JP2005176498A - Water-power generation system using squirrel-cage induction generator - Google Patents

Water-power generation system using squirrel-cage induction generator Download PDF

Info

Publication number
JP2005176498A
JP2005176498A JP2003413129A JP2003413129A JP2005176498A JP 2005176498 A JP2005176498 A JP 2005176498A JP 2003413129 A JP2003413129 A JP 2003413129A JP 2003413129 A JP2003413129 A JP 2003413129A JP 2005176498 A JP2005176498 A JP 2005176498A
Authority
JP
Japan
Prior art keywords
speed
power generation
induction generator
pressure
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003413129A
Other languages
Japanese (ja)
Other versions
JP4299650B2 (en
Inventor
Yuji Tanaka
雄司 田中
Yukihisa Fujita
幸央 藤田
Eiji Takayama
英治 高山
Koichi Sato
幸一 佐藤
Osamu Matsumoto
修 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2003413129A priority Critical patent/JP4299650B2/en
Publication of JP2005176498A publication Critical patent/JP2005176498A/en
Application granted granted Critical
Publication of JP4299650B2 publication Critical patent/JP4299650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-power generation system using a squirrel-cage induction generator. <P>SOLUTION: The water-power generation system is provided with a water-mill 1, a pressure sensor 2a for measuring the entrance side pressure of the water-mill 1, a pressure sensor 2b for measuring the exit side pressure, the squirrel-cage induction generator 3 driven by the water-mill 1, a rectification step-up circuit 4, a smoothing capacitor 5, a diode rectifying circuit 6, and a rotational speed controller 8 for the generator 3. An intermediate speed between a non-restraint operation speed and an operation speed suitable for power generation in a pressure value of the water-mill 1 measured by the pressure sensor 2 is calculated by using each characteristic data of a non-restraint speed and a speed suitable for power generation for each pressure of the water-mill recorded in an internal storage device of the controller 8. An operation speed command as the intermediate speed is given to the generator 3. The water-power generation system is started in a state that regenerative power generated by a difference between the intermediate operation speed and the non-restraint operation speed is smaller than when the operation speed command is given at the speed suitable for power generation. After that, it is shifted to the suitable operation speed and the regenerative power is largely outputted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、籠形誘導発電機水力発電システムであり、水力発電設備に係わり、特に変落差が大きい場合に有効な可変速発電システムに関するものである。   The present invention relates to a vertical induction generator hydroelectric power generation system, and relates to a hydroelectric power generation facility, and more particularly to a variable speed power generation system that is effective when a change in head is large.

従来の水力発電設備においては、非特許文献1に記載されているように、発電機は一般に同期発電機が用いられ、系統周波数による規定回転速度で定速運転される。水車出力の制御は機械式ガバナにより水車の流量を調節することで行っている。このような水力発電設備は、構造が複雑で大きな設備となるため、設置場所が限られていた。   In the conventional hydroelectric power generation equipment, as described in Non-Patent Document 1, a synchronous generator is generally used as the generator, and the generator is operated at a constant speed at a specified rotational speed based on the system frequency. The turbine output is controlled by adjusting the turbine flow rate with a mechanical governor. Since such a hydroelectric power generation facility has a complicated structure and becomes a large facility, the installation location is limited.

近年、自然エネルギーの有効活用が求められ、小水力発電、さらに小さなマイクロ水力発電が注目されている。マイクロ水力発電においては発電コストを低減することが最重要課題であり、機械式ガバナを省略するとともに誘導発電機を用いた発電設備が一般的である。
特開平7−213098号公報 機械工学便覧B5−45(昭和62年2月発行)
In recent years, effective utilization of natural energy has been demanded, and small hydropower generation and even smaller microhydropower generation have attracted attention. In micro hydroelectric power generation, the most important issue is to reduce the power generation cost, and a power generation facility using an induction generator while omitting a mechanical governor is common.
Japanese Patent Laid-Open No. 7-213098 Mechanical Engineering Handbook B5-45 (issued in February 1987)

