させることにより、電流最小周波数(=誘導型発電機103の回転子の回転周波数f0)を求める構成のため、誘導型発電機103の固定子に過大な電流が流れないようすることができ、該誘導型発電機103の安全な始動が可能となる。
According to the above-described embodiment of the present invention, when the
なお、上記の説明では図2の電流と周波数の関係を用いた。これは回転磁界発生用交流電力の電圧と周波数が比例の関係にあるときのものである。しかし、必ずしも周波数と電圧とを比例の関係に保つ必要はない。例えば、図4は、電圧を周波数によらずにある一定値に保った場合の電流と周波数の関係を示している。図5は、電圧Vを周波数の2乗に比例させた場合の電流と周波数の関係を示している。図4及び図5はそれぞれC、Dが電流特性である。また、(イ)が発電機動作領域で、(ロ)が電動機動作領域、f0は誘導型発電機103の回転子の回転周波数、fmaxは設定周波数である。このように電圧を十分低い値に抑えておけば、電圧と周波数は任意の関係でよい。
In the above description, the relationship between current and frequency in FIG. 2 is used. This is when the voltage and frequency of the AC power for generating the rotating magnetic field are in a proportional relationship. However, it is not always necessary to maintain a proportional relationship between frequency and voltage. For example, FIG. 4 shows the relationship between current and frequency when the voltage is maintained at a certain constant value regardless of the frequency. FIG. 5 shows the relationship between current and frequency when the voltage V is proportional to the square of the frequency. 4 and 5, C and D are current characteristics, respectively. Further, (A) is a generator operating region, (B) is an electric motor operating region, f 0 is a rotation frequency of the rotor of the
また、電流の最小値を与える周波数の検出方法について、例えば、図3の方法では、検出した電流の大小比較によって略最小を与える周波数の判断を行った。しかしながら、これに限定されるものではなく、他の方法を用いてもよい。例えば周波数の変化に対する電流変化の割合△i/△fの値を利用してもよい。すなわち、(ロ)の領域では△i/△fは正あるいはほぼ0に近い値であるが(ロ)の領域を超えて(イ)の領域に入ると負の値に変化する。すなわち、△i/△fがある値以下になったことをもって電流が略最小値となる周波数であると判断することができる。 For example, in the method of FIG. 3, for determining the frequency that gives the minimum value of the current, the frequency that gives the substantially minimum value is determined by comparing the magnitudes of the detected currents. However, the present invention is not limited to this, and other methods may be used. For example, the value of the current change ratio Δi / Δf with respect to the frequency change may be used. That is, Δi / Δf is positive or almost close to 0 in the region (b), but changes to a negative value when the region (b) is entered beyond the region (b). That is, it can be determined that the current is at a frequency at which the current becomes substantially the minimum value when Δi / Δf becomes a certain value or less.
また、上記図3の例では、周波数を設定周波数fmaxから△fずつ低い方向へ走査して行き、電流が略最小となる周波数を検出した。しかし、これに限定されるものではなく、他の一般的な方法であってもよい。例えば、ニュートン・ラプソン法などを用いれば、より速やかな周波数の検出が行える。例えば、図5の電流と周波数の関係においてこのニュートン・ラプソン法を用いると、fmaxを初期値として与えることによってf0以下の周波数を試行することなく、電流が略最小となる周波数を検出することができる。 Further, in the example of FIG. 3 described above, the frequency is scanned in a direction lower by Δf from the set frequency f max , and the frequency at which the current is substantially minimum is detected. However, the present invention is not limited to this, and other general methods may be used. For example, if the Newton-Raphson method is used, the frequency can be detected more quickly. For example, when the Newton-Raphson method is used in the relationship between the current and the frequency in FIG. 5, the frequency at which the current becomes substantially minimum is detected without trying the frequency below f 0 by giving f max as an initial value. be able to.