流量調節機構を持たないマイクロ水力発電設備は設備コストが安価であるものの、流量、落差が変化するとキャビテーションや振動が発生するため限られた運転範囲しか適用できない。これを解決するためには流量、落差の変化に対応して水車の回転速度を加減速させる可変速発電システムが必要である。この方法として、特許文献1では可変速発電システムが提案されている。しかしながら、この制御方式は巻線型誘導発電機を用いた制御方法になっているため、巻線型誘導発電機に比べはるかに安価な籠形誘導発電機にはそのまま適用できない。即ち、籠形誘導発電機は回転子にコイルを持たないため、回転子を励磁することができず発電できない。また、システムの起動時等に、無拘束速度での運転を行うと発電エネルギーを回収できず、また、発電好適速度での運転を行うと、発電機の立ち上がりの不安定さ等による悪影響の発生が生ずる。   Although the micro hydroelectric power generation equipment without a flow rate adjusting mechanism is low in equipment cost, cavitation and vibration are generated when the flow rate and the head change, so that only a limited operating range can be applied. In order to solve this, a variable speed power generation system that accelerates or decelerates the rotational speed of the water turbine in response to changes in flow rate and head is required. As this method, Patent Document 1 proposes a variable speed power generation system. However, since this control method is a control method using a wound induction generator, it cannot be directly applied to a saddle induction generator that is much cheaper than a wound induction generator. That is, since the saddle type induction generator does not have a coil in the rotor, the rotor cannot be excited and power cannot be generated. In addition, when operating at an unconstrained speed, such as when the system is started up, the generated energy cannot be recovered, and when operating at the preferred power generation speed, adverse effects due to instability of the generator startup, etc. Will occur.

本発明の目的は、籠形誘導発電機を用いた水力発電システムを提供することであり、発電コストを大幅に低減できるので、マイクロ水力発電設備の導入を促し、自然エネルギーの活用による温暖化防止に役立てるものである。   The object of the present invention is to provide a hydroelectric power generation system using a vertical induction generator, which can greatly reduce the power generation cost, so that the introduction of micro hydroelectric power generation facilities is promoted and the prevention of global warming by utilizing natural energy It is useful for.

上記目的を達成するために、本発明に係る籠形誘導発電機可変速水力発電システムは、水車と、前記水車の入口側圧力を計測する圧力センサーと、前記水車の出口圧力を計測する圧力センサーと、前記水車により駆動される籠形誘導発電機と、前記籠形誘導発電機の固定子巻線に接続されているダイオードとスイッチング素子からなる整流昇圧回路と、前記整流昇圧回路に並列に接続された平滑コンデンサーと、前記平滑コンデンサーと並列に接続されるダイオード整流回路と、前記籠形誘導発電機の制御装置を備え、前記圧力センサーの出力信号と前記制御装置の内部記憶装置に記録された前記水車の特性データ(水車入口側圧力又は出口側圧力における無拘束速度及び発電好適速度範囲)とから前記水車の無拘束速度と発電好適速度の中間の速度を算出し、算出した中間の速度となる運転速度指令を前記籠形誘導発電機に与え、指令運転速度と前記無拘束速度の差によって生ずる回生電力が前記発電好適速度で運転速度指令を与えた場合よりも小さい状態で起動し、その後前記好適運転速度に移行して回生電力を大きく出力するように構成したものである。   In order to achieve the above object, a vertical induction generator variable speed hydroelectric power generation system according to the present invention includes a water turbine, a pressure sensor for measuring an inlet side pressure of the water wheel, and a pressure sensor for measuring an outlet pressure of the water wheel. A vertical induction generator driven by the water turbine, a rectifier booster circuit composed of a diode and a switching element connected to a stator winding of the vertical induction generator, and a parallel connection to the rectifier booster circuit A smoothing capacitor, a diode rectifier circuit connected in parallel with the smoothing capacitor, and a control device for the saddle-type induction generator, and recorded in an output signal of the pressure sensor and an internal storage device of the control device Based on the characteristic data of the turbine (the unconstrained speed and the preferred power generation speed range at the inlet pressure or the outlet pressure), the unconstrained speed and the preferred power generation speed of the turbine are determined. The operation speed command that gives the calculated intermediate speed is given to the vertical induction generator, and the regenerative power generated by the difference between the command operation speed and the unconstrained speed is the operation power speed command at the power generation preferred speed. The system is configured to start in a state smaller than the given case, and then shift to the preferred operating speed to output a large amount of regenerative power.

また、水車と、前記水車の入口側圧力を計測する圧力センサーと、前記水車の出口圧力を計測する圧力センサーと、前記水車により駆動される籠形誘導発電機と、前記籠形誘導発電機の固定子巻線に接続されているダイオードとスイッチング素子からなる整流昇圧回路と、前記整流昇圧回路に並列に接続された平滑コンデンサーと、前記平滑コンデンサーと並列に接続される開閉器回路と、前記開閉器回路に接続される蓄電池と、前記籠形誘導発電機の制御装置を備え、前記蓄電池から起動時の電力を供給し、前記圧力センサーの出力信号と前記制御装置の内部記憶装置に記録された前記水車の特性データから前記水車の無拘束速度と発電好適速度の中間の速度を算出し、算出した中間の速度となる速度指令を前記籠形誘導発電機に与え、指令運転速度と前記無拘束速度の差によって生ずる回生電力が前記発電好適速度で運転速度指令を与えた場合よりも小さい状態で起動し、その後前記好適運転速度に移行して回生電力を大きく出力するとともに、蓄電池の電圧が所定値を超えたときに前記開閉器回路を開列するように構成したものである。   A turbine, a pressure sensor for measuring the inlet pressure of the turbine, a pressure sensor for measuring an outlet pressure of the turbine, a saddle induction generator driven by the turbine, and the saddle induction generator A rectifier booster circuit comprising a diode and a switching element connected to the stator winding; a smoothing capacitor connected in parallel to the rectifier booster circuit; a switch circuit connected in parallel to the smoothing capacitor; A storage battery connected to a storage circuit, and a control device for the saddle-type induction generator, supplying power at the time of startup from the storage battery, and recorded in the output signal of the pressure sensor and the internal storage device of the control device An intermediate speed between the unconstrained speed of the turbine and the preferred power generation speed is calculated from the characteristic data of the turbine, and a speed command for the calculated intermediate speed is given to the saddle induction generator. The regenerative power generated by the difference between the operation speed and the unconstrained speed is started in a state smaller than the case where the operation speed command is given at the power generation preferred speed, and then the operation proceeds to the suitable operation speed to output a large amount of regenerative power The switch circuit is configured to open when the voltage of the storage battery exceeds a predetermined value.

そして、上記平滑コンデンサーと並列に接続される系統連系装置を備え、発電電力を交流電力として出力するものである。   And the grid connection apparatus connected in parallel with the said smoothing capacitor is provided, and generated electric power is output as alternating current power.

更に、上記平滑コンデンサーと並列に接続される負荷駆動インバータを備え、発電電力を直流電力で負荷駆動インバータに出力するものである。   Furthermore, a load drive inverter connected in parallel with the smoothing capacitor is provided, and the generated power is output to the load drive inverter as DC power.

また、上記ダイオードとスイッチング素子からなる整流昇圧回路と、該整流昇圧回路に並列に接続された平滑コンデンサーと、該平滑コンデンサーと並列に接続されたダイオード整流回路と、上記籠形誘導発電機の制御装置が一体で構成されたインバータである籠形誘導発電機水力発電システムである。   Further, a rectifier booster circuit comprising the diode and a switching element, a smoothing capacitor connected in parallel to the rectifier booster circuit, a diode rectifier circuit connected in parallel to the smoothing capacitor, and control of the saddle type induction generator It is a vertical induction generator hydroelectric power generation system that is an inverter in which the apparatus is integrally formed.

以上のように本発明によれば、回転子にコイルを持たない籠形誘導発電機を用いても、籠形誘導発電機に直結された水車の無拘束速度及び発電好適速度を算出する装置を備えているので、無拘束速度より小さい運転速度で籠形誘導発電機を制御することができ、これにより無拘束速度と指令運転速度の差から回生電力を発電電力として取り出すことができる籠形誘導発電機水力発電システムを提供できる。また、システムの起動時に生じる悪影響の発生等を防ぐことができる。   As described above, according to the present invention, there is provided an apparatus for calculating the unconstrained speed and the preferred power generation speed of a water turbine directly connected to a saddle type induction generator even when a saddle type induction generator having no coil is used for a rotor. Because it is equipped, the saddle type induction generator can be controlled at an operating speed smaller than the unconstrained speed, and this allows the regenerative power to be taken out as generated power from the difference between the unconstrained speed and the command operating speed. A generator hydropower generation system can be provided. In addition, it is possible to prevent an adverse effect that occurs when the system is started.

本発明を実施するための最良の形態を説明する。
以下、本発明の籠形誘導発電機水力発電システムの実施例について、図面にもとづいて説明する。図1は、本発明の籠形誘導発電機水力発電システムの第一実施例の構成図である。図2は、本発明の籠形誘導発電機水力発電システムの第二実施例の構成図である。図3は、本発明の籠形誘導発電機水力発電システムの第三実施例の構成図である。図4は、本発明の籠形誘導発電機水力発電システムの第四実施例の構成図である。図5は、本発明の籠形誘導発電機水力発電システムの第五実施例の構成図である。
The best mode for carrying out the present invention will be described.
Embodiments of a vertical induction generator hydroelectric power generation system according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a first embodiment of a vertical induction generator hydroelectric power generation system according to the present invention. FIG. 2 is a block diagram of a second embodiment of the vertical induction generator hydroelectric power generation system of the present invention. FIG. 3 is a block diagram of a third embodiment of the vertical induction generator hydroelectric power generation system of the present invention. FIG. 4 is a block diagram of a fourth embodiment of the vertical induction generator hydroelectric power generation system of the present invention. FIG. 5 is a configuration diagram of a fifth embodiment of the vertical induction generator hydroelectric power generation system of the present invention.

図1は、本発明の籠形誘導発電機水力発電システムの第1実施例である。水車1は配管に接続されており、所定の流量の水流21が水車を通過し羽根車を回転させている。水車1の上流には入口側圧力を計測する圧力センサー2aが設置されている。また、水車1の下流には出口側圧力を計測する圧力センサー2bが設置されている。水車1には羽根車の回転力で駆動される籠形誘導発電機3が直結されて水車発電機を構成している。籠形誘導発電機3の固定子巻線にはダイオードとスイッチング素子からなる整流昇圧回路4が接続されている。整流昇圧回路4には並列に平滑コンデンサー5が接続されている。また、平滑コンデンサー5にはダイオード整流回路6が並列に接続され、系統7から制御電力を整流昇圧回路4に供給している。さらに、籠形誘導発電機3の回転速度を制御する回転速度制御装置8を備えている。   FIG. 1 is a first embodiment of a vertical induction generator hydroelectric power generation system according to the present invention. The water wheel 1 is connected to a pipe, and a water flow 21 having a predetermined flow rate passes through the water wheel to rotate the impeller. A pressure sensor 2 a for measuring the inlet side pressure is installed upstream of the water turbine 1. Further, a pressure sensor 2 b that measures the outlet side pressure is installed downstream of the water turbine 1. The water turbine 1 is directly connected to a saddle type induction generator 3 driven by the rotational force of the impeller to constitute a water turbine generator. A rectifying booster circuit 4 composed of a diode and a switching element is connected to the stator winding of the saddle type induction generator 3. A smoothing capacitor 5 is connected to the rectifying booster circuit 4 in parallel. Further, a diode rectifier circuit 6 is connected in parallel to the smoothing capacitor 5, and control power is supplied from the system 7 to the rectifier booster circuit 4. Furthermore, a rotation speed control device 8 that controls the rotation speed of the saddle type induction generator 3 is provided.

このように構成された籠形誘導発電機水力発電システムを、例えば起動させて発電を開始するとき、回転速度制御装置8は、水車の圧力毎の無拘束速度と発電好適速度の各特性データを記録した内部記憶装置を有しており、そして、圧力センサー2a、2bの出力信号と内部記憶装置に記録された水車の特性データから水車1の無拘束速度と発電好適速度の中間の速度を算出し、算出した中間の速度(無拘束速度よりも小さい運転速度)となる指令をセンサレスベクトル制御で籠形誘導発電機3に与える。このように制御することによって、指令運転速度と無拘束速度の差によって回生電力が生じ、平滑コンデンサー5の電圧を昇圧する。   When the vertical induction generator hydroelectric power generation system configured in this way is activated to start power generation, for example, the rotational speed control device 8 obtains characteristic data of the unconstrained speed and the power generation preferable speed for each pressure of the turbine. It has a recorded internal storage device, and calculates an intermediate speed between the unrestrained speed of the water turbine 1 and the preferred power generation speed from the output signals of the pressure sensors 2a and 2b and the characteristic data of the water turbine recorded in the internal storage device. Then, a command for the calculated intermediate speed (an operating speed smaller than the unconstrained speed) is given to the saddle induction generator 3 by sensorless vector control. By controlling in this way, regenerative electric power is generated by the difference between the command operation speed and the unconstrained speed, and the voltage of the smoothing capacitor 5 is boosted.

回転速度制御装置8は、平滑コンデンサー5の端子電圧を監視しており、端子電圧が所定値を超えた場合は、籠形誘導発電機3の回転速度を上昇させて出力を抑えるように制御する。   The rotational speed control device 8 monitors the terminal voltage of the smoothing capacitor 5 and, when the terminal voltage exceeds a predetermined value, controls to increase the rotational speed of the saddle-type induction generator 3 to suppress the output. .

本実施例によれば、システムの起動時等に、無拘束速度での運転(発電によるエネルギーの回収不可)は行わず、また、発電好適速度での運転(急激な運転による悪影響の発生)を直ぐに実行しないため、過渡時の影響を緩和することができるとともに、発電電力を直流電力として出力することができる。   According to the present embodiment, at the time of starting the system, etc., operation at an unconstrained speed (energy cannot be recovered by power generation) is not performed, and operation at a suitable power generation speed (occurrence of adverse effects due to sudden operation) Since it is not executed immediately, the influence at the time of transition can be reduced, and the generated power can be output as DC power.

図2は、本発明の籠形誘導発電機水力発電システムの第2実施例である。水車1は配管に接続されており所定の流量の水流21が水車1を通過し羽根車を回転させている。水車1の上流には入口側圧力を計測する圧力センサー2aが設置されている。また、水車1の下流には出口側圧力を計測する圧力センサー2bが設置されている。水車1には羽根車の回転力で駆動される籠形誘導発電機3が直結されて水車発電機を構成している。籠形誘導発電機3の固定子巻線にはダイオードとスイッチング素子からなる整流昇圧回路4が接続されている。整流昇圧回路4には並列に平滑コンデンサー5が接続されている。また、平滑コンデンサー5には開閉器回路9が接続されている。開閉器回路9には蓄電池10が設置されている。さらに、籠形誘導発電機3の回転速度を制御するための回転速度制御装置8を備えている。   FIG. 2 shows a second embodiment of the vertical induction generator hydroelectric power generation system of the present invention. The water wheel 1 is connected to a pipe, and a water flow 21 having a predetermined flow rate passes through the water wheel 1 to rotate the impeller. A pressure sensor 2 a for measuring the inlet side pressure is installed upstream of the water turbine 1. Further, a pressure sensor 2 b that measures the outlet side pressure is installed downstream of the water turbine 1. The water turbine 1 is directly connected to a saddle type induction generator 3 driven by the rotational force of the impeller to constitute a water turbine generator. A rectifying booster circuit 4 composed of a diode and a switching element is connected to the stator winding of the saddle type induction generator 3. A smoothing capacitor 5 is connected to the rectifying booster circuit 4 in parallel. Further, a switch circuit 9 is connected to the smoothing capacitor 5. A storage battery 10 is installed in the switch circuit 9. Furthermore, a rotation speed control device 8 for controlling the rotation speed of the saddle type induction generator 3 is provided.

このように構成された籠形誘導発電機水力発電システムにおいて、蓄電池10は起動時に放電し、制御電力を整流昇圧回路4と回転速度制御装置8に供給する。したがって、系統電源7を供給することが困難な離島や山間部などでも本実施例の籠形誘導発電機水力発電システムを起動することができる。   In the vertical induction generator hydroelectric power generation system configured as described above, the storage battery 10 is discharged at the time of start-up, and the control power is supplied to the rectification booster circuit 4 and the rotation speed control device 8. Therefore, the vertical induction generator hydroelectric power generation system of the present embodiment can be started even in remote islands or mountainous areas where it is difficult to supply the system power supply 7.

発電運転開始後は籠形誘導発電機3から発電電力が供給されるので、平滑コンデンサー5の端子電圧が上昇し、蓄電池10の端子電圧よりも高くなる。したがって、蓄電池10は起動時に放電して低下した端子電圧が所定の電圧になるまで充電される。そして、開閉器回路9は蓄電池10の電圧が所定値を超えたときに回路を開列する。   Since the generated power is supplied from the saddle-type induction generator 3 after the start of the power generation operation, the terminal voltage of the smoothing capacitor 5 rises and becomes higher than the terminal voltage of the storage battery 10. Therefore, the storage battery 10 is charged until the terminal voltage that has been discharged and reduced at the time of startup reaches a predetermined voltage. The switch circuit 9 opens the circuit when the voltage of the storage battery 10 exceeds a predetermined value.

実施例2によれば、実施例1と同様に、システムの起動時等に、無拘束速度での運転(発電によるエネルギーの回収不可)は行わず、また、発電好適速度での運転(急激な悪影響の発生)を直ぐに実行しないため、過渡時の影響を緩和することができるとともに、発電電力を直流電力として出力することができる。   According to the second embodiment, as in the first embodiment, when the system is started, the operation at an unconstrained speed (energy cannot be recovered by power generation) is not performed, and the operation at a power generation preferable speed (rapid The occurrence of an adverse effect) is not immediately executed, so that the influence during the transition can be mitigated and the generated power can be output as DC power.

図3は、本発明による籠形誘導発電機水力発電システムの第3実施例である。籠形誘導発電機水力発電システムは系統連系装置11を備えているので、系統電源12と同じ交流電力を供給できる。他の構成は実施例1と同様であり、その説明は省略する。   FIG. 3 is a third embodiment of a vertical induction generator hydroelectric power generation system according to the present invention. Since the saddle type induction generator hydroelectric power generation system includes the grid interconnection device 11, it can supply the same AC power as the grid power supply 12. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.

図4は、本発明による籠形誘導発電機水力発電システムの第4実施例である。籠形誘導発電機水力発電システムはインバータ13を備えているので、負荷14を直接稼働することができる。他の構成は実施例1と同様であり、その説明は省略する。   FIG. 4 is a fourth embodiment of a vertical induction generator hydroelectric power generation system according to the present invention. Since the vertical induction generator hydroelectric power generation system includes the inverter 13, the load 14 can be directly operated. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.

図5は、本発明による籠形誘導発電機水力発電システムの第5実施例である。
籠形誘導発電機水力発電システムは、ダイオードとスイッチング素子からなる整流昇圧回路と、該整流昇圧回路に並列に接続された平滑コンデンサーと、該平滑コンデンサーと並列に接続されたダイオード整流回路と、上記籠形誘導発電機の制御装置が一体で構成されている。したがって、システム全体の大きさを小形化することができる。他の構成は実施例1と同様であり、その説明は省略する。
籠形誘導発電機水力発電システムはインバータ13を備えているので、負荷14を直接稼働することができる。他の構成は実施例1と同様であり、その説明は省略する。
FIG. 5 is a fifth embodiment of a vertical induction generator hydroelectric power generation system according to the present invention.
A vertical induction generator hydroelectric power generation system includes a rectifier booster circuit composed of a diode and a switching element, a smoothing capacitor connected in parallel to the rectifier booster circuit, a diode rectifier circuit connected in parallel to the smoothing capacitor, A control device for the saddle type induction generator is integrally formed. Therefore, the size of the entire system can be reduced. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
Since the vertical induction generator hydroelectric power generation system includes the inverter 13, the load 14 can be operated directly. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.

本発明の籠形誘導発電機水力発電システムの第一実施例の構成図。The block diagram of the 1st Example of the vertical induction generator hydroelectric power generation system of this invention. 本発明の籠形誘導発電機水力発電システムの第二実施例の構成図。The block diagram of the 2nd Example of the vertical induction generator hydroelectric power generation system of this invention. 本発明の籠形誘導発電機水力発電システムの第三実施例の構成図。The block diagram of the 3rd Example of the vertical induction generator hydroelectric power generation system of this invention. 本発明の籠形誘導発電機水力発電システムの第四実施例の構成図。The block diagram of the 4th Example of the vertical induction generator hydroelectric power generation system of this invention. 本発明の籠形誘導発電機水力発電システムの第五実施例の構成図。The block diagram of 5th Example of the vertical induction generator hydroelectric power generation system of this invention.

符号の説明Explanation of symbols

1 水車
2a、2b 圧力センサー
3 籠形誘導発電機
4 整流昇圧回路
5 平滑コンデンサー
6 ダイオード整流回路
7 系統電源
8 回転速度制御装置
9 開閉器回路
10 蓄電池
11 系統連系装置
12 系統電源
13 インバータ
21 水流
DESCRIPTION OF SYMBOLS 1 Waterwheel 2a, 2b Pressure sensor 3 Vertical induction generator 4 Rectification booster circuit 5 Smoothing capacitor 6 Diode rectifier circuit 7 System power supply 8 Rotational speed control device 9 Switch circuit 10 Storage battery 11 System interconnection device 12 System power supply 13 Inverter 21 Water flow

Claims (5)

水車と、該水車の入口側圧力を計測する圧力センサーと、前記水車の出口側圧力を計測する圧力センサーと、前記水車により駆動される籠形誘導発電機と、該籠形誘導発電機の固定子巻線に接続されたダイオードとスイッチング素子からなる整流昇圧回路と、該整流昇圧回路に並列に接続された平滑コンデンサーと、該平滑コンデンサーと並列に接続されたダイオード整流回路と、前記籠形誘導発電機の制御装置とを備え、前記制御装置の内部記憶装置に記録された前記水車の圧力毎の無拘束速度と発電好適速度の各特性データを用いて、前記圧力センサーが計測した水車の圧力値における無拘束運転速度と発電好適運転速度の中間の速度を算出し、算出した中間の速度となる運転指令を前記籠形誘導発電機に与え、前記中間の運転速度と無拘束運転速度の差によって生ずる回生電力が前記発電好適速度で運転速度指令を与えた場合よりも小さい状態で起動し、その後前記好適運転速度に移行して回生電力を大きく出力することを特徴とする籠形誘導発電機水力発電システム。   A water wheel, a pressure sensor for measuring the pressure on the inlet side of the water wheel, a pressure sensor for measuring a pressure on the outlet side of the water wheel, a vertical induction generator driven by the water wheel, and fixing of the vertical induction generator A rectifier booster circuit comprising a diode and a switching element connected to the sub winding, a smoothing capacitor connected in parallel to the rectifier booster circuit, a diode rectifier circuit connected in parallel to the smoothing capacitor, and the saddle induction The pressure of the turbine measured by the pressure sensor using the characteristic data of the unconstrained speed and the preferred power generation speed for each pressure of the turbine recorded in the internal storage device of the generator. An intermediate speed between the unconstrained operation speed and the power generation preferable operation speed is calculated, and an operation command that gives the calculated intermediate speed is given to the vertical induction generator. The regenerative power generated by the difference in the bundle operation speed is started in a state smaller than the case where the operation speed command is given at the power generation preferred speed, and then the operation proceeds to the suitable operation speed to output a large amount of regenerative power. Vertical induction generator hydroelectric power generation system. 水車と、該水車の入口側圧力を計測する圧力センサーと、前記水車の出口側圧力を計測する圧力センサーと、前記水車により駆動される籠形誘導発電機と、該籠形誘導発電機の固定子巻線に接続されたダイオードとスイッチング素子からなる整流昇圧回路と、該整流昇圧回路に並列に接続された平滑コンデンサーと、該平滑コンデンサーと並列に接続された開閉器回路と、該開閉器回路に接続された蓄電池と、前記籠形誘導発電機の制御装置とを備え、前記蓄電池から起動時の電力を供給し、前記制御装置の内部記憶装置に記録された前記水車の圧力毎の無拘束速度と発電好適速度の各特性データを用いて、前記圧力センサーが計測した水車の圧力値における無拘束速度と発電好適速度の中間の速度を算出し、算出した中間の速度となる運転指令を前記籠形誘導発電機に与え、前記中間の速度と無拘束速度の差によって生ずる回生電力が前記発電好適速度で運転速度指令を与えた場合よりも小さい状態で起動し、その後前記好適運転速度に移行して回生電力を大きく出力するとともに、蓄電池の電圧が所定値を超えたときに前記開閉器回路を開列することを特徴とする籠形誘導発電機水力発電システム。   A water wheel, a pressure sensor for measuring the pressure on the inlet side of the water wheel, a pressure sensor for measuring a pressure on the outlet side of the water wheel, a vertical induction generator driven by the water wheel, and fixing of the vertical induction generator A rectifying booster circuit comprising a diode and a switching element connected to the child winding, a smoothing capacitor connected in parallel to the rectifying booster circuit, a switch circuit connected in parallel to the smoothing capacitor, and the switch circuit A storage battery connected to the storage battery, and a control device for the saddle-type induction generator, which supplies power at the time of startup from the storage battery, and is unconstrained for each pressure of the turbine recorded in the internal storage device of the control device Using the characteristic data of the speed and the preferred power generation speed, the intermediate speed between the unconstrained speed and the preferred power generation speed in the pressure value of the turbine measured by the pressure sensor is calculated, and the calculated intermediate speed is obtained. A command is given to the vertical induction generator, and the regenerative power generated by the difference between the intermediate speed and the unconstrained speed is started in a state smaller than the case where the operation speed command is given at the power generation preferred speed, and then the preferred operation A vertical induction generator hydroelectric power generation system that shifts to speed and outputs a large amount of regenerative power and opens the switch circuit when the voltage of the storage battery exceeds a predetermined value. 上記平滑コンデンサーと並列に接続される系統連系装置を備え、発電電力を交流電力として出力する請求項1又は2に記載の籠形誘導発電機水力発電システム。   The vertical induction generator hydroelectric power generation system according to claim 1, further comprising a grid interconnection device connected in parallel with the smoothing capacitor, and outputting generated power as alternating current power. 上記平滑コンデンサーと並列に接続される負荷駆動インバータを備え、発電電力を直流電力で前記負荷駆動インバータに出力する請求項1又は2に記載の籠形誘導発電機水力発電システム。   The vertical induction generator hydroelectric power generation system according to claim 1, further comprising a load drive inverter connected in parallel with the smoothing capacitor, wherein the generated electric power is output to the load drive inverter as DC power. 上記ダイオードとスイッチング素子からなる整流昇圧回路と、該整流昇圧回路に並列に接続された平滑コンデンサーと、該平滑コンデンサーと並列に接続されたダイオード整流回路と、上記籠形誘導発電機の制御装置が一体で構成されたインバータであることを特徴とする請求項1乃至4に記載の籠形誘導発電機水力発電システム。   A rectifier booster circuit comprising the diode and a switching element; a smoothing capacitor connected in parallel to the rectifier booster circuit; a diode rectifier circuit connected in parallel to the smoothing capacitor; and a control device for the saddle induction generator. 5. The vertical induction generator hydroelectric power generation system according to claim 1, wherein the inverter is an integrated inverter.
JP2003413129A 2003-12-11 2003-12-11 Vertical induction generator hydroelectric power generation system Expired - Lifetime JP4299650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413129A JP4299650B2 (en) 2003-12-11 2003-12-11 Vertical induction generator hydroelectric power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413129A JP4299650B2 (en) 2003-12-11 2003-12-11 Vertical induction generator hydroelectric power generation system