100…発電機用制御装置、
101…制御用コンピュータ、
102…制御部、
103…誘導型発電機、
104…水車用タービン、
105…交流電源系、
106…電流検出部、
121…第1のインバータ、
122…平滑用コンデンサ、
123…第2のインバータ。
100 ... Generator control device,
101 ... Control computer,
102 ... control unit,
103 ... induction type generator,
104: Turbine turbine,
105 ... AC power supply system,
106 ... a current detector,
121 ... first inverter,
122 ... smoothing capacitor,
123: Second inverter.
Claims (5)
上記誘導型発電機の固定子コイルに回転磁界発生用交流電力を供給するとともに、回転子の回転により該固定子コイルに発生した交流電力を直流電力に変換し再び交流電力に変換して回生電力として出力するインバータと、
上記インバータを制御し上記回転磁界発生用交流電力の周波数及び電圧を制御する制御用コンピュータと、
を備え、上記誘導型発電機の始動時に、上記回転磁界発生用交流電力の電圧を定常時よりも下げた状態で該交流電力の周波数を減少させ、上記インバータから上記誘導型発電機に通電する電流が略最小となる周波数から発電動作を開始させる構成としたことを特徴とする発電機用制御装置。 A generator control device for generating regenerative power by exciting an induction generator to generate power,
The AC power for generating the rotating magnetic field is supplied to the stator coil of the induction generator, and the AC power generated in the stator coil due to the rotation of the rotor is converted into DC power and converted into AC power again. An inverter that outputs as
A control computer for controlling the inverter to control the frequency and voltage of the rotating magnetic field generating AC power;
When the induction generator is started, the frequency of the alternating-current power is reduced while the voltage of the alternating-current power for generating the rotating magnetic field is lower than that in the steady state, and the induction generator is energized from the inverter. A generator control device characterized in that a power generation operation is started from a frequency at which a current is substantially minimum.
上記誘導型発電機の固定子コイルに回転磁界発生用交流電力を供給するとともに、回転子の回転により該固定子コイルに発生した交流電力を直流電力に変換し出力する第1のインバータと、
上記直流電力を平滑化する平滑化手段と、
上記平滑化された直流電力を交流電力に変換し回生電力として出力する第2のインバータと、
上記第1のインバータと上記誘導型発電機との間の通電電流を検出する電流検出手段と、
予め設定されたプログラムに基づき上記第1のインバータを制御し、上記回転磁界発生用交流電力の周波数及び電圧を制御する制御用コンピュータと、
を備え、上記誘導型発電機の始動時に、上記回転磁界発生用交流電力の電圧を定常時よりも下げた状態で周波数を減少させ上記電流検出手段で検出される回転磁界発生用交流電力の電流レベルが略最小となる第1の周波数を求め、該第1の周波数において上記電圧を上げるとともに、該第1の周波数よりも低い第2の周波数として、発電動作を開始させる構成としたことを特徴とする発電機用制御装置。 A generator control device for generating regenerative power by exciting an induction generator to generate power,
A first inverter that supplies AC power for generating a rotating magnetic field to the stator coil of the induction generator, and that converts AC power generated in the stator coil by rotation of the rotor into DC power and outputs the DC power;
Smoothing means for smoothing the DC power;
A second inverter that converts the smoothed DC power into AC power and outputs it as regenerative power;
Current detection means for detecting an energization current between the first inverter and the induction generator;
A control computer that controls the first inverter based on a preset program and controls the frequency and voltage of the AC power for generating the rotating magnetic field;
A current of the rotating magnetic field generating AC power detected by the current detecting means by reducing the frequency in a state where the voltage of the rotating magnetic field generating AC power is lower than that at the normal time when starting the induction generator The first frequency at which the level is substantially minimum is obtained, the voltage is increased at the first frequency, and the power generation operation is started as the second frequency lower than the first frequency. A generator control device.