Publications (2)

Publication Number Publication Date
JP2005176498A true JP2005176498A (en) 2005-06-30
JP4299650B2 JP4299650B2 (en) 2009-07-22

Family

ID=34733347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413129A Expired - Lifetime JP4299650B2 (en) 2003-12-11 2003-12-11 Vertical induction generator hydroelectric power generation system

Country Status (1)

Country Link
JP (1) JP4299650B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275516A (en) * 2008-05-12 2009-11-26 Mitsubishi Heavy Ind Ltd Exhaust gas recirculation control device of diesel engine
GB2461286A (en) * 2008-06-26 2009-12-30 Univ Lancaster Fluid turbine
JP2016158407A (en) * 2015-02-25 2016-09-01 東芝三菱電機産業システム株式会社 Power generating system
CN113556066A (en) * 2020-04-26 2021-10-26 北京机械设备研究所 Asynchronous generator speed sensorless starting method
CN115788761A (en) * 2022-12-26 2023-03-14 四川水利职业技术学院 Electric speed regulator based on hydropower station

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275516A (en) * 2008-05-12 2009-11-26 Mitsubishi Heavy Ind Ltd Exhaust gas recirculation control device of diesel engine
GB2461286A (en) * 2008-06-26 2009-12-30 Univ Lancaster Fluid turbine
GB2461286B (en) * 2008-06-26 2012-12-12 Univ Lancaster Fluid turbine
JP2016158407A (en) * 2015-02-25 2016-09-01 東芝三菱電機産業システム株式会社 Power generating system
CN113556066A (en) * 2020-04-26 2021-10-26 北京机械设备研究所 Asynchronous generator speed sensorless starting method
CN113556066B (en) * 2020-04-26 2023-07-14 北京机械设备研究所 Asynchronous generator no-speed sensor starting method
CN115788761A (en) * 2022-12-26 2023-03-14 四川水利职业技术学院 Electric speed regulator based on hydropower station

Also Published As

Publication number Publication date
JP4299650B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP3840416B2 (en) Turbine generator
US9450416B2 (en) Wind turbine generator controller responsive to grid frequency change
JP2007252028A (en) Wind power hydrogen production system
US20100283242A1 (en) High Voltage Start of an Engine from a Low Voltage Battery
JP4299650B2 (en) Vertical induction generator hydroelectric power generation system
JP4641881B2 (en) Induction generator power generator
JP2008274882A (en) Hybrid wind power generation system
JP4236969B2 (en) Wind turbine start assist control device in wind power generator
JP2011256729A (en) Engine power generating apparatus
JP2011019374A (en) Over-rotation preventing device for wind power generator
JP2005218163A (en) Turbine generating set and its self-sustaining operation method
JP5600788B1 (en) High-efficiency output-stabilized power generator and flowing water type small hydropower system
JPWO2019058764A1 (en) Hydropower system interconnection system
JP2009092008A (en) Wind power generation device
JP2002155846A (en) Power recovery hydraulic power generation device
JP6841738B2 (en) Hydropower system
KR100847654B1 (en) Engine-generator provided with super capacitor
JP6257895B2 (en) Offshore power generation facility and operation method thereof
JP5797511B2 (en) Control method of variable speed synchronous generator motor
JP6453107B2 (en) Power generation system
JP2004180378A (en) Hydraulic power generator facilities
JP4299767B2 (en) Water turbine power generation system and inverter
JP4761250B2 (en) Power generation equipment
JP2002115643A (en) Small hydraulic power generating facility
JP6293188B2 (en) Power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Ref document number: 4299650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

EXPY Cancellation because of completion of term