上記誘導型発電機に供給する回転磁界発生用交流電力の電圧を定常時よりも下げた状態で該回転磁界発生用交流電力の周波数値を減少させる第1のステップと、
上記回転磁界発生用交流電力の電流のレベルが略最小となる周波数を求める第2のステップと、
上記回転磁界発生用交流電力の電圧を上げるとともに周波数をさらに減少させる第3のステップと、
を経て、誘導型発電機を始動させることを特徴とする誘導型発電機の始動方法。 A method for starting an induction generator,
A first step of reducing the frequency value of the rotating magnetic field generating AC power in a state where the voltage of the rotating magnetic field generating AC power supplied to the induction generator is lower than that in a steady state;
A second step of obtaining a frequency at which the current level of the rotating magnetic field generating AC power is substantially minimum;
A third step of increasing the voltage of the rotating magnetic field generating AC power and further reducing the frequency;
And starting the induction generator via the induction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003413353A JP4422471B2 (en) | 2003-12-11 | 2003-12-11 | Generator control apparatus and induction generator starting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003413353A JP4422471B2 (en) | 2003-12-11 | 2003-12-11 | Generator control apparatus and induction generator starting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005176505A true JP2005176505A (en) | 2005-06-30 |
JP4422471B2 JP4422471B2 (en) | 2010-02-24 |
Family
ID=34733506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003413353A Expired - Fee Related JP4422471B2 (en) | 2003-12-11 | 2003-12-11 | Generator control apparatus and induction generator starting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4422471B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014529702A (en) * | 2011-08-12 | 2014-11-13 | オープンハイドロ アイピーリミテッド | Method and system for controlling a hydroelectric turbine |
JP2019044690A (en) * | 2017-09-01 | 2019-03-22 | 株式会社地熱開発 | Geothermal power generation system and power generation method utilizing geothermal power |
-
2003
- 2003-12-11 JP JP2003413353A patent/JP4422471B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014529702A (en) * | 2011-08-12 | 2014-11-13 | オープンハイドロ アイピーリミテッド | Method and system for controlling a hydroelectric turbine |
JP2019044690A (en) * | 2017-09-01 | 2019-03-22 | 株式会社地熱開発 | Geothermal power generation system and power generation method utilizing geothermal power |
Also Published As
Publication number | Publication date |
---|---|
JP4422471B2 (en) | 2010-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2007003B1 (en) | Generating system with a regulated permanent magnet machine and an active rectifier | |
JP4116595B2 (en) | Motor control device | |
JP2007159231A (en) | Controlling method for alternating-current motor | |
JP2007259587A (en) | Power generation/regeneration system and excitation method of power generation/regeneration system, and power generation method of power generation/regeneration system | |
JP2005027410A (en) | Method and device for driving induction motor | |
KR20060009199A (en) | Bldc motor speed controlling apparatus and its method | |
JP4380089B2 (en) | Rotation speed detection method and restart method of induction motor during free rotation | |
JP4422471B2 (en) | Generator control apparatus and induction generator starting method | |
JP2007282367A (en) | Motor driving controller | |
JP2012228017A (en) | Controller of generator-motor | |
JP6697129B2 (en) | Thyristor starter | |
JPH0880098A (en) | Vector controller of motor | |
JP2003134890A (en) | Wind-power generator using permanent magnet type of synchronous generator, and starting method therefor | |
JP2013081343A (en) | Drive unit of motor, inverter control method and program, air conditioner | |
JP5797512B2 (en) | Variable speed pumped storage power generation control system | |
JP2005192295A (en) | Controller of induction motor | |
JP4488409B2 (en) | Power converter | |
JP4168240B2 (en) | AC motor drive device | |
JP3708511B2 (en) | Synchronous motor control method and synchronous motor control apparatus | |
JP2007228662A (en) | Controller for induction motors | |
JP4591949B2 (en) | Control device for multiphase induction motor | |
JP4027760B2 (en) | Inverter control device | |
JP2959381B2 (en) | Drive control device for permanent magnet type synchronous motor | |
JP2019072685A (en) | Rotary machine controller of shredder | |
JP2005295800A (en) | Control system for induction motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060714 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090414 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131211 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |